
Linked Lists

ESC190, Winter 2023

February 28, 2023

Some slides from Francois Pitt



Linked Lists

▶ Cannot add an element to an array/block of memory because
there may not be space there. (Could move the entire block
to a new location with enough space)

▶ To remove an element from an array/block, need to
potentially shift almost the entire block to the left in memory

▶ Use a “linked-list” structure to store the data instead

−3

A "node"
Another node

data

next

data

next

first

n 2

23



▶ Each item is stored in a node that contains:
▶ the value of the item (called the node’s data)
▶ a pointer to the next node

▶ A list consists of two pieces of information:
▶ a pointer to the first node
▶ the number of elements in the list

−3

A "node"
Another node

data

next

data

next

first

n 2

23



Linked Lists insert

▶ Suppose we want to insert value 34 at index 2 in the linked
list below (the index of each node is NOT stored in the linked
list—it is indicated in the picture for convenience)

index 0

index 1

index 2

data

next

23

data

next

−3

data

next

51

34

first

n 3



▶ First, we create a new node to store the new value

n 3

index 0

index 1

index 2

data

next

23

data

next

−3

data

next

51

data

next

34

first



▶ Next, we set the next pointer of the new node to the next
pointer of the node at index 1

3

index 0

index 1

index 2

data

next

23

data

next

−3

data

next

51

data

next

34

first

n



▶ Next, we set the next pointer of the node currently at index 1
to point to the new node

3

index 0

index 1

index 2

index 3

data

next

23

data

next

−3

data

next

51

data

next

34

first

n



▶ Finally, we update the value of n (it’s not necessary to store
the number of elements for a linked list, but it is often done
for convenience)

4

index 0

index 1

index 2

index 3

data

next

23

data

next

−3

data

next

51

data

next

34

first

n



▶ The complexity is O(1)—assuming we already have a pointer
to the element at index 1

4

index 0

index 1

index 2

index 3

data

next

23

data

next

−3

data

next

51

data

next

34

first

n



Linked Lists remove

▶ Now, suppose we want to remove the value at index 1 from
the linked list below

4

index 0

index 1

index 2

index 3

data

next

23

data

next

−3

data

next

51

data

next

34

first

n



▶ First, we set the next pointer of the node at index 0 to the
value of the next pointer of the node at index 1

4

index 0

index 1

index 2

old index 1
data

next

23

data

next

−3

data

next

51

data

next

34

first

n



▶ Next, we “delete” the old node at index 1—meaning we
simply release the memory that was allocated for the node

4

index 0

index 1

index 2

data

next

23 data

next

51

data

next

34

first

n



▶ Finally, we update the value of n

3

index 0

index 1

index 2

data

next

23 data

next

51

data

next

34

first

n



▶ The complexity is O(1)—assuming we already have a pointer
to the element at index 0

3

index 0

index 1

index 2

data

next

23 data

next

51

data

next

34

first

n



Linked list get

▶ Finally, suppose we want to get the value at index 2 from the
linked list below

3

index 0

index 1

index 2

data

next

23 data

next

51

data

next

34

first

n



▶ This requires setting a pointer to point to each node in turn,
keeping count, until we reach index 2

index 1

index 2

current count 0

data

next

23 data

next

51

data

next

34

first

n 3

index 0



▶ This requires setting a pointer to point to each node in turn,
keeping count, until we reach index 2

index 1

index 2

current count 1

data

next

23 data

next

51

data

next

34

first

n 3

index 0



▶ This requires setting a pointer to point to each node in turn,
keeping count, until we reach index 2

index 1

index 2

current count 2

data

next

23 data

next

51

data

next

34

first

n 3

index 0



▶ The complexity is O(n) in the worst-case (when retrieving the
item at the last index in the list)

index 1

index 2

current count 2

data

next

23 data

next

51

data

next

34

first

n 3

index 0



Summary

▶ The worst-case complexity of each list operation for the array
data structure and the linked list data structure, where n is
the number of items in the list

Operation Array Linked List

Insert O(n) O(1)
Remove O(n) O(1)
Get O(1) O(n) (or O(1) if index is known)

▶ The complexity listed for insert and remove for linked lists is
only the time taken for the actual insertion or removal—not
counting the time required to find the insertion/removal
point, which will be O(n) in the worst-case



▶ Wait a minute! This means linked lists are no better than
arrays, are they?

▶ Linked lists have one big advantage over arrays: their size is
not fixed and can grow and shrink to accommodate exactly
the number of values actually stored

▶ Linked lists are particularly suited to applications where we
mostly need to insert or remove values from either end of the
list—we’ll see examples soon, when we discuss stacks and
queues


