
ESC190 Winter 2025 Lab 10: VIBE CODING

Vibe coding, according to Merriam-Webster, is a recently-coined term for
the practice of writing code, making web pages, or creating apps, by just
telling an AI program what you want, and letting it create the product for
you. In vibe coding the coder does not need to understand how or why the
code works, and often will have to accept that a certain number of bugs and
glitches will be present. The verb form of the word is vibe code.. The term
was coined by Andrej Karpathy, a UofT CS 2009 graduate.

You will learn how to use the OpenAI application programming interface
(API), which allows applications to communicate with each other by sending
and receiving data, to generate Python function code, execute the generated
code, and test its correctness. You will analyze when the large language
model (LLM) generates accurate code and when it fails.

1 Setup

Create a folder for the work in this lab named lab10.
Download the “notopenai client” from https://www.cs.toronto.edu/

~guerzhoy/190/notopenai.zip. Unzip the folder and put it in the lab10
folder.

Create lab10.py and put it in the lab10 folder as well. Open lab10.py.
Obtain your own API key from https://esc190-winter-2025-student-key-lookup.

vercel.app/. Do not share it with other students.
Copy the API key into the top of your lab10.py where API KEY = the

api key you obtained.
We are limited to a few calls a second total, so: be patient, and

please don’t overload the system.

2 Test calling the API

The get response(prompt) function has been provided to you below. Try
calling this function with the prompt being “What is engineering science?”

1

https://www.cs.toronto.edu/~guerzhoy/190/notopenai.zip
https://www.cs.toronto.edu/~guerzhoy/190/notopenai.zip
https://esc190-winter-2025-student-key-lookup.vercel.app/
https://esc190-winter-2025-student-key-lookup.vercel.app/

Print out the response.

from notopenai import NotOpenAI

import json

Input the API key obtained for the lab

API_KEY = "..."

CLIENT = NotOpenAI(api_key=API_KEY)

def get_response(prompt):

chat_completion = CLIENT.chat.completions.create(

messages=[

{

"role": "user",

"content": prompt,

}

],

model="gpt-3.5-turbo", # the GPT model to use

)

response_str = chat_completion.choices[0].message.content

return response_str

3 Prompt engineering

Write a prompt that asks the AI to generate a Python function for you
that output the factorial of the input n. Extract the code portion from the
response and print out the resulting code.

4 Test the code generated by AI

Given a few test cases in the following format:

test_cases = [

{"intput": 3, "expected_output": 6},

{"intput": 4, "expected_output": 24},

]

Write a function check result(generated code, test cases), print
out how many cases passed and failed.

2

You can use exec(generated code) to define the function from a string,
e.g.,

def check_result(generated_code, test_cases):

"""

Check which test cases failed from the generated code

generated_code - str

test_caes - dict

e.g., if the generated_code is:

def fun(x):

return x

"""

exec(generated_code, globals())

Execute the string that

contains the function will make

the function available to be called below

print(fun(1)) # this will print 1 in the example above.

In your prompt, you might want to explicitly ask for the generated func-
tion to be named, e.g., fun(x), and you might ask to generate the function
only.

5 Test cases

Here is a task on which GPT-3.5 usually doesn’t succeed:

s = ’’’Date,Character,Age,HeightCm,AppleCount,MoodRating

2025-01-15,Snow White,14,157.5,1,8.5

Doc,200,91.4,3,7.2

2025-01-16,Grumpy,199,89.0,0,3.4

2025-01-16,202,94.0,2,9.7

2025-01-17,Sleepy,202,90.2,1,6.3

Bashful,198,88.5,1,5.8

2025-01-18,Sneezy,197,92.3,2,7.4

2025-01-18,Dopey,195,87.1,4,8.9

2025-01-19,,42,175.6,0,2.1

Prince,25,185.3,2,9.5

2025-01-20,Huntsman,38,178.4,1,6.7

2025-01-20,250,92.0,3,7.3

3

2025-01-21,Forest Animals,5,30.5,4,9.2’’’

#print(get_response(’’’Write Python code to parse a CSV string

formatted like the following. Result needs

to be a dictionary of dictionaries\n\n\n’’’ + s))

Note that here, some dates and character names are missing, and GPT-
3.5 is not (usually) smart enough to figure out how to handle that. Write test
cases for the function, experiment with different prompts on chatgpt.com,
and demonstrate how you can generate code in our framework that passes
the test cases.

6 Creating new data

We created a custom graph format in ESC190. Use ChatGPT to create a
different graph in the same format, and verify that our algorithms still run
on the newly-created graph.

Some ideas: input examples from lecture; input the definition of Graphs
from lecture.

7 Working with graphs

Write a function to find the order in which a particular node would be
printed using breadth-first travesal/depth-first traversal (both recursive and
iterative), given that the traversal starts at a particular node. For example,
if you start from "YYZ" and "YUL" would be printed 5-th, output 5.

4

	Setup
	Test calling the API
	Prompt engineering
	Test the code generated by AI
	Test cases
	Creating new data
	Working with graphs

