UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, APRIL 2024
DURATION: 2%, hours
ESC190H1S — COMPUTER ALGORITHMS AND DATA STRUCTURES

Calculator Type: None
Exam Type: B

Aids allowed: reference sheet distributed with the exam

Examiner(s): M. Guerzhoy

Student Number: | | | | | | | | | |

UTORIid:

UofT email:

Family Name(s):

@mail.utoronto.ca

Given Name(s):

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

MARKING GUIDE

This final examination paper consists of 10 questions on 22 pages (including this # 1: / 10
one), printed on both sides of the paper. When you receive the signal to start, please
make sure that your copy is complete, and fill in the identification section above. # 2: / 15
Answer each question directly on this paper, in the space provided. Use the pages at
the end of the exam for extra space. If you use extra pages, indicate that you have done # 3 / 15
so in the space under the question. -
Write up your solutions carefully! Comments and docstrings are not required to # 4 / 10
receive full marks, except where explicitly indicated otherwise. However, they may help -
us mark your answers, and part marks might be given for partial solutions with comments 4 5 / 15
clearly indicating what the missing parts should accomplish. E—
When you are asked to write code, no error checking is required: you may assume that 6: 10
all user input and argument values are valid, except where explicitly indicated otherwise. # 6: —/
When writing in Python 3 programming language. You may not import any module
except math, unless otherwise specified. When writing in C, You may #include any # T —/ 5
header file that is available with a standard installation of gcc or is described in the C99
standard, unless otherwise specified. We will accept code that is correct under the # 8: —/ 10
C99 standard as well as any code that will run correctly when compiled with gcc.
#9:._ /5
Write your student number on every odd-numbered page you use. Failure to do
so will result in a penalty of 5 points. # 10: /)
TOTAL: /100
Page 1 of 22 Good Luck! OVER...

Question 1. [10 MARKS]

Part (a) [8 MARKS]

Write a C function that computes the median of an odd number of integers. A median of an array of size
n is a number m such that at least (n — 1/2) elements of the array are smaller or equal to m and at least
(n — 1/2) elements of the array are larger or equal to m.

int my_median(int *arr, int sz)

{

Part (b) [2 MARKS]

What is a tight upper-bound on the asymptotic time complexity of the code you wrote? Simplify as much
as possible. Briefly justify.

Page 2 of 22 CONT'D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Question 2. [15 MARKS]

Write a function, count_letters, that counts the number of occurrences of each alphabetical letter found
in a string. The function has two parameters: a string (i.e., char *) and an array of integers. The string
should not be modified and can be of any length. You may assume that the string is null-terminated
and all letters are lower-case. The string may contain characters that are not part of the alphabet (e.g.,
0, 1, !, &, etc). The integer array has a size of 26, one for each letter in the alphabet. The first index
corresponds to the letter a, the second index to the letter b, and so on.

void count_letters(char *s, int counts[])

{

Page 3 of 22 Student #: , | . . OVER...

Question 3. [15 MARKS]
In C, write a function that takes a string as input and reverses the order of words in that string. A word is
defined as a continuous sequence of non-space characters, and words are separated by one or more spaces.
The function should return a new string, leaving the input string unchanged.
For example, given the string "Hello EngSci Hi", your function should return "Hi EngSci Hello"
You may assume that the input only contains letters and spaces.

char* reverse_words(char *str)

{

Page 4 of 22 CONT'D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Question 4. [10 MARKS]

In C, write a function that takes in an array of integers and its size, and returns 1 if the array is strictly in-
creasing (e.g., {1, 5, 10, 12}) and 0 otherwise (e.g., {1, 2, 2, 3}or {5, 4}). You must use recursion.
You must not use loops, global variables, or any helper functions.

int is_increasing(int *arr, int sz)

{

Page 5 of 22 Student #: . , | . OVER...

Question 5. [15 MARKS]
In C, implement a circular queue of strings.

Your implementation must include ENQUEUE and DEQUEUE operations, which must work with
enqueing and dequeing C strings. Your implementation should enable the use of enqueue an arbitrary

number of elements.
A circular queue, is a data structure that uses a an array and two pointers to indicate the start position

and the end position.
Consider a circular queue with a maximum size of 4, that holds elements ‘a’, ‘b’, ‘c’, and ‘d’. The

initial state of the queue might be:

Front Rear

| l

a b C d

After a dequeue operation, the front pointer moves to ‘b’. After an enqueue operation of ‘e’, the rear
pointer moves to ‘e’. The queue now contains: ‘b’, ‘c’, ‘d’, and ‘e’.

Rear Front

o]l

If another dequeue operation is performed, the front pointer moves to ‘c’. The queue becomes: ‘c’, ‘d’,
‘e’, and the front position is now free. This illustrates the efficient use of space in a circular queue where
elements can wrap around to the beginning of the array.

Rear Front
| |
e C d

Page 6 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Page 7 of 22 Student #: , | . . OVER...

Page 8 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION

Question 6. [10 MARKS]
Part (a) [5 MARKS]

Consider a modified version of the game of Race to 21.

e Players take turns to count, starting from 1.
e Fach player, on their turn, can count up 1, 2, or 3 numbers.

e The player who says “21” first is the winner.

Here’s an example of how this game could be played:

Start at: 0

Player 1: 1, 2
Player 2: 3, 4, 5
Player 1: 6, 7
Player 2: 8

Player 1: 9, 10, 11
Player 2: 12

Player 1: 13, 14
Player 2: 15, 16, 17
Player 1: 18, 19
Player 2: 20

Player 1: 21 (Player 1 wins)

ESC190H1S

Write a function that takes in the starting position (e.g., 0 as in the example above, or e.g. 12), and
prints out the move from that position that will result in a guaranteed win (if it is available) which will

take the smallest amount of moves even if an opponent tries their best to delay loss.
You must use depth-first search.
You may use C or Python.

Page 9 of 22 Student #: , | . .

OVER...

Page 10 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Part (b) [5 MARKS]

If you did not use recursion in the previous question, solve the same problem with recursion. If you did
use recursion, solve the same problem without using recursion. You still must use depth-first search.

Page 11 of 22 Student #: , | . . OVER...

Page 12 of 22 CONT'D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Question 7. [5 MARKS]

Use A* to try improve the performance in the previous questions.

Page 13 of 22 Student #: , | . . OVER...

Page 14 of 22 CONT'D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Question 8. [10 MaRKS]

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if
s can be segmented into a space-separated sequence of one or more dictionary words.

Write a function canBeSegmented(s, wordDict) that returns true if s can be segmented and false
otherwise.

Example

1. If you are given:

s = "applepenapple”,

2 ”

wordDict = ["apple”, "pen”],
The output should be true because ”applepenapple” can be segmented as ”apple pen apple”.

2. If you are given:

s = ”catsandog”,

wordDict = ["cats”, "dog”, "sand”, "and”, ”cat”],

The output should be false because ”catsandog” cannot be segmented into a space-separated se-
quence of one or more dictionary words.

Notes

e The same word in the dictionary may be reused multiple times in the segmentation.

e You may assume the dictionary does not contain duplicate words.

You must use dynamic programming.

Page 15 of 22 Student #: ., | . . OVER...

Question 9. [5 MARKS]

Part (a) [2 MARKS]
Construct a binary search tree as shown. You must use the code below. Store the root of the tree in the

variable root.
1
4 5

7

class Node:
def __init__(self, value):
self.value = value
self.left = None
self.right = None

Part (b) [3 MARKS]
Write a function that takes in the root of a binary search tree and returns the sum of all the nodes in the

tree.

Page 16 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Question 10. [5 MARKS]

Part (a) [2 MARKS]
In C, write an appropriate hash function for storing doubles in a hash table.

unsigned int hash(double d)
{

Part (b) [1 MARK]

Briefly explain why you expect that the hash function you wrote would work in general.

Part (c) [2 MARKS]

Describe a dataset of doubles that would cause the hash table using your hash function to perform poorly.
Your description should include pseudocode of how to generate such a dataset.

Page 17 of 22 Student #: , | . . OVER...

Extra space for solutions

Page 18 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Extra space for solutions

Page 19 of 22 Student #: , | . . OVER...

Extra space for solutions

Page 20 of 22 CONT’D. ..

APRIL 2024 FINAL EXAMINATION ESC190H1S

Extra space for solutions

Page 21 of 22 Student #: , | . . OVER...

ESC190H1S FINAL EXAMINATION APRIL 2024

Extra space for solutions

Page 22 of 22 Total Marks = 100 END OF FINAL EXAMINATION

