
ESC180H1F Project #3 — Semantic Similarity Fall 2024

One type of question encountered in the Test of English as a Foreign Language (TOEFL) is the “Synonym
Question”, where students are asked to pick a synonym of a word out of a list of alternatives. For example:

1. vexed (Answer: (a) annoyed)

(a) annoyed

(b) amused

(c) frightened

(d) excited

For this assignment, you will build an intelligent system that can learn to answer questions like this one. In
order to do that, the system will approximate the semantic similarity of any pair of words. The semantic
similarity between two words is the measure of the closeness of their meanings. For example, the semantic
similarity between “car” and “vehicle” is high, while that between “car” and “flower” is low.

In order to answer the TOEFL question, you will compute the semantic similarity between the word
you are given and all the possible answers, and pick the answer with the highest semantic similarity to the
given word. More precisely, given a word w and a list of potential synonyms s1, s2, s3, s4, we compute the
similarities of (w, s1), (w, s2), (w, s3), (w, s4) and choose the word whose similarity to w is the highest.

We will measure the semantic similarity of pairs of words by first computing a semantic descriptor
vector of each of the words, and then taking the similarity measure to be the cosine similarity between
the two vectors.

Given a text with n words denoted by (w1, w2, ..., wn) and a word w, let descw be the semantic descriptor
vector of w computed using the text. descw is an n-dimensional vector. The i-th coordinate of descw is
the number of sentences in which both w and wi occur. For efficiency’s sake, we will store the semantic
descriptor vector as a dictionary, not storing the zeros that correspond to words which don’t co-occur with
w. For example, suppose we are given the following text (the opening of Notes from the Underground by
Fyodor Dostoyevsky, translated by Constance Garnett):

I am a sick man. I am a spiteful man. I am an unattractive man. I believe my liver is diseased.
However, I know nothing at all about my disease, and do not know for certain what ails me.

The word “man” only appears in the first three sentences. Its semantic descriptor vector would be:

{"i": 3, "am": 3, "a": 2, "sick": 1, "spiteful": 1, "an": 1, "unattractive": 1}

The word “liver” only occurs in the second sentence, so its semantic descriptor vector is:

{"i": 1, "believe": 1, "my": 1, "is": 1, "diseased": 1}

We store all words in all-lowercase, since we don’t consider, for example, “Man” and “man” to be different
words. We do, however, consider, e.g., “believe” and “believes”, or “am” and “is” to be different words.
We discard all punctuation.

The cosine similarity between two vectors u = {u1, u2, . . . , uN} and v = {v1, v2, . . . , vN} is defined as:
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We cannot apply the formula directly to our semantic descriptors since we do not store the entries which
are equal to zero. However, we can still compute the cosine similarity between vectors by only considering
the positive entries.

For example, the cosine similarity of “man” and “liver”, given the semantic descriptors above, is

3 · 1 (for the word "i")√
(32 + 32 + 22 + 12 + 12 + 12 + 12)(12 + 12 + 12 + 12 + 12)

= 3/
√
130 = 0.2631 . . .
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Part 1.

Implement the following functions in synonyms.py. Note that the names of the functions are case-sensitive
and must not be changed. You are not allowed to change the number of input parameters, nor to add any
global variables. Doing so will cause your code to fail when run with our testing programs, so that you
will not get any marks for functionality. We provide you with a starter version of synonyms.py

Subpart (a) cosine_similarity(vec1, vec2)

This function returns the cosine similarity between the sparse vectors vec1 and vec2, stored as dictionaries.
For example,

cosine_similarity({"a": 1, "b": 2, "c": 3}, {"b": 4, "c": 5, "d": 6})

should return approximately 0.70 (as a float).

Subpart (b) build_semantic_descriptors(sentences)

This function takes in a list sentences which contains lists of strings (words) representing sentences, and
returns a dictionary d such that for every word w that appears in at least one of the sentences, d[w] is itself
a dictionary which represents the semantic descriptor of w (note: the variable names here are arbitrary).
For example, if sentences represents the opening of Notes from the Underground above:

[["i", "am", "a", "sick", "man"],

["i", "am", "a", "spiteful", "man"],

["i", "am", "an", "unattractive", "man"],

["i", "believe", "my", "liver", "is", "diseased"],

["however", "i", "know", "nothing", "at", "all", "about", "my",

"disease", "and", "do", "not", "know", "for", "certain", "what", "ails", "me"]],

part of the dictionary returned would be:

{ "man": {"i": 3, "am": 3, "a": 2, "sick": 1, "spiteful": 1, "an": 1,

"unattractive": 1},

"liver": {"i": 1, "believe": 1, "my": 1, "is": 1, "diseased": 1},

... }

with as many keys as there are distinct words in the passage.
Computational complexity Beware of writing the function so that its complexity if O(n2) where

n is the number of words in the text. This will result in your not being able to run the code once you
complete all the functions.

A hint for how to achieve this is at the end of this handout.

Subpart (c) build_semantic_descriptors_from_files(filenames)

This function takes a list of filenames of strings, which contains the names of files (the first one can
be opened using open(filenames[0], "r", encoding="latin1")), and returns the a dictionary of the
semantic descriptors of all the words in the files filenames, with the files treated as a single text.

You should assume that the following punctuation always separates sentences: ".", "!", "?", and that
is the only punctuation that separates sentences. You should also assume that that is the only punctuation
that separates sentences. Assume that only the following punctuation is present in the texts:

[",", "-", "--", ":", ";"]
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Subpart (d) most_similar_word(word, choices, semantic_descriptors, similarity_fn)

This function takes in a string word, a list of strings choices, and a dictionary semantic_descriptors

which is built according to the requirements for build_semantic_descriptors, and returns the element
of choices which has the largest semantic similarity to word, with the semantic similarity computed using
the data in semantic_descriptors and the similarity function similarity_fn. The similarity function is
a function which takes in two sparse vectors stored as dictionaries and returns a float. An example of such
a function is cosine_similarity. If the semantic similarity between two words cannot be computed, it is
considered to be −1. In case of a tie between several elements in choices, the one with the smallest index
in choices should be returned (e.g., if there is a tie between choices[5] and choices[7], choices[5] is
returned).

Subpart (e) run_similarity_test(filename, semantic_descriptors, similarity_fn)

This function takes in a string filename which is the name of a file in the same format as test.txt, and
returns the percentage (i.e., float between 0.0 and 100.0) of questions on which most_similar_word()

guesses the answer correctly using the semantic descriptors stored in semantic_descriptors, using the
similarity function similariy_fn.

The format of test.txt is as follows. On each line, we are given a word (all-lowercase), the correct
answer, and the choices. For example, the line:

feline cat dog cat horse

represents the question:

feline:

(a) dog

(b) cat

(c) horse

and indicates that the correct answer is “cat”.
For example, rum_similarity_test could be used as follows:

sem_descriptors = build_semantic_descriptors_from_files(["wp.txt", "sw.txt"])

res = run_similarity_test("test.txt", sem_descriptors, cosine_similarity)

print(res, "of the guesses were correct")

1 Correctness and complexity

You should test your individual function using small examples where you know the correct restult.
You should also attempt to run your functions on the recommended novels (together): War and Peace

and Swann’s way, available for Project Gutenberg.
http://www.gutenberg.org/files/2600/2600-0.txt

http://www.gutenberg.org/cache/epub/7178/pg7178.txt

Because different people will make different choices regarding punctuation other than what is outlined
in 1(c) , results will vary. You should expect to get between 67.5% and 72.5% correct guesses when all
functions are implemented correctly.

Computational complexity hint: think of a way to update the semantic descriptor dictionary
sentence-by-sentence.
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