
Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Question 1. [9 marks]

Treat each subquestion independently (i.e., code in one question is not related to code in another), and
answer each question in the space provided.

Part (a) Functions [2 marks]

Write a function that prints “Happy Halloween” (without the quotes). Also write code that calls the
function that you wrote.

Sample Solution:

def make_a_wish():

print("Happy Halloween")

make_a_wish()

Marking Scheme:

• Correct function definition: [1 mark]

• Calling declared function: [1 mark]

• Syntax errors: [−1 mark each]

Part (b) Loops and Lists [3 marks]

Complete the following function. The function should print all the elements of the list L that is passed
to it as an argument, except the last element. One element should be printed per line. For example,
print_almost_all([41, 42, 43]) should print:

41

42

def print_almost_all(L):

Sample Solution:

def print_almost_all(L):

for i in range(len(L) - 1):

print(L[i])

Marking Scheme:

• Traversing correct range in list L: [1 mark]

• Correct loop: [1 mark]

• Correct print call: [1 mark]

• Syntax errors: [−1 mark each]

Page 1 of 8 over. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Part (c) Global Variables [2 marks]

Complete the function h() so that the effect of running the code below is to print “candy” (without the
quotes) and not “pumpkin.”

def h():

treat = "pumpkin"

h()

print(treat)

Sample Solution:

def h():

global treat

treat = "candy"

Marking Scheme:

• Use of global statement: [1 mark]

• Successfully changing the value of variable treat : [1 mark]

• Syntax errors: [−1 mark]

• Code that leads to incorrect output: [−1 mark]

Part (d) Order of Execution [2 marks]

What is the output of the following piece of code?

x = 4

y = x + 5

x = 7

print(x, y)

Sample Solution:

7 9

Marking Scheme:

• No part marks.

Page 2 of 8 cont’d. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Question 2. [16 marks]

Part (a) [4 marks]

Complete the following function. The function returns the number of kids whose favourite part of Halloween
is candy, according to the data in the dictionary faves. For a string name, faves[name] contains the
favourite part of Halloween of the kid named name. Both the names and the favourites are lowercase
strings. For example,

count_candy({"ben": "costumes", "adam":"candy", "matt":"candy", "anna":"costumes"})

returns 2, since two kids (adam and matt) like candy. Assume faves is given in the correct format.

def count_candy(faves):

Sample Solution:

def count_candy(faves):

candy_lovers = 0

for k in faves:

if faves[k] == "candy":

candy_lovers += 1

return candy_lovers

Marking Scheme:

• Successfully keeping track of number of people who favour “candy”: [1 mark]

• Correctly accessing elements of the dictionary: [1 mark]

• Correctly traversing through all the keys in faves: [1 mark]

• Returning correct value: [1 mark]

• Syntax errors: [-1 mark (upto -2)]

Part (b) [4 marks]

Write code that prints all the integers from −500 to 500, from smallest to largest. That is, the code should
print all of

−500,−499,−498, ...,−2,−1, 0, 1, 2, 3, ..., 499, 500.
Each integer should be printed on a separate line.

Sample Solution:

i = -500

while i <= 500:

print(i)

i += 1

Marking Scheme:

• Correctly traversing from -500 to 500: [1 mark]

• Good loop: [2 marks]

• Correct Output: [1 mark]

• Syntax errors: [-1 mark (upto -2)]

Page 3 of 8 over. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Part (c) [4 marks]

Complete the following function according to its docstring.

def get_key_by_val(d, val):

"""Return a key in the dictionary d such that d[key] == val. If there are several

such keys, return one of them (it doesn’t matter which). If there are no such

keys, return None."""

Sample Solution:

def get_key_by_val(d, val):

for k in d:

if d[k] == val:

return k

return None

Marking Scheme:

• Correctly traversing d : [1 mark]

• Correctly accessing elements of the dictionary: [1 mark]

• Successfully checking for val : [2 marks]

• Correctly returning: [1 mark]

• Syntax errors: [-1 mark (upto -2)]

Part (d) [4 marks]

Complete the following function according to its docstring.

def all_not_same(a, b, c):

"""Return True if a, b, and c are **not** all equal to each other. Return

False otherwise."""

Sample Solution:

def all_not_same(a, b, c):

if a == b:

if b == c:

return True

return False

Marking Scheme:

• Successfully comparing a, b, and c: [2 marks]

• Correct returning True: [1 mark]

• Correct returning False: [1 mark]

• Syntax errors: [-1 mark (upto -2)]

Question 3. [8 marks]

Each of these subquestions contains a piece of code. Treat each piece of code independently (i.e., code
in one question is not related to code in another), and write the expected output for each piece
of code. If the code produces an error, write down the output that the code prints before the error is
encountered, and then write “ERROR.” You do not have to specify what kind of error it is.

Page 4 of 8 cont’d. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Part (a) [2 marks]

def f(n):

print(n)

m = 2

f(m)

Output:

2

Marking Scheme:

• No part marks.

Part (b) [2 marks]

def f(n):

n = 5

n = 2

f(n)

print(n)

Output:

2

Marking Scheme:

• No part marks.

Part (c) [2 marks]

def f(L):

L[0] = 42

print(L[0])

L = [1, 2, 3]

f(L)

print(L[0])

Output:

42
42

Marking Scheme:

• First line: [0.5 mark]

• Second line: [1.5 mark]

• Incorrect format: [-0.5 mark]

• Correct output + Error: [-0.5 mark]

Page 5 of 8 over. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Part (d) [2 marks]

d1 = {1:[2], 3:[4]}

d2 = d1

d1 = {1: d2[1], 3: d2[3]}

d1[1][0] = 5

print(d1[1][0], d2[1][0])

Output:

5 5

Marking Scheme:

• First 5 : [0.5 mark]

• Second 5 : [1.5 mark]

• Incorrect format: [-0.5 mark]

• Correct output + Error: [-0.5 mark]

Question 4. [6 marks]

Complete the function below according to its docstring. For full marks, do not use list’s method
.extend() anywhere in your solution. Solutions that use .extend() will get at most 3 marks.

def flatten(list_of_lists):

"""Return a new list that contains every value in each of the sub-lists of

list_of_lists. For example,

>>> flatten([[1, 3], [’a’, ’b’, ’c’]])

[1, 3, ’a’, ’b’, ’c’]

Assume that all the elements of list_of_lists are lists and that the elements

of the elements of list_of_lists are integers or strings."""

Sample Solution:

def flatten(list_of_lists):

output = []

for l in list_of_lists:

for element in l:

output.append(element)

return output

Marking Scheme:

• Successfully traversing list of lists: [1 mark]

• Successfully traversing elements of elements of list of lists: [1 mark]

• Successfully keeping tracking of all the elements in a new list: [1 mark]

• Correctly appending to the new list: [2 mark]

• Returning correct value: [1 mark]

• Syntax errors: [-1 mark (upto -2)]

Page 6 of 8 cont’d. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Question 5. [6 marks]

Write code that prints out all the possible 4-letter strings that can be written using the letters “a”, “b”,
“c”, “d”, “e”, “f” and “g” (and no other character) such that no letter appears in any string more than
twice. For example, "ccbb" should be printed, but "aaab" should not. Hint: think about how you would
print all the 4-letter strings.

Sample Solution:

letters = [’a’,’b’,’c’,’d’,’e’,’f’,’g’]

for a in letters:

for b in letters:

for c in letters:

for d in letters:

candidate = a+b+c+d

if no_3_4_repeats(candidate):

print(candidate)

def no_3_4_repeats(candidate):

for c in candidate:

if candidate.count(c) > 2:

return False

return True

Marking Scheme:

• Good structure and correct output: [1 mark]

• Enumerating through all relevant strings: [2 marks]

• Filtering: correctly counting the characters in candidate strings: [2 marks]

• Filtering: correctly using the counts to filter out illegal strings: [1 mark]

• Duplicates in output: [-1 mark]

• Syntax errors: [-1 mark (upto -2)]

Page 7 of 8 over. . .

Fall 2014 Midterm Test—Marking Scheme CSC 180 H1

Bonus. [3 marks]

Write a function with the signature near_anagram(w1, w2) that takes in two strings, w1 and w2, and
returns True iff w1 can be obtained from w2 by rearranging the characters in w2, and then changing exactly
one of the characters for another character. For example near_anagram("cat, "tap") is True since "cat"
can be rearranged into "tac", and then changed into "tap" by exchanging c for p. Assume w1 and w2 only
contain lowercase letters.

Sample Solution:

def near_anagram(w1, w2):

diff1_2 = 0

diff2_1 = 0

for c in set(s1+s2):

if s1.count(c)-s2.count(c) == 1:

diff1_2 += 1

elif s1.count(c)-s2.count(c) == -1:

diff2_1 += 1

elif abs(s1.count(c)-s2.count(c)) > 1:

return False

return diff1_2 == diff2_1 == 1

Marking Scheme:

• Correct solution: [3 mark]

• Correct solution except for an easily fixable problem: [2 mark]

• Incorrect solution but code exhibits a good attempt at all the required steps: [1 mark]

• Code works if the strings don’t have any repeated characters: [0.5 mark]

Page 8 of 8 Total Marks = 45 End of Marking Scheme

