
Fall 2010 Midterm Test—Solutions CSC 180 H1

Note to Students: This file contains sample solutions to the term test together with the marking
scheme and comments for each question. Please read the solutions and the marking schemes and comments
carefully. Make sure that you understand why the solutions given here are correct, that you understand
the mistakes that you made (if any), and that you understand why your mistakes were mistakes.

Remember that although you may not agree completely with the marking scheme given here it was
followed the same way for all students. We will remark your test only if you clearly demonstrate that the
marking scheme was not followed correctly.

For all remarking requests, please submit your request in writing directly to your instructor. For all
other questions, please don’t hesitate to ask your instructor during office hours or by e-mail.

Question 1. [15 marks]

Each of these subquestions contains a block of code. Treat each block of code independently (i.e., code in
one question is not related to code in another), and answer each question in the space provided.

Part (a) Simple Syntax [1 mark]

def add_ints(x, y):

return x + y

x = 1

y = 2

add_ints()

In the block of code to the left, circle every line that
would cause the code to fail—there is at least one.
Then, in the space below, explain why the line(s)
fail.

Sample Solution:

Circle add_ints(), because it is missing arguments to the function call.

Marking Scheme:

• Answer [0.5]

• Explanation [0.5]

Part (b) Simple Syntax [1 mark]

def loopy(L)

for item in L

print item

my_list = [1, 2, 3]

loopy(my_list)

In the block of code to the left, circle every line that
would cause the code to fail—there is at least one.
Then, in the space below, explain why the line(s)
fail.

Sample Solution:

Circle def loopy(L) and for item in L, because they are missing a colon (:) at the
end of the line.

Marking Scheme:

• Answer [0.5]

• Explanation [0.5]

Page 1 of 10 over. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Question 1. (continued)

Part (c) Scope [1 mark]

def sum_to_n(n):

total = (n * (n + 1)) / 2.0

sum_to_n(5)

print total

In the block of code to the left, circle every line that
would cause the code to fail—there is at least one.
Then, in the space below, explain why the line(s)
fail.

Sample Solution:

Circle print total, because it is trying to access a variable local to function sum_to_n.

Marking Scheme:

• Answer [0.5]

• Explanation [0.5]

Part (d) Scope [1 mark]

value = 1

def printer(value):

print value

value = 42

print value

print value

printer(value)

print value

What is the output of the code to the left?

Sample Solution:

1

1

42

1

Marking Scheme:

• First three lines [0.5]

• Last line [0.5]

Part (e) Order of Execution [1 mark]

def printer():

print "Hello"

print "Hi"

printer()

printer()

What is the output of the code to the left?

Sample Solution:

Hi

Hello

Hello

Marking Scheme:

• Output [1] (Don’t take off marks for including quotes in the output.)

Page 2 of 10 cont’d. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Question 1. (continued)

Part (f) Order of Execution [1 mark]

var_A = 11

var_B = var_A

var_A = 42

After this code is executed, the value of var_B is:

11

Sample Solution: (See above.)

Marking Scheme:

• Answer [1]

Part (g) While Loops [1 mark]

def find_o(search_str):

index = 0

while index < len(search_str) and \

search_str[index] != ’o’:

index += 1

return index

print find_o("eeyore")

print find_o("pooh")

print find_o("tigger")

What is the output of the code to the left?

Sample Solution:

3

1

6

Marking Scheme:

• Answer [1] (Take off only 0.5 if every answer is off-by-one.)

Part (h) Mutability [1 mark]

def doubler(L):

for item in L:

item = item * 2

print L

my_list = [1, 2, 3]

doubler(my_list)

What is the output of the code to the left?

Sample Solution:

[1, 2, 3]

Marking Scheme:

• Answer [1]

Page 3 of 10 over. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Question 1. (continued)

Part (i) Aliasing and Mutability [1 mark]

def doubler(L):

dL = L

for index in range(len(dL)):

dL[index] = dL[index] * 2

my_list = [1, 2, 3]

doubler(my_list)

print my_list

What is the output of the code to the left?

Sample Solution:

[2, 4, 6]

Marking Scheme:

• Answer [1]

Part (j) Conditionals and Booleans [2 marks]

The table to the right shows how an employee’s age and expe-
rience affects his or her hourly wage. Assume that you have a
boolean variable experienced and an int variable age that cor-
respond with the labels in the table. Fill in the conditions in the
code below to calculate the hourly wage for the employee.

Experienced?

Age Yes No

under 18 $12.00 $9.50

18 and over $15.00 $10.50

Sample Solution:

if __ experienced ___:

if __ age < 18 __:

wage = 12

else:

wage = 15

else:

if __ age < 18 __:

wage = 9.5

else:

wage = 10.5 # typo corrected during the test

Marking Scheme:

• Format: [1] all expressions are boolean (even if incorrect)

• Idea: [1] correct expressions (even if not expressed correctly)

Page 4 of 10 cont’d. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Question 1. (continued)

Part (k) Data Types [2 marks]

Fill in the blank so that when this code is run, the user is asked to enter two numbers and then the average
of those numbers is printed. The payrates are likely to contain decimal values.

num1 = raw_input("Please enter your hourly wage: ")

num2 = raw_input("Please enter your friend’s hourly wage: ")

Sample Solution:

print "Your average wage is", __ (float(num1) + float(num2)) / 2 _____________

Marking Scheme:

• Expression [0.5] correct high-level expression, ignoring any issues of type

• Conversion [1.5] correct use of float to convert values (give 0.5 for using int instead)

Part (l) Calling Functions [2 marks]

Fill in the blank to call city_elevation to obtain the elevation (height above sea level) of Monkton.

def city_elevation(city):

’’’Return the elevation of the city (given as a string).’’’

... (The rest of the code for this function is not shown.)

return elevation

Sample Solution:

print "The elevation of Monkton is", __ city_elevation("Monkton") ______________

Marking Scheme:

• Call [1] correct syntax for calling city_elevation

• Argument [1] correct syntax for the str argument "Monkton"

Question 2. [8 marks]

Part (a) [4 marks]

Complete the function egg_category which returns a str describing an egg’s category given its int weight
in grams. Here is a table specifying the weight ranges—if an egg’s weight is on the boundary between two
category ranges, it is assigned the smaller category.

Category Weight

Small no more than 50 grams

Medium 50–57 grams

Category Weight

Large 57–64 grams

Jumbo more than 64 grams

def egg_category(weight):

’’’Return a str describing the category of an egg of the specified int weight.

’’’

Page 5 of 10 over. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Sample Solution:

if weight <= 50:

category = "Small"

elif weight <= 57:

category = "Medium"

elif weight <= 64:

category = "Large"

else:

category = "Jumbo"

return category

Marking Scheme:

• String [1] always returning (not printing) a string descriptor

• Only one [1] handles only one category correctly

• All [1] handles all other category correctly

• Boundary [1] handles the boundary cases correctly

Marker’s Comments:

• common error [−1]: writing “6” instead of “<=”

Part (b) [4 marks]

Complete the main block below. Your program should use raw_input to ask the user for an egg weight
and should print the category for that weight, in the form: “An egg of weight W is a C egg.”, where
W is the weight the user entered and C is the category returned by your function from above. (Note that
you can complete this part even if you did not write the function above.)

if __name__ == "__main__":

Sample Solution:

weight = int(raw_input("Please enter the weight of an egg: "))

print "An egg of weight", weight, "is a", egg_category(weight), "egg."

Marking Scheme:

• Call [1] clearly making a call to egg_category to get the category

• Argument [1] calling egg_category with an int argument

• Input [1] using raw_input correctly to get input from the user

• Output [1] formatting the output appropriately

Marker’s Comments:

• common error: most students forgot to cast the string returned by raw_input into an int

Page 6 of 10 cont’d. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Question 3. [8 marks]

Part (a) [4 marks]

Complete the function below according to its docstring.

def print_time(sec):

’’’A day has 86400 = 24 * 60 * 60 seconds. Given an int in the range 0 to 86399,

print the current time as hours, minutes, seconds on a 24-hour clock. For example:

>>> print_time(70000)

19 h, 26 m, 40 s

’’’

Sample Solution:

hrs = sec / 3600 # integer number of hours

sec -= hrs * 3600 # remaining number of seconds

min = sec / 60 # integer number of minutes

sec -= min * 60 # remaining number of seconds

print hrs, "h,", min, "m,", sec, "s"

Marking Scheme:

• Print [1] printing rather than returning information

• Values [2] correct values computed

• Format [1] following the format specified in the docstring

Marker’s Comments:

• common error [−0.5]: badly formatted output (e.g., missing commas)

• common error: using “+” to concatenate a str and an int

• small arithmetical errors were penalized −0.5 to −1, depending on severity

Part (b) [4 marks]

Fill the table below with four different test cases for function print_time above—do not test for invalid
inputs. For each test case, indicate clearly the expected outcome and your reason for choosing this case (in
column “Explanation”). Note that you can answer this part even if you did not complete the code above.

Test Case Expected Outcome Explanation

0 0 h, 0 m, 0 s Boundary case: smallest argument

15 0 h, 0 m, 15 s Less than 1 minute but not zero

900 0 h, 15 m, 0 s Less than 1 hour but more than 1 minute

70000 19 h, 26 m, 40 s More than 1 hour

86399 23 h, 59 m, 59 s Boundary case: largest argument

Sample Solution: (Any four cases similar to one of those above.)

Page 7 of 10 over. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Marking Scheme:

• 1 mark for each test case whose purpose is clearly different from the others (take off 0.5 for each
missing outcome and 0.5 for each missing/unclear explanation)

Marker’s Comments:

• common error: testing for invalid input, including tests for non-int input or input out of range (read
the question and the docstring carefully)

Question 4. [5 marks]

Part (a) [2 marks]

Write a suitable docstring for the following function.

def func(n):

’’’

Return the value of 1**2 + 2**2 + ... + n**2

for any integer n.

’’’

total = 0

while n > 0:

total += n * n

n -= 1

return total

Sample Solution: (See above.)

Marking Scheme:

• Parameter [1] n is mentioned by name and its type specified

• Return [1] clear description of the return value

Marker’s Comments: Well done.

Part (b) [3 marks]

Complete the function below according to its docstring. (Hint: Look at the string method .isdigit().)

def int_input(prompt):

’’’Repeatedly ask the user for a value, using string prompt, until the user enters

an integer, then return that integer.

’’’

Sample Solution:

value = raw_input(prompt)

while not value.isdigit():

value = raw_input(prompt)

return int(value)

Page 8 of 10 cont’d. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Marking Scheme:

• Input [1] correct use of raw_input

• Loop [1] correct loop, including stopping condition

• Return [1] function returns an int (no printing)

Marker’s Comments:

• common error [−0.5]: not casting return value to int

• common error [−0.5]: misunderstanding the use of prompt, e.g., “prompt = raw_input(...)”

Question 5. [6 marks]

Write a Python program to control the temperature in a building, using the following functions.

• current_temp(): Return the current temperature. The initial temperature is 20, and the temperature
remains constant unless it is changed by one of the other functions.

• raise_temp(deg): Raise the temperature by deg degrees.

• lower_temp(deg): Lower the temperature by deg degrees.

Your solution will be graded on its design as well as its functionality.

In-Test Announcement:

You must implement the functions (i.e., write code for them), not just “use”them.

Sample Solution:

temp = 20 # Current temperature -- global.

def current_temp():

return temp

def raise_temp(deg):

global temp

temp += deg

def lower_temp(deg):

global temp

temp -= deg

Marking Scheme:

• Overall [1] correct overall design (global variable with functions)

• Initialization [1] global variable initialized properly

• Accessor [1] correct code for current_temp()

• Mutators [1] correct code for raise_temp and lower_temp, ignoring local vs. global issues

• Global [1] correct use of global keyword in raise_temp and lower_temp

• Syntax [1] general Python syntax

Page 9 of 10 over. . .

Fall 2010 Midterm Test—Solutions CSC 180 H1

Marker’s Comments:

• Functions were not penalized if they failed to handle both positive and negative inputs.

• The functions should do exactly and only what is stated, so marks were taken off for printing or
returning values in the mutators (raise_temp and lower_temp).

• Many students forgot the “def” keyword! Also, be careful with indentation and capitalization.

• Generally done well.

Question 6. [8 marks]

Complete the function below according to its docstring.

def longest_sequence(search_str, ch):

’’’Return the length of the longest consecutive sequence of the character ch in the

string search_str. For example:

>>> longest_sequence("aababbbabb", "b")

3

>>> longest_sequence("aababbbabb", "a")

2

’’’

Sample Solution:

max_run = run = 0

for c in search_str:

if c == ch:

run += 1

else:

if run > max_run:

max_run = run

run = 0

return max_run

Marking Scheme:

• Loop [1] loop over entire str

• Max [2] tracks maximum sequence length and updates it appropriately

• Current [2] tracks current sequence length and updates it appropriately

• Return [1] returns an int (no printing)

• Value [1] correct value returned (or printed)

• Syntax [1] general Python syntax

Marker’s Comments:

• common error: not finding the maximum run length

• common error: returning the number of non-consecutive occurrences

Page 10 of 10 Total Marks = 50 End of Solutions

