ESC 180 H1F Lab #4 Fall 2024

Problem 1. =

The following is the Leibniz formula for :

n T

— (-1)
2;2n+1__4

Write a program (using a for- loop) to compute

1000 (1)

4> ——
ZO: 2n+1
and then print an approximation for 7 using the result of the computation.
See https://en.wikipedia.org/wiki/Leibniz_formula_for_JCF%80 for details on why this works.
Hint: the following code computes

500
> n=0+1+2+3+..+500:
0
res = 0
for n in range(501): # the last number to be added in should be 500
res = res + n

For this problem, you are doing the same thing, but for a more complicated summand.

Problem 2. A bit more 7

Now, write a program using a while-loop to compute the quantity from Problem 1. See Monday’s lec-
ture at around 6min https://www.youtube.com/live/S-4raWYGyq87si=10prcMDZ8vnXvWIo&t=400 for a
technique for converting for-loops into while-loops.

Problem 3. Greatest common divisor using exhaustive search

In this question, you will write a function with the signature gcd(n, m) which computes the greatest
common divisor of the positive integers n and m.

The greatest common divisor of n and m is a number d such that n is divisible by d and m is divisible
by d.

Note that k is divisible by d if and only if the remainder of the division of k by d is 0, i.e., k % d == 0.

There is an efficient algorithm for doing finding the greatest common divisor (more on this later),
but in this question, you should use exhaustive search: trying every possible answer until you find the
right one. This is a similar approach to the one we used for is_perfect_square in the Monday lecture
https://www.youtube.com/live/S-4raWYGyq87si=jFqSDAMEStdA1nNQ&t=2523

Implement both of the approaches below.

Part (a) Approach 1

Write the function by trying every possible divisor from 1, 2, 3, ..., etc. (What is the largest guess you
can try?). Keep track of the largest guess for the greatest common divisor that worked so far. Update a
variable every time the divisor divides both n and m. Return the latest guess that worked.

Engineering Science, University of Toronto Page 1 of

https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
https://www.youtube.com/live/S-4raWYGyq8?si=1OprcMDZ8vnXvWIo&t=400
https://www.youtube.com/live/S-4raWYGyq8?si=jFqSDAME5tdA1nNQ&t=2523

ESC 180 H1F Lab #4 Fall 2024

Part (b) Approach 2

Approach 1 is inefficient in that we always have to try all the possible guesses every time. If we tried the
largest guess first and it worked, we would not need to try smaller guesses (explain why).

Use a while-loop to try all the possible guesses, from the largest to the smallest, and use an early
return technique to return from the function once you know the answer.

Hint: in the examples so far, we used something like this to count from 1 to n:

i=1

while i < n:
print (i)
i=1+1

Now, we want to count backward from a larger number to a smaller number. That means we want to
change i = 1and i = i + 1 to something else.

Note: it is also possible, and arguably better, to use a for-loop here (using material not covered until
Week 4), but for this question, please use a while-loop.

Problem 4. Simplifying Fractions

Write a function with the signature simpify_fraction(n, m) which prints the simplified version of the
fraction .-

Note that we asked you to print, not return. That is because we don’t yet have a mechanism to return
more than one number.

You do not need to use a complicated algorithm to compute the greatest common divisor (although
you certainly can do that!). For example, simplify_fraction(3,6) should print 1/2, and

simplify_fraction(8, 4) should print 2.

Problem 5. input loop

Write a program that reads repeatedly asks the user for names, and then outputs the list of all the names
before the special name END is entered. An example of an interaction would be:

Enter a name: Alice
Enter a name: Bob

Enter a name: Charlie
Enter a name: Dave
Enter a name: Emily
Enter a name: END

The names are: Alice, Bob, Charlie, Dave, Emily

To store the names in the program, you can use a string. For example, the string might be "" at first,
then "Alice", then "Alice, Bob", etc. You can use the += operator to add a name to the string.

Problem 6. Sum more 7

Now we would like to figure out how many terms in the summation above we need to add up in order
to approximate 7 to n significant digits. Write a function that returns the number of the terms required

Engineering Science, University of Toronto Page 2 of

ESC 180 H1F Lab #4 Fall 2024

to obtain an approximation of 7 using the Leibniz formula that agrees with the actual value of m to n
significant digits (for the purposes of this problem, the approximation and 7 agree to n significant digits if
the first n digits are the same in 7 and in the approximation.)

The best approximation of 7 using a float is available in math.pi (execute import math to be able
to use it.)

Part of your job is to figure out whether two numbers agree to n significant digits. To figure that out,
for a float x, consider what round (x* (10**n)) means (try round(math.pi*(10**5)) to see what it does).

Problem 7. Calendar

Only do this problem after your work has been checked by a TA.

Part (a) Tomorrow’s Date

Write a function with the signature next_day(y, m , d) which prints the date that follows the date
y/m/d.
Reminder:

According to the Gregorian calendar, which is the civil calendar in use today, years evenly
divisible by 4 are leap years, with the exception of centurial years that are not evenly divisible
by 400. Therefore, the years 1700, 1800, 1900 and 2100 are not leap years, but 1600, 2000, and
2400 are leap years. (Source: the US Naval Observatory website.)

Part (b) Counting Days

Write a function that prints out, in order, all the dates between £Y/£M/£D and tY/tM/tD. Using the same
idea, write a function that returns the number of days between two dates.

Problem 8. Euclid’s Algorithm

Advanced problem. Only do this problem after your work has been checked by a TA.

A more efficient way of simplifying fractions than what we suggested for Problem[4]is Euclid’s algorithm:
https://crypto.stanford.edu/pbc/notes/numbertheory/euclid.html. Implement and test Euclid’s
algorithm.

You can and should reformulate the algorithm to use a while-loop.

Engineering Science, University of Toronto Page 3 of

https://crypto.stanford.edu/pbc/notes/numbertheory/euclid.html

