Week 4: notes

June 5, 2014

1 Sample detailed proofs

1.1 $[3|n] \Rightarrow [3|n^2]$

Problem: Prove or disprove the claim

$$[3|n] \Rightarrow [3|n^2]$$

m | n (sometimes pronounced "m divides n) means that n is divisible by m. In other words,

$$[m|n] \Leftrightarrow [\exists k \in \mathbb{Z}, n = km]$$

Solution:

The claim is **true**. Proof:

- 1. Let k be an integer such that n = 3k (k exists since 3|n)
- 2. Then $n^2 = 9k^2 = 3(3k^2)$ (refactoring)
- 3. $3(3k^2)$ is divisible by 3 $(3k^2 \text{ is an integer})$
- 4. Therefore, n^2 is divisible 3

 $1.2 \quad [8|n^2] \Rightarrow [8|n]$

Problem: Prove or disprove the claim

$$[8|n^2] \Rightarrow [8|n]$$

The claim is **false**. Proof:

Let n = 4. $8|4^2$ (since $4^2 = 2*8$) but $\neg(8|4)$ (since 4 is a positive integer that's smaller than 8). So for n = 4, $[8|n^2] = T$, and [8|n] = F, so $[[8|n^2] \Rightarrow [8|n]] = F$.

1.3 $[3|n^2] \Rightarrow [3|n]$

Problem: Prove or disprove the claim. For all $n \in \mathbb{N}$

$$[3|n^2] \Rightarrow [3|n]$$

The claim is **true**. Proof:

1. Let k be an integer such that $n^2 = 3k$ (k exists since $3|n^2$)

- 2. $n^2 = 3^{k_3} * p_1^{k_{p_1}} * p_2^{k_{p_2}} * \dots * p_m^{k_{p_m}}$, where $p_1, p_2, \dots p_m$ are different prime factors of n^2 (every number can factorized into prime factors in a unique way)
- 3. n has the same prime factors as n^2 (since $n^2=n\ast n)$ so $n=3^{k_3/2}\ast q$ where q is a product of prime factors of n^2
- 4. Therefore, n is divisible by 3.
- 5. So if we assume that $3|n^2$, we conclude that 3|n.
- 6. So $[3|n^2] \Rightarrow [3|n]$