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ABSTRACT
In many collaborative filtering (CF) applications, latent ap-
proaches are the preferred model choice due to their ability
to generate real-time recommendations efficiently. However,
the majority of existing latent models are not designed for
implicit binary feedback (views, clicks, plays etc.) and per-
form poorly on data of this type. Developing accurate mod-
els from implicit feedback is becoming increasingly impor-
tant in CF since implicit feedback can often be collected at
lower cost and in much larger quantities than explicit prefer-
ences. The need for accurate latent models for implicit data
was further emphasized by the recently conducted Million
Song Dataset Challenge organized by Kaggle [18]. In this
challenge, the results for the best latent model were orders
of magnitude worse than neighbor-based approaches, and all
the top performing teams exclusively used neighbor-based
models. We address this problem and propose a new latent
approach for binary feedback in CF. In our model, neighbor-
hood similarity information is used to guide latent factor-
ization and derive accurate latent representations. We show
that even with simple factorization methods like SVD, our
approach outperforms existing models and produces state-
of-the-art results.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous
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1. INTRODUCTION
Emerging popularity of e-commerce and social web has

highlighted an important challenge of surfacing relevant con-
tent to consumers. Recommender systems have proven to
be effective tools for this task receiving a lot of attention
recently [2, 5, 14]. One approach that is commonly used to
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build accurate recommender models is collaborative filter-
ing (CF). CF is a method of making predictions about an
individual’s preferences based on the preference information
from many users. CF has been shown to work well across
various domains [2], and many successful web-services such
as Netflix, Amazon, YouTube and Yahoo! use CF to deliver
personalized recommendations to their users.

The majority of the existing approaches in CF can be di-
vided into two categories: neighbor-based approaches and
model-based approaches (we review both types in detail in
Section 3). Neighbor-based approaches estimate the item
preferences for a target user using the similarities from
neighboring users and/or items [23, 12]. In contrast, model-
based approaches use the observed preferences to create a
compact model of the data which is then used to predict the
unobserved preferences.

While neighbor-based models can generate accurate and
interpretable recommendations when sufficient data is avail-
able, they are very inefficient at test time. Most neighbor
models require loading large portions of data to estimate
user and/or item similarities, and involve several complex
operations most of which are difficult to do efficiently in real-
time. In many applications where recommendations need to
be generated in real-time, model-based approaches are the
preferred choice. These methods build compact memory-
efficient representations of the data and can be easily scaled
to handle millions of users and items. For this reason we pri-
marily concentrate on model-based approaches in this work.

Preference data that is used to learn CF models can be
partitioned into two types: explicit feedback and implicit
feedback. Explicit feedback includes all explicit preference
actions from users. Data of this type typically comes in the
form of ratings (Netflix, Amazon etc.) or thumbs-up/down
selection (Youtube, TiVo etc.). While explicit feedback gen-
erally provides high quality signal that accurately describes
users’ preferences, collecting large amounts of this data re-
quired to develop accurate recommender models is notori-
ously difficult and time consuming. For this reason, much of
the recent attention have been devoted to implicit feedback
where preferences are inferred indirectly by observing user
behavior. Implicit feedback can come in many forms that
include plays, purchases, browse histories and even mouse
clicks and scrolls. Since no additional action is required from
users beyond the normal use of the service, large amounts of
implicit feedback can often be cheaply collected in a short
amount of time. This advantage however, comes at the ex-
pense of increased signal noise.



Most of the available implicit data is binary where user ei-
ther conducts the action (purchase, browse, click etc.) on a
given item or no data is available. 1 Binary feedback makes
the recommendation problem particularly challenging since
it is impossible to gauge the degree of preference from such
data. Furthermore, the majority of existing model-based
approaches are developed for non-binary data and employ
objective functions that rely on graded relevance to distin-
guish positive preferences from negative ones. Such mod-
els tend to perform very poorly on binary data. Recently,
several model-based approaches have been developed specif-
ically for binary feedback [13, 20], however results on CF
challenges have shown that these models don’t perform as
well as neighbor-based approaches.

The difference in performance between neighbor- and
model-based methods on binary data became especially ev-
ident during the Million Song Dataset Challenge (MSD)
which was recently conducted by Kaggle [18]. In this chal-
lenge, song listening histories were made available for 1.2M
users and 380K songs, and the goal was to predict the next
500 songs for a subset of 110K users. Full song listening
counts were made available but the organizers found these
to correlate poorly with user preferences and binarized the
data (1 if user listened to a song and 0 otherwise), using
Mean Average Precision to evaluate submissions.

From the winners’ reports [3] and the challenge forum 2, it
became evident that all of the top scoring teams used vari-
ations of neighbor-based methods. Moreover, results for the
best performing model-based approach were orders of mag-
nitude worse than the best neighbor-based methods. Simi-
lar findings were reported by the challenge organizers who
found that recommending songs from the same artist out-
performed a complex model-based approach by a significant
margin [18]. It was also reported that most model-based
methods had run-time and/or memory problems on data
of this size, and were either too slow to converge or used
too much RAM. Given that 150 teams participated in this
challenge and its recency, it can be concluded that there
currently is no readily-available model-based approach that
can perform well on binary data of this size.

Since the majority of implicit feedback is binary, it is
highly desirable to develop accurate model-based methods
that scale well to large datasets. In this paper we propose
one such approach. The main idea behind our approach
is to use neighbor similarities to enrich binary preferences
and guide latent factor learning for both users and items.
We empirically demonstrate that this approach produces la-
tent representations that outperform neighbor-based meth-
ods while being considerably more efficient during inference
time.

2. BINARY COLLABORATIVE FILTER-
ING FRAMEWORK

In a typical binary collaborative filtering problem we
have a set of N users U = {u1, ..., uN} and a set of M
items V = {v1, ..., vM}. The users’ binary feedback for the
items can be represented by an N × M matrix R where
R(un, vm) = 1 if user un expressed preference (played, pur-

1Note that some explicit data can also come in binary format
e.g., Facebook’s “likes”.
2www.kaggle.com/c/msdchallenge/forums/t/2365/
challenge-retrospective-methods-difficulties

chased, clicked etc.) for item vm and R(un, vm) = 0 other-
wise. We use U(vm) to denote the set of all users that pre-
ferred vm and V(un) to denote the set of items that un has
expressed preference for. We use vector notation: R(un, :)
denotes the n’th row of R (1 × M vector), and R(:, vm)
denotes the m’th column (N × 1 vector).

Unlike the traditional CF where the goal is to accurately
predict ratings for every user-item pair, in binary domain the
aim is to produce a top-T ranking of the items that the user
is most likely to prefer next. A ranking of the items V can
be represented as a permutation π : {1, ...,M} → {1, ...,M}
where π(m) = l denotes the rank of the item vm and
m = π−1(l). A number of evaluation metrics have been
proposed in information retrieval to evaluate the perfor-
mance of the ranker. Here we concentrate on two of the
more commonly used metrics, Normalized Discounted Cu-
mulative Gain (NDCG) [15] and Mean Average Precision
(MAP) [4]. For a given user u and ranking π the NDCG is
given by:

NDCG(u, π,R)@T =
1

GT (u,R)

T∑
m=1

2ˆR(u, vπ−1(m))− 1

log2(m+ 1)

=
1

GT (u,R)

T∑
m=1

R(u, vπ−1(m))

log2(m+ 1)

where T is a truncation constant, vπ−1(m) is the item in
position m in π and GT (u,R) is a normalizing term which
ensures that NDCG ∈ [0, 1] for all rankings. T is typically
set to a small value to emphasize that the user will only
be shown the top-T ranked items and the items below the
top-T are not evaluated.

MAP is defined in terms of average precision (AP):

AP(u, π,R)@T =

∑T
m=1 P(u, π,R)@m ·R(u, vπ−1(m))∑T

m=1 R(u, vπ−1(m))

where P@m is the precision at m:

P(u, π,R)@m =

m∑
l=1

R(u, vπ−1(l))

m

MAP is then computed by averaging AP over all users. Both
NDCG and MAP have similar characteristics and discount
relevance of each item by its position in the ranking and are
maximized when all relevant items are ranked at the top.
In binary CF, all items v with R(u, v) = 0 are assumed
to be not relevant to u. This relevance assignment is not
entirely accurate since u might not have seen v, however, in
the absence of graded relevance most frameworks follow this
evaluation scheme.

3. EXISTING WORK
In this section we describe existing neighbor- and model-

based approaches developed for binary data.

3.1 Neighbor-Based Approaches
In a binary setting, neighborhood-based CF approaches

estimate item scores for a target user using the similarity
from neighboring users and/or items. Formally, given an
item v and target user u, the user-user approach estimates
the score for v by comparing u with other users that ex-

www.kaggle.com/c/msdchallenge/forums/t/2365/challenge-retrospective-methods-difficulties
www.kaggle.com/c/msdchallenge/forums/t/2365/challenge-retrospective-methods-difficulties


pressed preference for v:

user-user: S(u, v) =
∑

u′∈U(v)

R(u, :)R(u′, :)T (1)

The main idea behind this approach is based on the assump-
tion that if users similar to u prefer v then S(u, v) should be
high and v should be recommended to u. Similarly, in the
item-item approach v is compared to all items that u has
expressed preference for:

item-item: S(u, v) =
∑

v′∈V(u)

R(:, v)TR(:, v′) (2)

This method follows a similar idea and aims to recommend
items that are similar to items that u has expressed prefer-
ence for.

After estimating scores for all items either via user-user or
item-item method the resulting score vector S(u, :) is sorted
and top-T items are presented to u. In practice it is often
found that the accuracy of each method can be significantly
improved if dot product is replaced with a more complex
metric like cosine similarity. We found this to be especially
true for binary domain, where row and column L2 normal-
izations tend to work particularly well 3:

row-norm: R(u, :) =
R(u, :)√∑N
n=1 R(u, vn)2

(3)

col-norm: R(:, v) =
R(:, v)√∑M

m=1 R(um, v)2
(4)

We found that for most datasets applying both normaliza-
tions before computing similarities produced gains of up to
30%; further justification for using normalization can be
found in [12]. We also found that the order in which these
normalizations are applied is very important and should be
validated separately for each dataset. Note that when only
row-norm or col-norm normalization is applied, item-item
(user-user) scores become the sums of cosine similarities.

3.2 Model-Based Approaches
In contrast to neighbor-based approaches, model-based

approaches use the observed preferences to create a com-
pact model of the data which is then used to predict the
unobserved preferences. The most popular methods in this
category are latent models that derive compact latent fac-
tors for both users and items and then use these factors
to predict preference. Latent models are often the default
choice for many CF problems due to their accuracy and ef-
ficiency. Once the factors are estimated, recommendations
can be generated very efficiently by computing simple dot
products between latent factors, allowing these models to be
applied in real-time.

Several model-based approaches have been recently pro-
posed for binary setting, here we review two of the more
popular approaches WRMF [13] and BPR-MF [20]. WRMF
is a regression method and learns user-item factors by min-
imizing the weighted reconstruction error:

N∑
n=1

M∑
m=1

cnm(R(un, vm)−Ur(un, :)Vr(vm, :)
T )2 (5)

3To avoid introducing extra notation we use self assignment
of the form x = f(x) where possible.

where Ur is an N × r user factor matrix, Vr is an M × r
item factor matrix, and cnm is a weight that is set separately
for every user-item pair. For binary data cnm is set to:

cnm = 1 + αR(un, vm)

This formulation adds an extra α weight to every pair with
R(un, vm) = 1 forcing optimization to concentrate on those
pairs. Authors of WRMF propose to use alternating least
squares to optimize this model with an overall complexity
of O(N r2 + (N + M)r3) [13] where N is the total number
of non-zero entries in R. Both N r2 and (N + M)r3 grow
very quickly with r and several teams in the MSD challenge
(N ≈ 50 million and N + M ≈ 1.6 million) reported that
WRMF took prohibitively long to train even for moderate
r sizes.

BPR-MF is a ranking approach and optimizes pairwise
objective that attempts to place pairs with observed prefer-
ence above the unobserved ones:∑

(un,vm,vl)

log(1 + e−Ur(un,:)(Vr(vm,:)−Vr(vl,:))
T

) (6)

where triplets (un, vm, vl) are sampled with a condition that
R(un, vm) = 1 and R(un, vl) = 0. Similarly to WRMF, this
implies an assumption that all items vl with R(un, vl) = 0
are not relevant and should be ranked below the relevant
items vm with R(un, vm) = 1. Moreover, all relevant (ir-
relevant) items are assumed to be equally relevant (irrele-
vant). These assumptions often don’t hold in real-life sce-
narios where noisy implicit signals tend to produce incor-
rect/outlier preferences that should be discounted.

Due to its pairwise nature BPR-MF is also expensive to
optimize with runtime complexity of O(NM). While au-
thors claim that satisfactory convergence can be achieved
significantly faster through sampling, no theoretical guaran-
tees are provided. Another disadvantage of BPR-MF is that
when the number of items is large, gradient updates are dis-
tributed very unevenly (even with sampling). Popular items
with many non-zero entries receive the bulk of updates while
the tail-region items receive almost none. This can poten-
tially explain the poor performance of this approach on the
MSD dataset where challenge organizers found that it was
unable to outperform the simple songs by the same artist
baseline [18].

4. OUR APPROACH
We discussed earlier that treating all observed (unob-

served) items as equally relevant (irrelevant) is not opti-
mal in the binary CF setting. In this section we further
build on this idea and propose a model-based approach that
applies neighbor similarities to further distinguish relevant
items from irrelevant ones. This information is then used to
infer accurate user and item factors.

Before we delve into model description, consider the fol-
lowing simplified example: a fantasy fan purchases “The
Lord Of The Rings” trilogy, both “Hobbit” releases and “The
Devil Wears Prada” (a present for a friend). If we could re-
quest explicit preference data from this user we would im-
mediately know that (s)he does not enjoy movies like “The
Devil Wears Prada”. However, given that we only have ac-
cess to purchase history, objectives in WRMF and BPR-MF
would treat all purchases as equally relevant. During opti-
mization for this user, both methods would aim to derive



latent representations that rank fantasy movies and movies
like“The Devil Wears Prada”at the top, which is clearly sub-
optimal. One way of dealing with this problem is through
model regularization and both methods apply strict regular-
ization to penalize user and item factors. However, as the
number of outliers increases the problem becomes more se-
vere and might no longer be fixable by heavy regularization.

In contrast, by applying neighbor methods like item-item,
we immediately get a lower score for “The Devil Wears
Prada” since it’s not similar to any other purchase by this
user. From this example it is evident that the neighbor ap-
proach provides an effective way to resolve ties in the binary
preference matrix, and neighbor score matrix S reflects user
preferences more accurately than the raw binary matrix R.
Neighbor methods, however, are also not immune to noise.
Users/items with very few ratings can heavily skew simi-
larities and result in incorrect rankings. Row and column
normalizations can partially alleviate this problem but don’t
eliminate it completely.

In our model we propose to utilize these advantages of
neighbor approaches and factorize the neighbor score matrix
S instead of the original binary matrix R. In addition to pro-
ducing models that support very efficient inference, apply-
ing low-rank factorization to S can significantly reduce the
noise that is often present when similarities are computed on
highly sparse data. One method that readily lends itself for
the factorization task is truncated Singular Value Decom-
position (SVD). A number of techniques that use truncated
SVD such as the Principal Component Analysis and the La-
tent Semantic Analysis have been found to be very robust
to noise and generalize well. Moreover, SVD factorization is
a well studied problem and efficient distributed implemen-
tations exist that can factorize matrices with hundreds of
millions of rows (e.g., Mahout’s stochastic SVD [17]), mak-
ing it applicable to virtually any CF problem.

Encouraged by these results we apply truncated SVD to
the neighbor score matrix S. We begin by normalizing all
rows of S to have unit norms:

S(u, :) =
S(u, :)√∑M

m=1 S(u, vm)2

The L2 normalization rescales scores to have comparable
ranges across users making factorization more stable. This
is especially useful when some users/items have considerably
more data than others (common in many CF applications)
resulting in highly variable score ranges across users. After
row normalization we approximate S with a product of three
low rank matrices via SVD:

S ≈ UrΣrV
T
r (7)

Here r is SVD rank, Ur is an N × r matrix, Σr is an r × r
diagonal matrix and Vr is an M × r matrix.

Once the factorization is completed Σr is absorbed into
Ur, Ur = UrΣr, and the scores for every user-item pair
are calculated by computing dot product between the cor-
responding user and item factors:

svd: S(u, v) ≈ Ur(u, :)Vr(v, :)
T (8)

Sorting these scores gives top-T item recommendations for
u. Note that for most r this operation is considerably more
efficient than computing and summing neighbor similarities
(Equations 1 and 2), especially when the number of users or
items is large.

While SVD provides an effective way to derive latent rep-
resentations, current formulation requires computing and
storing the full score matrix S which is not practical for
most large-scale applications. In the following sections we
describe several ways of dealing with this problem.

4.1 Block Update
The naive SVD model has runtime complexity of

O(NM log(r) + (N +M)r2) 4 using the stochastic SVD al-
gorithm [11], and requires O(NM) space. Recently, a num-
ber of advances have been made on incremental SVD [7,
1] where factorization is built in stages, allowing to process
large amounts of data without explicitly storing it. One of
the more efficient algorithms developed by Brand [7] takes
as input “current” factorization UΣVT ≈ X and matrix A,
and produces updated SVD factorization UnewΣnewVT

new ≈
[X,A]. Note that in this formulation VT gets expanded to
have the same number of columns as [X,A] whereas U and
Σ only get updated but don’t change in size. Analogous
algorithm can be used to update U: using the fact that
VΣUT = XT we get that VnewΣnewUT

new ≈ [XT ,AT ].
We can readily apply these ideas to CF and factorize

users incrementally achieving considerable savings in space
requirements. Formally, we partition users into blocks of size
Nb and for each block we iteratively (1) calculate Nb ×M
neighbor score matrix and (2) update SVD factorization
to include latent factors for users in the block. The run-
time complexity of this block-factorization algorithm is still
O(NM log(r) + (N + M)r2) for r <

√
min(N,M) [11, 7],

but the space requirement reduces to O(NbM + (N +M)r))
where O(NbM) is the block size and O((N + M)r) is the
space required to store the final Ur and Vr factors. This
is a very significant reduction from the original O(NM)
and makes the algorithm practical for most CF applications.
Moreover, block update provides an effective way to update
the SVD model when new users and/or items are added to
the system. Finally, note that we concentrated on incre-
mentally processing users here but the same algorithm can
be straightforwardly modified to incrementally process items
instead. Thus depending on whether N � M or N � M
we can either choose user oriented or item oriented approach
(or alternate between the two).

4.2 Sparse Similarity
In the previous section we demonstrated that by using

incremental block updates we can significantly reduce the
space complexity to O(NbM) where Nb is the block size.
However, for large scale applications the number of items
can reach millions or hundreds of millions so even O(NbM)
can become too large. To deal with this problem we propose
to selectively use only a small subset of similarity scores for
each user. This is achieved by storing only the largest ρ
scores for each user and zeroing out the rest.

The motivation behind using only the largest scores comes
from the fact that we want to concentrate all model effort
on maximizing the accuracy at the top of the ranking. Items
with large scores are thus particularly important since they
would appear at the top for each user. Furthermore, it is well
known that SVD produces factorizations that are closest to
the target matrix in Frobenius norm (i.e., root squared er-
ror). By zeroing out low scores we force SVD to concentrate

4This excludes the cost of computing S.



Algorithm 1 SVD block-factorization

Input: R
Parameters: rank r, block size Nb, sparsity factor ρ
for i = 1 to N/Nb do

init block score matrix Sb = sparse(Nb,M)
for u = (i− 1)Nb + 1 to iNb do

calculate top-ρ scores for u using Eq. 1 or 2
store top-ρ scores in Sb(u, :)

end for
if i == 1 then

compute initial factorization:
[Ur,Sr,Vr] = SVD(Sb, r)

else
update current factorization:

[Ur,Sr,Vr] = block-SVD(Ur, Sr, Vr, Sb)
end if

end for
Output: Ur,Sr,Vr

on ordering items at the top correctly and put less emphasis
on relative orderings at the bottom.

This approach allows us to further reduce the space re-
quirement for each block to O(Nbρ) since sparse format can
now be used and zeros don’t need to be explicitly stored.
Sparse representation also allows for more efficient matrix
multiplication and the complete block-factorization can now
be computed in O(Tmultr + (N +M)r2) where Tmult is the
cost of matrix-vector multiplication with sparse score ma-
trix [11]. Given that the entire score matrix now has at
most Nρ non-zero entries, the matrix-vector product can be
computed in time proportional to Nρ, and for ρ�M we get
that Tmult � NM [25]. Note that O(Tmultr + (N +M)r2)
is an order of magnitude more efficient than WRMF with
complexity O(r2N + (N +M)r3). The full SVD algorithm
with all the enhancements is outlined in Algorithm 1.

4.3 Strong Generalization
An important problem in CF is to efficiently provide accu-

rate recommendations to new users that were not available
during model optimization. This problem is often referred to
as strong generalization and must be addressed by any suc-
cessful recommender system. Neighbor-based models can
generally be applied to new users without any difficulties
since similarities can be straightforwardly re-calculated to
incorporate new data. Model-based approaches on the other
hand, often use complicated non-convex objectives and thus
require expensive gradient updates to be conducted for every
new user. In this section we address the strong generaliza-
tion problem in our SVD model and derive a simple update
equation to efficiently produce latent factors for new users.

One way of dealing with new users/items is to run a full
block SVD update to generate new latent factors and also
update the rest of the model. While in a real-world appli-
cation we would want run such an update after enough new
users/items have been added, it is infeasible to run it for
every new user. To deal with this problem we propose a
simple approach to approximate latent factors by utilizing
the properties of SVD factorization. First, note that the
score vector for every user u is approximated by the user-
item factor product:

S(u, :) ≈ Ur(u, :)V
T
r

where Σr is absorbed into Ur. From this it follows that:

Ur(u, :) ≈ S(u, :)VT (−1)
r

but since Vr is approximately orthogonal we get that V−1
r ≈

VT
r and:

Ur(u, :) ≈ S(u, :)Vr (9)

Similar approach can be used to derive an equation for item
factors: Vr(v, :) ≈ S(:, v)TUr. Equation 9 gives us a simple
and effective way to approximate user factors for a new user
u by (1) calculating top-ρ neighbor scores S(u, :) and (2)
multiplying S(u, :) with Vr to get Ur(u, :).

In production-level systems we can use Equation 9 to
quickly generate recommendations for each new user, then
run full block update once enough new users/items have
been added. Note that unlike gradient-based models, block
update doesn’t require any iterative optimization or param-
eter tuning (initialization, learning rate, weight penalty etc.)
and can efficiently update the entire model.

In summary, our SVD-based model provides the following
advantages:

• Low complexity and storage requirement block update
that can efficiently update the entire model.

• Only two parameters to tune: rank r and sparsity fac-
tor ρ (block size Nb is typically selected to maximize
RAM usage).

• Existing distributed implementations (e.g., Mahout’s
stochastic SVD [17]) allow this model to easily scale
to very large CF problems.

• Approximate procedure to quickly incorporate new
users/items into existing model with one matrix mul-
tiplication.

4.4 Relation to Existing Work
The idea of using SVD in CF is not new and a number of

SVD-based methods have been proposed. One of the first
uses of SVD for CF can be traced back to [6]. A number
of extensions have since been proposed that incorporate ad-
ditional information and control for user privacy [22, 19].
Incremental SVD updates in the context of CF have been
investigated by Sarwar et al., [24], their approach however
only produced latent factors for new users and did not up-
date the existing model. This method is thus unsuitable for
incrementally learning/updating the full model.

To the best of our knowledge all existing SVD methods
apply factorization to the raw preference matrix R and are
thus not suitable for binary feedback. Moreover, since SVD
can’t handle missing data, applying it directly to R is equiv-
alent to setting all missing values to 0. The factorization
then minimizes the Frobenius norm between this “filled in”
matrix and the SVD approximation. Setting missing values
to 0 is not ideal in most CF applications since it assumes that
all unobserved items should have a low score. For this reason
SVD has now largely been replaced by other matrix factor-
ization approaches such as PMF [21] that only optimize the
reconstruction error on observed data. Our approach avoids
this problem by applying SVD to the sparse neighbor simi-
larity score matrix instead of R. In our model setting small
scores to 0 is valid since these items are to be ranked at the
bottom of the list and should have low reconstruction scores



Figure 1: Fraction overlap between training data
for the target 110K MSD users and popular songs
sorted in the order of popularity.

from SVD. To the best of our knowledge this approach is the
first successful application of SVD to the binary CF setting.

4.5 Alternative Formulations
The idea of using neighbor similarity information to train

factor models is not limited to the SVD model. By replac-
ing the original binary matrix R with S (Equations 1 and 2)
we can apply most existing model-based approaches. Below
we give some examples of the objective functions that can
be used to learn U and V. We begin with the more com-
monly used regression objectives such as the squared error
and weighted squared error (used in WRMF):

sq. error:

N∑
n=1

M∑
m=1

(S(un, vm)−Ur(un, :)Vr(vm, :)
T )2

wrmf:
N∑
n=1

M∑
m=1

cnm(R(un, vm)−Ur(un, :)Vr(vm, :)
T )2

cnm = 1 + αS(un, vm)

Note that in both cases S is a sparse matrix containing only
the top-ρ scores for each user. Unlike the traditional CF
where most effort is concentrated on rating prediction, for
binary preference CF the goal is to optimize the ranking
accuracy. Ranking-based objectives might thus be better
suited for this problem. Since S provides rich ordering in-
formation over the items, we can apply virtually any objec-
tive from learning-to-rank [16] to this domain. Here we give
examples of two such objectives RankNet [8] (also used in
BPR-MF) and ListNet [9]:

ranknet:
∑

(un,vm,vl)

log(1 + e−Ur(un,:)(Vr(vm,:)−Vr(vl,:))
T
)

for S(un, vm) > S(un, vl)

listnet:

−
N∑
n=1

M∑
m=1

φ(S(un, vm))∑M
l=1 φ(S(un, vl))

log

(
φ(Ur(un, :)Vr(vm, :)T )∑M
l=1 φ(Ur(un, :)Vr(vl, :)T )

)
All of the above objectives require gradient optimization and
thus lack the advantages of the SVD approach outlined in
Section 4.3. In this work we thus chose to concentrate on
the SVD model and leave gradient optimization for future
work.

Table 1: MSD MAP@500 private leaderboard re-
sults. SVD results are reported for four different
rank sizes 1K, 5K, 10K, and 20K; all models were
trained on top 50,000 and 100,000 of the most pop-
ular songs. The winning team achieved a score of
0.1791 [3] using an optimized blend of user-user and
item-item approaches. The best model-based ap-
proach was reported to get 0.1095.

1K 5K 10K 20K

50,000 most popular songs
item-item (0.1498)
ii-SVD-1K 0.1249 0.1466 0.1492 0.1493
ii-SVD-5K 0.1261 0.1472 0.1497 0.1494
ii-SVD-full 0.1258 0.1470 0.1495 0.1494

100,000 most popular songs
item-item (0.1628)
ii-SVD-1K 0.1258 0.1539 0.1598 0.1622
ii-SVD-5K 0.1274 0.1550 0.1606 0.1621
ii-SVD-full 0.1272 0.1548 0.1604 0.1623

5. EXPERIMENTS
To validate the proposed approach we conducted extensive

experiments on three large publicly available datasets: song
dataset from the Kaggle’s MSD challenge and two movie
datasets MovieLens and Netflix. We implemented Algo-
rithm 1 in Matlab, employing stochastic SVD library by
Mark Tygert 5 and block SVD library by David Wingate 6.
For block SVD we modified the provided code by replac-
ing the call to Matlab’s svds routine with a much faster
stochastic SVD call. This implementation was then used in
all experiments. We used MyMediaLite [10] library to run
the WRMF and BPR-MF baselines and extensively tuned
both models on each dataset.

Across all datasets we consistently found that the accu-
racy of user-user and item-item approaches can be signifi-
cantly improved by applying both row and column normal-
izations (Equations 3 and 4). We also found that the or-
der in which these normalizations are applied is important
and used validation set to determine the best combination
for each dataset. Generally, we observed that applying row
followed by column normalization worked best across most
datasets and folds. For all SVD experiments we first val-
idated normalization for each neighbor approach and then
applied SVD to the best performing combination.

5.1 MSD Experiments
The MSD dataset was used in the Kaggle Million Song

Dataset Challenge [18] and consists of listening histories for
1.2M users and 380K songs. The goal of the challenge was
to use these listening histories to recommend 500 songs for
a subset of 110K test users. The data for the 110K test
users was partitioned into training and test sets, and only
training portion was made available to the challenge par-
ticipants (in addition to full listening history for the other
1.1M users). The test set was further split into two sub-
sets with 10K and 100K users respectively. The results on
the smaller 10K subset were made visible throughout the
challenge (“public leaderboard”), while results on the 100K

5pca.m from cims.nyu.edu/~tygert/software.html
6addblock_svd_update.m from www.mit.edu/~wingated/
resources.html

cims.nyu.edu/~tygert/software.html
www.mit.edu/~wingated/resources.html
www.mit.edu/~wingated/resources.html


Table 2: MovieLens weak generalization results. uu-SVD and ii-SVD are SVD factorizations computed using
scores from user-user and item-item neighbor approaches respectively. Number of non-zero scores ρ used to
calculate each SVD factorization is shown on the right, for instance ii-SVD-100 uses 100 scores for each user
and ii-SVD-full uses all M scores.

NDCG@10 binary NDCG@10 rating

10% 30% 50% 70% 10% 30% 50% 70%

user-user 0.5416 0.5324 0.4660 0.3710 0.6354 0.6512 0.6765 0.7227
uu-SVD-100 0.5503 0.5468 0.4690 0.3700 0.6288 0.6508 0.6751 0.7205
uu-SVD-500 0.5545 0.5434 0.4743 0.3742 0.6309 0.6515 0.6769 0.7230
uu-SVD-full 0.5513 0.5452 0.4744 0.3757 0.6316 0.6513 0.6768 0.7229

item-item 0.4910 0.5957 0.5330 0.4321 0.5903 0.6223 0.6564 0.7108
ii-SVD-100 0.5504 0.5910 0.5287 0.4271 0.6092 0.6243 0.6537 0.7076
ii-SVD-500 0.5672 0.6113 0.5514 0.4434 0.6107 0.6293 0.6604 0.7124
ii-SVD-full 0.5484 0.5982 0.5523 0.4479 0.6121 0.6259 0.6562 0.7115

WRMF 0.5570 0.5969 0.5557 0.4857 0.6046 0.6280 0.6511 0.7071
BPR-MF 0.4428 0.5238 0.4976 0.4213 0.6190 0.6223 0.6585 0.7131

subset were only revealed at the end of the challenge (“pri-
vate leaderboard”). All submissions had to provide rankings
of top-500 songs for each of the 110K test users and were
evaluated using MAP@500. At the end of the challenge or-
ganizers released all the challenge data (including test data)
into public domain.

Note that the MSD dataset has more than 20 times more
items than both MovieLens and Netflix, and is over 100
times more sparse. This makes the problem very challenging
since many user/items have very little data to build accurate
representations. The sparsity problem is further illustrated
in Figure 1, which shows fraction overlap between the train-
ing data for the 110K target users and most popular songs
sorted in the order of popularity. From the figure we see that
more that 93% of all the training data is contained within
the first 100K most popular songs, leaving less than 7% of
data for the remaining 280K songs.

We mentioned above that model-based approaches were
found to perform poorly in this challenge. The best model-
based submission was reported to get MAP@500 of 0.1095,
while the winning solution achieved 0.1791 using a blend
of user-user and item-item approaches [3]. These results
indicate that neighbor methods produce over 60% relative
improvement in accuracy on this data compared to model-
based approaches. In the following section we show that our
approach eliminates this performance gap achieving results
that are comparable to neighbor methods.

In all MSD experiments we follow the same set-up that
was used during the competition and tune models on the
10K public leaderboard set, then evaluate on the 100K pri-
vate leaderboard set.

5.1.1 Results
MAP@500 private leaderboard results are shown in Ta-

ble 1. For this dataset we found that using larger rank
generally improved performance, and we report results for
four different rank sizes: 1K, 5K, 10K and 20K. To re-
duce experiment complexity we downsampled the item space
to only include most popular songs and experimented with
top 50,000 and 100,000 songs. From Figure 1 we see that
100,000 (50,000) most popular songs contain over 93% (80%)
of all training data. Consequently, selecting only the popu-
lar songs allows us to reduce the item space by a factor of 4
while keeping most of the training data.

Table 3: MSD training runtimes in hours for the
SVD model with four different rank sizes 1K, 5K,
10K and 20K. For comparison, on the same hard-
ware WRMF took 10.9 hours to complete for rank
250 and would take over a month for rank 10K.

1K 5K 10K 20K

50,000 most popular songs
ii-SVD-1K 0.9 1.9 4.6 17.9

100,000 most popular songs
ii-SVD-1K 1.8 2.8 5.6 24.6

From results in Table 1 we see that the SVD model with
large enough rank is able to match the performance of the
corresponding item-item approach. The results for the best
SVD model place it in top-3 (out of 150 teams) on Kag-
gle’s leaderboard with a score of 0.1623. To the best of our
knowledge this is by far the highest score for model-based
approach in this competition. All of the top-10 teams used
combinations of user-user and/or item-item approaches, and
the best model-based approach was reported to only get
0.1095. We also see that SVD-1K performs comparably to
SVD-full on both 50,000 and 100,000 songs suggesting that
scores for only 1,000 songs per user are required to produce
accurate factorizations.

5.1.2 Runtime
MSD is the largest of the three datasets that we se-

lected with, and we use it to benchmark the runtimes for
the SVD approach and the best existing model-based ap-
proach WRMF. To ensure accurate comparison all experi-
ments were conducted on the same server with 32 Intel Xeon
E5-2690 2.90GHz cores and 64GB of RAM. Runtimes in
hours for the SVD model are shown in Table 3. From this
table we see that full factorization with 100,000 songs can
be completed in under 3 hours with rank 5,000 and under 6
hours with rank 10,000. For comparison, WRMF took over
10 hours to complete with rank 250, and using complexity
bounds we estimate that for rank 10,000 it would take over
a month. These results demonstrate that our approach is
considerably more efficient than the existing state-of-the-art
and scales well to large datasets.



Table 4: MovieLens strong generalization results. 1000 randomly chosen users were withheld during model
optimization and then added into the model either via full model block update (SVD-block) or via inference
procedure outlined in Section 4.3 (SVD-infer); ρ was set to 500 across all training splits. Item-item baseline
was computed using all users and item-item\1000 was computed with 1000 test users removed from the
training data and excluded for item similarity calculation.

NDCG@10 binary NDCG@10 rating

10% 30% 50% 70% 10% 30% 50% 70%

item-item 0.5276 0.5985 0.5320 0.4298 0.6076 0.6352 0.6730 0.7199
item-item\1000 0.5101 0.5802 0.5112 0.4119 0.6044 0.6327 0.6688 0.7167
ii-SVD-block 0.5837 0.6144 0.5539 0.4414 0.6273 0.6443 0.6754 0.7217
ii-SVD-infer 0.5533 0.6043 0.5387 0.4264 0.6214 0.6411 0.6722 0.7200

5.2 MovieLens
For MovieLens experiments we use the largest of the avail-

able datasets MovieLens-10M with 10 million ratings from
72,000 users on 10,000 movies. This dataset contains rat-
ings on the scale of 1 to 5 with half point increments, and
each users has rated at least 20 movies. To simulate binary
feedback we binarized the data setting all ratings to 1. Bina-
rization simulates implicit feedback that we would get from
actions like movie purchases, plays or clicks.

To get an estimate of how each model’s performance is af-
fected by training set size we repeat all experiments 4 times
with different percentages of training ratings: 10%, 30%,
50%, 70%. For each percentage θ, θ percent of ratings for
each user are randomly selected for training and the rest
are kept for testing. Partitioning data in this way allows
us to gradually increase the training set size from 10% to
70% while keeping distributions of ratings across users con-
sistent. All parameter selection was done using 5-fold cross
validation and the best models were re-trained on the full
training set and evaluated on the test set. Rank size was
validated in the range 5 to 250 for each model.

We evaluate both weak and strong generalization. For
weak generalization training data from all users is used to
learn the models, and average NDCG is computed on the
withheld test data from same users (see Section 2 for details
on NDCG calculation). On the other hand, for strong gen-
eralization a subset of users is removed from training data
and all model estimation is done on the remaining users.
Once the models are estimated, the goal is to use the train-
ing data from withheld users to incorporate them into the
model (without full re-training) and produce accurate rec-
ommendations. In SVD model we proposed two ways of
dealing with new users: block update and approximate in-
ference (see Section 4.3). We evaluate both approaches and
compare their performance.

Taking advantage of the fact that we have access to ex-
plicit preferences in the form of ratings we conduct two types
of evaluation. After training each model using only binary
data, we evaluate the recommended rankings on both binary
relevance and full ratings. For binary relevance we use the
procedure outlined in Section 2 and compute NDCG using
full rankings of all the items that are not in the training
set for each user. For rating evaluation we only rank the
rated test set items for each user and calculate NDCG using
rating values (1-5) as relevance for those items. Assuming
that ratings provide the ground truth preference informa-
tion, rating NDCG estimates the degree to which models
trained on weaker binary data generalize to ground truth.
While this assumption might not be completely valid due to

inherent noise in ratings, rating NDCG still gives us a more
accurate metric to compare the models.

5.2.1 Weak Generalization
Table 2 shows MovieLens weak generalization results for

four training set sizes 10%, 30%, 50% and 70%. For each
training set size, Table 2 shows binary and rating NDCG@10
results. We apply our SVD method to both user-user (uu-
SVD-ρ) and item-item (ii-SVD-ρ) scores and vary the spar-
sity factor ρ of the similarity score matrix. In addition to
SVD, we also evaluate WRMF and BPR-MF approaches, all
models were learned and tuned using binary data only.

We can observe several patterns from Table 2. First, item-
item approach significantly outperforms user-user on binary
NDCG for all training set sizes except 10%, while user-user
significantly outperforms item-item on rating NDCG. The
difference in performance is somewhat puzzling and implies
that improvement on binary feedback doesn’t necessarily
translate to improvement on explicit preferences. This sug-
gests an optimization approach where explicit feedback is
first solicited from a subset of users and the best binary
model is then chosen based on the accuracy on this explicit
data.

Second, SVD model always performs at least as well as
the underlying similarity approach (user-user or item-item)
and in many cases beats it. This leads to the conclusion
that applying low-rank compression to similarity scores is
beneficial and can improve accuracy by removing/shrinking
noisy dimensions. The gains from SVD model are especially
significant on very sparse training sets with 10% and 30%
of data where it outperforms neighbor approaches on both
binary and rating NDCG. We also see that SVD-500 per-
form almost as well as SVD-full indicating that only 500
top scores (out of nearly 10,000 items) are required for each
user to produce accurate factorizations. This reduces stor-
age requirement for each block update by a factor of 20 and
significantly speeds up runtime. Consistent performance on
both binary and rating NDCG suggests that the SVD model
can readily be used if explicit data approach to model se-
lection is chosen. In this setting, explicit preferences from a
subset of users would first be used to select the best neighbor
method. SVD model would then be applied to the chosen
neighbor method to generate latent factors for all users and
items.

Third, similarly to neighbor approaches, WRMF outper-
forms BPR-MF on binary NDCG while BPR-MF signifi-
cantly outperforms WRMF on rating NDCG. We also see
that best SVD model consistently outperforms both ap-
proaches on binary and rating NDCG.



Table 5: Netflix weak generalization results. uu-SVD and ii-SVD are SVD factorizations computed using
scores form user-user and item-item neighbor approaches respectively. Number of non-zero scores ρ used to
calculate each SVD factorization is shown on the right, for instance SVD-500 uses 500 scores for each user
and SVD-full uses all M scores.

NDCG@10 binary NDCG@10 rating

10% 30% 50% 70% 10% 30% 50% 70%

user-user 0.4717 0.4456 0.3844 0.2995 0.6226 0.6287 0.6489 0.6846
uu-SVD-500 0.4888 0.4602 0.3889 0.3005 0.6226 0.6299 0.6491 0.6845
uu-SVD-1000 0.4889 0.4609 0.3924 0.3043 0.6212 0.6303 0.6493 0.6850
uu-SVD-full 0.4846 0.4608 0.3939 0.3044 0.6196 0.6299 0.6498 0.6847

item-item 0.4980 0.4840 0.4297 0.3394 0.6287 0.6518 0.6698 0.7009
ii-SVD-500 0.5172 0.5164 0.4502 0.3487 0.6275 0.6544 0.6703 0.7008
ii-SVD-1000 0.5108 0.5200 0.4521 0.3500 0.6299 0.6519 0.6715 0.7017
ii-SVD-full 0.4994 0.5127 0.4521 0.3541 0.6203 0.6501 0.6708 0.7014

WRMF 0.5060 0.5485 0.5072 0.4522 0.6077 0.6376 0.6632 0.7000
BPR-MF 0.4273 0.4744 0.4447 0.3660 0.5985 0.6309 0.6606 0.6930

5.2.2 Strong Generalization
Strong generalization results are shown in Table 4. For

strong generalization 1000 randomly chosen users were with-
held during model optimization and then added into the
model either by doing a full model block update (SVD-block)
or via inference procedure outlined in Section 4.3 (SVD-
infer). For all SVD experiments ρ was set to 500 so top-500
scores were used for each user. We only show results for
item-item similarity, results with user-user similarity were
similar and are omitted from this table.

From the table we see that SVD-infer generalizes well and
suffers only a small drop in performance relative to block-
SVD which updates the entire model. Both SVD-block
and SVD-infer significantly outperform the item-item ap-
proach on binary and rating NDCG. These results support
the conclusion that the approximate inference procedure can
be used to quickly generate recommendations for new users
with acceptable accuracy.

5.3 Netflix Experiments
For Netflix experiments we used the full Netflix dataset

with 100M ratings from 480K users on 17.7K movies. Sim-
ilar to the MovieLens experiments, we binarized all ratings
and evaluated performance using both binary and rating
NDCG@10. We partitioned the dataset using 10%, 30%,
50% and 70% of ratings from each user for training and the
rest for testing. All parameter selection was done using 5-
fold cross validation and the best models were re-trained on
the full training set and evaluated on the test set. Rank size
was validated in the range 5 to 250 for each model.

5.3.1 Weak Generalization
Weak generalization results are shown in Table 5. From

this table we see that, unlike the results for the MovieLens
data, item-item approach significantly outperforms user-user
on both binary and rating NDCG. This could be attributed
to the fact that Netflix dataset is considerably larger and
more sparse. A number of previous studies have shown that
item-item similarity tends to work better than user-user in
sparse settings [12].

From the table we also see that, first, our SVD approach
either performs comparably or outperforms both user-user
and item-item methods on binary and rating NDCG. Sec-
ond, WRMF achieves very strong performance on binary

NDCG beating our approach on all splits except 10% but
under-performs on rating NDCG losing by as much as 2
points. This difference in performance could be attributed
to overfitting. We discussed in Section 4 that WRMF
and BPR-MF treat all items with observed preferences
(R(u, v) = 1) as equally relevant. Both methods are thus
susceptible to outliers that are often present in noisy CF
data and can produce suboptimal user representations. In
this experiment outliers correspond to items with low rat-
ings (≤ 2). Placing such items at the top of the ranking
improves binary NDCG while significantly hurting rating
NDCG. Neighbor methods are able to detect such outliers
and thus tend to do better on rating NDCG.

Lastly, both SVD-500 and SVD-1000 fully match the per-
formance SVD-full leading to a conclusion that only 500
items (out of over 17,000) are needed to build accurate mod-
els for each user.

5.3.2 Strong Generalization
Strong generalization results for the Netflix dataset are

shown in Table 6. Similarly to MovieLens, we withheld a
subset of 1000 randomly chosen users during main model
optimization, and then added these users to the model via
block update and approximate inference procedures. Binary
and rating NDCG results for both procedures are shown in
Table 6.

From the table we see that SVD-infer suffers only a minor
drop in performance relative to SVD-block on rating NDCG.
Also, surprisingly, SVD-infer outperforms SVD-block on bi-
nary NDCG for 50% and 70% training splits. These results
further validate the approximate inference procedure as a
useful way to quickly generate recommendations for new
users.

6. CONCLUSION AND FUTURE WORK
We presented a general approach to deal with binary pref-

erences in CF. In our approach, observed binary matrix is
first transformed into a score matrix by applying neighbor-
hood similarity rescaling. The score matrix is then factor-
ized to produce accurate user and item representations. We
demonstrated that with this approach even simple factoriza-
tion techniques like SVD produce accurate representations
using only a small subset of the highest scores for each user.



Table 6: Netflix strong generalization results. 1000 randomly chosen users were withheld during model
optimization and then added to the model either via full model block update (SVD-block) or via inference
procedure outlined in Section 4.3 (SVD-infer); ρ was set to 500 across all training splits. Item-item baseline
was computed using all users and item-item\1000 was computed with 1000 test users removed from the
training data and exclude for item similarity calculation.

NDCG@10 binary NDCG@10 rating

10% 30% 50% 70% 10% 30% 50% 70%

item-item 0.4441 0.4754 0.4227 0.3364 0.6380 0.6583 0.6734 0.7074
item-item\1000 0.4484 0.4922 0.4391 0.3492 0.6224 0.6492 0.6688 0.7045
ii-SVD-block 0.4897 0.5113 0.4441 0.3449 0.6277 0.6568 0.6741 0.7074
ii-SVD-infer 0.4736 0.5117 0.4624 0.3645 0.6190 0.6498 0.6718 0.7044

In the future work we plan to explore more complex fac-
torization procedures that can potentially lead to better la-
tent representations. We also plan to investigate ways to
deal with discrepancy between model performance on im-
plicit/binary and explicit data. We have shown that im-
provement on implicit/binary data doesn’t always lead to
improvement on explicit preferences. We believe that this
discrepancy must be considered in every approach designed
for binary data. Finally, we plan to extend our approach be-
yond the binary setting and apply it to graded preferences
(ratings).
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