
Comparing Supervised vs. Unsupervised Image
Segmentation Methods

Guang Wei Yu
University of Toronto

guangwei.yu@mail.utoronto.ca

Richard Zemel
Dept. of Computer Science

University of Toronto
zemel@cs.toronto.edu

Abstract

This project compares the supervised logistic regression segmentation algorithm
against the unsupervised k-means clustering segmentation. We observed that the
difference between either method is not very significant. When performed on the
100 test cases for BSD300, the supervised method on average achieved a precision
rate of 0.47 and the unsupervised method achieved a precision rate of 0.41. The
variance in performance for both method is quite high, indicating that the models
performed well for some images but not for other. This effect seems more prevalent
for the supervised result. The standard deviation values for the precision rate are
σsupervised = 0.18, σunsupervised = 0.16

1 Introduction

The goal of the segmentation problem is to represent images in a simpliefied and meaningful manner
by partitioning them into multiple groups. Practical applications of image segmentation include
medical imaging, video surveillance, as well as means of pre-processing for a magnitude of detection
and recognition tasks.

Supervised segmentation algorithms use a priori knowledge involving the ground truth of a training
set of images, while unsupervised algorithms is trained online during segmentation. This project
aims to examine results from each of the categories of algorithms.

For supervised segmentation, we use logistic regression to learn a prior model for the features used in
segmentation. For unsupervised algorithm, we will use a simple k-means algorithm to cluster features
and examine results for various choice of k.

2 Background

2.1 Database

For this project, we use the Berkeley Segmentation Dataset 300 (BSD300) [2], which contains 300
images with numerous human-marked ground-truth segmentation labels. Of these, 200 are treated as
training images and 100 are treated as testing images.

2.2 Superpixel Segmentation

We first pre-process the image by over-segmenting it using superpixel segmentation. The algorithm
we used for this project is the simple linear iterative clustering (SLIC) method. This is an unsupervised
algorithm that uses local k-means of predetermined k = (# of superpixels) to over segment the
image into superpixels. The initialization is a uniform grid structure to ensure that the resulting
superpixels are relatively uniform.

1

The reulsting superpixel image is shown in fig. 1. We treat these superpixels as indivisible units in
our segmentation problem, which becomes a clustering problem of these superpixels. We note that
finer details in the segmentation boundary can be lost from the superpixel representation, but in the
overall context of meaningful representation, we do not care about these details. This is shown in
fig. 2 where in terms of context, the ground truth (left) and superimposed ground truth on superpixels
(right) are almost identical.

We found that a superpixel segmentation of around 400 superpixels worked well in representing the
ground-truth accurately and consistently.

 Range: [4, 255]
 Dims: [321, 481]

Figure 1: SLIC Superpixel Segmentation

 Range: [0, 255]
 Dims: [321, 481]

(a) training labels

 Range: [0, 255]
 Dims: [321, 481]

(b) superimposed labels

Figure 2: Training Lables Imposed on Superpixel Image

2.3 Feature Extraction

After the pre-processing, we extract features at the superpixel level. For this project, we focus on
three basic features: the image intensity, image texture, and edge detection.

We extract image intensity at pixel level and average them to obtain superpixel intensity. These
are used to produce birghtness similarity between same class and different class superpixels (for
supervised algorithm) or features for clustering (for unsupervised algorithm).

We represent image texture by using historgrams of the intensities. We compute the pixel level
histogram for each superpixel by dividing intensity range into 256 bins from 0 to 255 and sampling
each superpixel to obtain a representation of the texture. Again, we compare the texture similarity

2

(characterized by χ2 distance) and formulate difference measure (for unsupervised algorithm) or use
as input to logistic function (for supervised algorithm).

To help segmentation, we also use edge detection filters. In particular, we take the response of
the image convolved with the Gabor filter at pixel level. These responses are then averaged at the
superpixel level to produce filtered response as our feature vector.

2.4 Comparison of Result

For meaningful segmentation result comparison, we look to the paper by Estrada and Jepson [1] on
benchmarking image segmentation. The precision and recall scores are used to determine the quality
of the segmentation algorithms for this project. These are given by (1) and (2) as

Precision =
Matched(Bsource, Btarget)

|Bsource|
(1)

Recall =
Matched(Btarget, Bsource)

|Btarget|
(2)

, where source and target indicate the classifier’s segmentation and ground-truth respectively, B
denote the boundary pixels, and |B| denoting the number of boundary pixels.

The correspondence algorithm used to determine these matching scores are same as the paper, since
the evaluation was done on the BSD as well with regard to human ground-truth boundaries. The
score is computed based on bi-partite matching originally proposed by Martin [3] and improved in
computation efficiency by Estrada and Jepson [1].

To generate some comparison data, we show the quantitative result of superpixel boundary (no
meaningful segmentation apart from superpixel preprocessing) and human-label boundary (ground
truth) under this method of evaluation in fig. 3. The ground truth has relative high precision, but the
low recall indicate the discrepancy amongst each human labeler. The precision recall graph for the
superpixel boundary result should indicate the precision rate without any algorithm. The successful
algorithms should beat the average precision rate of 0.2 if they were to provide any use. The near
perfect recall is simply telling us that the superpixel boundary themselves can capture any human
labels extremely well, which confirms with what we have mentioned before.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

mean precision = 0.81
mean recall = 0.84

(a) ground truth

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

mean precision = 0.2
mean recall = 0.997

(b) superpixel boundary

Figure 3: Comparison Algorithm on Raw Data

3 Methods

To meaningfully compare between supervised and unsupervised segmentation, we will first apply the
preprocessing described above to obtain superpixel representation of the image. We will then treat

3

the segmentation as clustering problem where instead of the segmentation boundary B, we solve for
a clustering pattern of the superpixels.

We then convert the cluster labels to boundary maps, which will be the boundary Bsource that we
compare. This id done by shifting the image one pixel to the right and one pixel down, and compare
the shifted labels to the original unshifted version to obtain maps of change in labels.

We compare the quality of Bsource between ground-truth Btarget, we adopt the quantitative measure
mentioned in section 2.4.

3.1 Supervised Segmentation

In supervised segmentation, we further reformulate the superpixel clustering problem as binary
classification problems of same vs different class for each superpixel (C1 and C0). This is repeated
for all superpixel S where each superpixel pi ∈ S is compared to all superpixels q ∈ S, q 6= pi,∀i,
avoiding repeated comparison of all previous pi. For each unlabeled superpixel pi, we begin by
assigning pi an arbitrary unique label tp. We notate tp, tq as the temporary segment labels assigned
to superpixel p, q respectively, and the set of all superpixel is S . Then for all unlabeled superpixels q
we treat the problem as a binary classification problem S(p, q) where the result class C1 : tp = tq
when p and q will belong to same segment, and C0 : tp 6= tq otherwise. We do this by modeling the
binary classification poundary as posterior probability given by (3).

S(p, q) =

{
C1 : tp = tq, P (C1|w,F(p, q)) ≥ P (C0|w,F(p, q))
C0 : tp 6= tq, P (C1|w,F(p, q)) < P (C0|w,F(p, q))

(3)

We repeat this problem as many times until no segments is left unlabeled. . The segmentation is then
the boundary of each of these class labels.

For the binary classification problem of superpixel p and q, we focus on determining whether
superpixel p and q belongs to same class, where we assign tp = tq . The class itself does not matter in
this model, which means we only need a binary classifier per superpixel. We assign a cost function
f(p, q) to describe the cost it takes to classify p and q into same class. The cost (4) is a linear
combination of feature vector F (p, q) and trained weights w.

f(p, q) =
∑
j

wjFj(p, q) (4)

We apply logistic regression to the linear cost function as y = σ(f(p, q)) to model the posterior,
where σ(z) = 1

1+e−z is the sigmoid function. The linear binary classifier obtained models the
posterior as (5) after simplification.

P (C1|w,F) =
1

1 + ef(p,q)

P (C0|w,F) =
ef(p,q)

1 + ef(p,q)

(5)

To train the weight w in our logistic function, we formulate the objective for the binary classification
problem as the cross-entropy in (6) which we wish to maximize. The model classification boundary
is now C1, C0 while the ground truth are either tp = tq or tp 6= tq depending on human labels.

l(w) =
∑
n

(∑
(p,q)∈Sn

q 6=p
tp=tq

logP (C1|w,F(p, q)) +
∑

(p,q)∈Sn

q 6=p
tp 6=tq

logP (C0|w,F(p, q))
)

(6)

We maximize (5) by setting its derivative with respective to w to 0 and solve for w. We do this using
gradient descent to update the weight iteratively given the large data set S. We note that here we
compare the superpixels p, q within each image only, where Sn is the set of superpixels in image n.

4

The training is done simultaneously for the 200 training images given by BSD300. We specify 400
superpixels per image. If we trained every superpixel pair, this would amount to a training data set of
32× 106 which is too much. Instead, we train every segment pair for each image, using an average
of the superpixel feature vectors belonging to each segment. This results in a total of 98671 segment
pairs for the training case.

3.2 Unsupervised Segmentation

The unsupervised segmentation algorithm studied in this project is a k-mean clustering algorithm
with redescending distance measure as robust error estimators. The robust estimators allows better
treatment of outliers which would be significant for a general image.

We cluster all superpixel pj , j = 1, ..., 400 into k clusters and label them ti, i = 1, ..., k. The k-mean
clustering algorithm then seeks to minimize the robust cost function (7).

l(w) =

k∑
i=1

∑
pj∈ti

ρ
(
‖xj − µi‖2

)
ρ(e2) =

e2

σ2
k + e2

(7)

For this project, we will use the Geman-McClure norm with the k-mean clustering algorithm and
k = 3, σ2

k = 10. We noticed that the k-mean alogirhtm is extremely sensitive to choice of k such
that although there were approximately 10 different segments in each image, we had to pick much
smaller value for k.

We proceed to extract the cluster boundaries as the segmentation boundary to be tested as before.

4 Result and Analysis

The results are from the 100 test images from BSD300 are plotted together on a precision vs. recall
scatterplot in fig. 4. We see that the average precision rate is around 0.4 for both algorithm which
is higher than the 0.2 rate for raw superpixel precision, but still much lower than human result.
The precision for supervised result are slightly higher at 0.47 on average compared to the 0.41 of
unsupervised. The quality of segmentation result varies significantly from picture to picture, and
seems more so for the supervised case compared to the unsupervised k-mean, likely due to the more
complicated learning involved. The standard deviation for supervised algorithm precision rate is
σsupervised = 0.18, and for unsupervised is σunsupervised = 0.16. Furthermore, the result is far
from ideal benchmark results found in paper by Estrada and Jepson [1] which seems to be around a
precision of 0.6.

In addition to quantitative comparison, we also examine a sample of results visually for the segmenta-
tion algorithms in figs. 5 to 7. We can see that both algorithm can capture definitive segmentation
boundaries that are immediately obvious to a human. It seems the unsupervised kmeans algorithm
like to capture more details and come up with more discontinuous segments than the supervised
results, which can be good or bad. However, even in visual inspection of the results, we cannot
conclusively say which algorithim outperforms the other one.

References

[1] Francisco J. Estrada and Allan D. Jepson. Benchmarking image segmentation algorithms.
International Journal of Computer Vision, 85(2):167–181, 2009.

[2] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[3] David Royal Martin. An Empirical Approach to Grouping and Segmentation. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2003.

5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

mean precision = 0.47
mean recall = 0.62

(a) supervised result

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

mean precision = 0.41
mean recall = 0.73

(b) unsupervised result

Figure 4: Training Lables Imposed on Superpixel Image

(a) original image

 Range: [0, 255]
 Dims: [321, 481]

(b) ground truth

 Range: [0, 255]
 Dims: [321, 481]

(c) supervised result

 Range: [0, 255]
 Dims: [321, 481]

(d) unsupervised result

Figure 5: Visual Segmentation Results 1

(a) original image

 Range: [0, 255]
 Dims: [321, 481]

(b) ground truth

 Range: [0, 255]
 Dims: [321, 481]

(c) supervised result

 Range: [0, 255]
 Dims: [321, 481]

(d) unsupervised result

Figure 6: Visual Segmentation Results 2

(a) original image

 Range: [0, 255]
 Dims: [321, 481]

(b) ground truth

 Range: [0, 255]
 Dims: [321, 481]

(c) supervised result

 Range: [0, 255]
 Dims: [321, 481]

(d) unsupervised result

Figure 7: Visual Segmentation Results 3

6

	Introduction
	Background
	Database
	Superpixel Segmentation
	Feature Extraction
	Comparison of Result

	Methods
	Supervised Segmentation
	Unsupervised Segmentation

	Result and Analysis

