
Content-based Neighbor Models for Cold Start
in Recommender Systems

Maksims Volkovs
layer6.ai

maks@layer6.ai

Guang Wei Yu
layer6.ai

guang@layer6.ai

Tomi Poutanen
layer6.ai

tomi@layer6.ai

ABSTRACT
Cold start remains a prominent problem in recommender systems.
While rich content information is often available for both users and
items few existing models can fully exploit it for personalization.
Slow progress in this area can be partially attributed to the lack of
publicly available benchmarks to validate and compare models. This
year’s ACM Recommender Systems Challenge’17 aimed to address
this gap by providing a standardized framework to benchmark cold
start models. The challenge organizer XING released a large scaled
data collection of user-job interactions from their career oriented
social network. Unlike other competitions, here the participating
teams were evaluated in two phases – offline and online. Models
were first evaluated on the held-out offline test set. Top models
were then A/B tested in the online phase where new target users
and items were released daily and recommendations were pushed
into XING’s live production system. In this paper we present our
approach to this challenge, we used a combination of content and
neighbor-based models winning both offline and online phases. Our
model produced the most consistent online performance wining
four of the five online weeks, and showed excellent generalization
in the live A/B setting.

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Collaborative filtering, Cold start, Gradient boosting

ACM Reference format:
Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen. 2017. Content-based
Neighbor Models for Cold Start in Recommender Systems. In Proceedings of
RecSys Challenge ’17, Como, Italy, August 27, 2017, 6 pages.
https://doi.org/10.1145/3124791.3124792

1 INTRODUCTION
Popularity of online content services, e-commerce and social web
has highlighted an important challenge of surfacing relevant infor-
mation to consumers. Recommender systems have proven to be an
effective tool for this task receiving increasingly more attention.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge ’17, August 27, 2017, Como, Italy
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5391-5/17/08. . . $15.00
https://doi.org/10.1145/3124791.3124792

One common approach to building accurate recommender models
is collaborative filtering (CF). CF is a method of making predictions
about an individual’s preferences based on the preference infor-
mation from other users. CF has been shown to work well across
various domains [8], and many successful web-services such as
Netflix, Amazon and YouTube use CF to deliver highly personalized
recommendations to their users.

Despite significant progress in CF over the years a number of
challenges remain. One of the important challenges is cold start, or
the ability of the recommender system to generate accurate recom-
mendations when no preference information is available. Common
approach to cold start is to utilize user/item content information
and correlate it with preferences. However, while rich content in-
formation is available in many CF applications, few approaches
have been developed for this problem. Part of the reason for the
slow progress is the absence of standardized benchmarks where
researchers can validate and compare their models. Very few CF
datasets with content information have been publicly released, and
many published models only report results on proprietary data
making direct comparisons impossible.

This year’s ACM Recommender Systems Challenge’17 [1] was
aimed at providing a framework for evaluating cold start CF mod-
els. The challenge organizer XING (European analog of LinkedIn)
released a large-scale data collection of user-job interactions from
their career oriented social network. The goal was to use this data
to develop a recommender model and then benchmark it against
other teams using a standardized evaluation procedure. Two no-
table aspect of the challenge were that, first, both cold stats users
and items were included in the data with rich content information.
All models were evaluated on cold start items only, allowing the
participants to directly compare their models in this setting. Second,
the challenge was partitioned into two phases. In the offline phase
the models were evaluated against a held out set of interactions that
occurred after the released training set. Then in the online phase
top performing teams were given an opportunity to submit live
recommendations daily for 35 days into XING’s production system.
Submitted recommendations were delivered to users in real-time
and the interaction feedback from the users was released to the
teams the following day. This two-phase framework allowed the
participants to first tune their models on the offline test set and
then A/B test them live, simulating the development process of a
production-level recommender system.

2 CHALLENGE FRAMEWORK
Offline. In the offline phase of the challenge a large-scale dataset
of interactions was released for a subset of 1.5M users and 1.3M
items. This data included over 322M user-item interactions over a
span of four months. Each interaction was generated by one of six

https://doi.org/10.1145/3124791.3124792
https://doi.org/10.1145/3124791.3124792

RecSys Challenge ’17, August 27, 2017, Como, Italy Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen

actions: {impression, click, bookmark, reply, delete, recruiter}. The first
five actions were user-generated, whereas the last action was from
an inbound recruiter interest (e.g. click) that represented item’s
company. In addition to interactions, content information was also
provided for both users and items. For users this data included
career profile information such as education, work experience, lo-
cation and current position. Similarly, for items job information
was provided such as title/tags, industry, location and career level;
see [1] for a detailed description of this dataset.

The goal was to use all of this data to generate top-100 user
rankings for the 46K target items from a set of 74K target users. All
target items were cold start simulating the production scenario for
XING where newly added jobs need to be recommended to relevant
users. Rankings produced by each model were evaluated against
a held-out test set of interactions between target users and items.
Note that the test set was not visible to the teams throughout the
competition and was sampled forward in time. Teams were scored
according to the following formula:

score =
∑
item

©«b(item) +
∑

user ∈π (item)

b(user) × score(item,user)
ª®¬

score(item,user) =

1 if click
5 if bookmark or reply
20 if recruiter

−10 if only delete
0 otherwise

b(user) =

{
2 if user is premium
1 otherwise

b(item) =

50 if any score(item, user) > 0 and item is paid
25 if any score(item, user) > 0 and item is not paid
0 otherwise

(1)
where π (item) is the top-100 user ranking for item. For each rec-
ommended user-item pair the score is based on the interaction type
with click receiving a score of 1, bookmark or reply score of 5, and
recruiter score of 20. When the only interaction is delete model is
penalized with a negative score of -10. In addition, there are two
boosts one for correctly recommending items to premium users
with paid accounts; and another for correctly recommending at
least one user to a paid item where the posting company paid to
promote the item. The scoring objective thus encourages recom-
mendations that result in stronger interactions such as bookmark
and reply, and gives priority to paid users and items to ensure that
the business objectives of XING are met.

Online. In the online phase similar training dataset was released
for a new set of users and items. There were a total of 1M users,
853K items and over 92M interactions. Each team received daily
batches of target users and items, and was asked to recommend
relevant target items to target users with the constraints that (1)
maximum one item can be recommended to each user and (2) each
item can be recommended to at most 250 users. Target users were
always sampled from the 1M training user set but all target items
were new and cold start. Upon receiving recommendations XING
incorporated them into its live system sending push notifications
and recording resulting interactions. This feedback was released

Offline Online

users 1,497,020 1,000,000
items 1,306,054 853,058
target users 74,840 variable
targets items 46,559 variable
interactions 322,776,002 92,949,361

impression 314,501,101 88,719,060
click 6,867,579 3,552,973
bookmark 281,672 184,061
reply 117,843 96,907
delete 906,836 360,645
recruiter 100,971 35,715

Table 1: Dataset statistics.

to the teams the following day together with a new batch of target
users and items. The scoring function for this phase was the same
as in the offline phase and scores were updated daily for each team.
Full dataset statistics for both offline and online phases are shown
in Table 1.

3 OUR APPROACH
In this section we describe our model together with learning and
inference procedures. Given that all target items in both online
and offline phases were cold start, we opted to develop a content-
based recommender that also incorporated user interaction data
when it was available. Our aim was to develop a relevance model
that would accurately predict interaction probability for a given
user-item pair. Considering the sparsity of interaction data we treat
{impression, click, bookmark, reply, recruiter} interactions as one
“positive" interaction type, and predict whether user will generate
any of these interactions for a given item.

3.1 Framework
In both phases we have a set of N users U = {u1, ...,uN } and a
set of M items V = {v1, ...,vM }, N and M varied in each phase.
The users’ interactions with the items can be represented by an
N ×M interaction matrix R where Ruv is the preference for item
v by user u; when no preference information is available Ruv = 0.
Note that we have a separate R for each of the six interaction
types, to avoid notation clutter we drop the interaction index and
explicitly state interaction type. In this representation multiple
interactions for the same user-item pair are aggregated together
and Ruv is the total interaction count for (u,v). Together with count
we also store date of the most recent interaction for (u,v). After
aggregation we found that the number of unique user-item pairs for
each interaction type was significantly reduced from the original
count in Table 1. For example, the number of unique impressions
was reduced to only 21M from the original set of 314M in the
offline dataset. This made the problem extremely sparse with the
most dense impression matrix having density of only 1e-5%. We
use U(v) = {u ∈ U | Ruv , 0} to denote the set of users that
interacted with v , and V(u) = {v ∈ V | Ruv , 0} to denote the
set of items that u interacted with.

Content-based Neighbor Models for Cold Start
in Recommender Systems RecSys Challenge ’17, August 27, 2017, Como, Italy

Figure 1: Model architecture diagram. Five feature categories (see Section 3.2) are fed into the classifier f (u,v,θ)which outputs
the probability P(yuv = 1) that user u will “positively" interact with item v. Number of features for the five categories are
shown below each feature input, in total 5416 features were used.

3.2 Input Features
We spent considerable effort on feature engineering and after sev-
eral rounds selected five feature categories that were used in all
models. Many of the features were inspired by previous work in
this area, in particular [6]. Given user-item pair (u,v) we extract
the following features:

• User content: all content features for u. We apply 1-of-n
transformation to all categorical features and remove cate-
gories that appear in fewer than 500 users.

• Item content: all content features for v . Similarly to user
content, we apply 1-of-n transformation to all categorical
features and remove categories that appear in fewer than
500 items.

• User-item content: overlap between user and item content.
We focus on job-specific overlap such as discipline, industry
and career level, as well as location-specific overlap such as
country and region:
- intersect(jobroles(u), tags(v))
- intersect(jobroles(u), title(v))
- career_level(u) - career_level(v)
- I[career_level(u) == career_level(v)]
- I[discipline_id(u) == discipline_id(v)]
- I[industry_id(u) == industry_id(v)]
- I[country(u) == country(v)]
- I[region(u) == region(v)]
Technically all of these features can be computed by directly
modeling user and item content. However, representing com-
plex predicates such as same discipline AND same
industry AND same country AND same region,
would require very deep models that are able to simulta-
neously consider all possible values of each sub-predicate.
Consequently we found that adding these features signifi-
cantly accelerated learning achieving comparable or better
accuracy in fraction of time and with simpler models.

• User-item interaction: similarity between items that u in-
teracted with and v . We compute average similarity for all
items that u interacted with excluding v :

1
|V(u)\v |

∑
v ′∈V(u)
v ′,v

sim(v,v ′)

Here, sim(v,v ′) is a vector with the following 12 features:
- intersect(tags(v), tags(v ′))

- intersect(title(v), tags(v ′))
- intersect(tags(v), title(v ′))
- intersect(title(v), title(v ′))
- career_level(v) - career_level(v ′)
- I[career_level(v) == career_level(v ′)]
- I[discipline_id(v) == discipline_id(v ′)]
- I[industry_id(v) == industry_id(v ′)]
- I[employment(v) == employment(v ′)]
- I[country(v) == country(v ′)]
- I[region(v) == region(v ′)]
- distance(v, v ′)
Separate average similarities are computed for each of the six
interaction types and are concatenated to form the user-item
interaction feature vector. These features are analogous to
the item-based neighbor collaborative filtering model [7],
but with content similarity replacing interaction similarity.
Analogous user-based neighbor features can be extracted
by computing content similarity between users who inter-
acted with v and u. However, these features would not be
applicable to item cold start so we omit them here.

• User-item temporal: same features as in user-item inter-
action but using only the last item that u interacted with for
each interaction type. The motivation for adding this feature
is that the last interaction provides most up-to-date infor-
mation on user intent, and can signal significant preference
altering events such as career/industry change earlier. To
reduce noise we experimented with smoother versions of
this feature by applying time dependent weighted average,
but found that the smoothing factor was difficult to tune
and did not produce significant improvements. A number of
other approaches have been proposed to incorporate tem-
poral information [5, 9, 10] into CF models. However, after
experimenting with several of these models we found that
they were difficult to optimize on highly sparse binary data,
and offered no straightforward way to incorporate content
information.

For all features intersect is set intersection size, I is a binary
indicator variable and distance is distance in kilometers be-
tween longitude and latitude coordinates. When any information
required to compute a given feature was missing we set that fea-
ture to 0. We deliberately kept all features conceptually simple and
straightforward to calculate. With optimized data structures most
of these features can be calculated on the fly and we were able to

RecSys Challenge ’17, August 27, 2017, Como, Italy Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen

get sub-millisecond inference run times for each user-item pair on
multicore architectures (see Section 3.5 for more details). Figure 1
shows number of features in each of the five categories, in total
5416 features were used.

3.3 Model
Using the input features, our goal was to create a relevance model
that would accurately predict if a user would positively interact
with a given item. Recall that positive interaction refers to any of
{impression, click, bookmark, reply, recruiter}. We take a probabilistic
approach and use yuv to denote a binary random variable where
yuv = 1 if u positively interacted with v and 0 otherwise. We
then define a relevance model f : Rp → R1 as a mapping from
input features to probability of positive interaction P(yuv = 1). Full
architecture of this model is shown in Figure 1.

Common choices for f include deep neural networks (DNNs)
and tree-based approaches such as gradient boosting machines
(GBMs) [4]. We experimented with both DNN (1 to 5 hidden layers)
and GBM models, and found GBMs to be significantly easier to
train. Most difficulties with DNNs came from input sparsity and
feature range. On average only several hundred features were on
for most user-item pairs resulting in highly sparse gradient that
made learning slow. Moreover, functions such as distance can
produce feature values in the thousands creating a disproportion-
ately large gradient. To deal with this problem we had to apply
strict input normalization and/or gradient clipping. However, nor-
malizing highly sparse input is a non-trivial task and we found
DNN models to be very sensitive to the choice of normalization.
GBMs on the other hand did not require feature normalization and
worked well without any input pre-processing. For these reasons
we used GBM models in all experiments and trained them using
the excellent XGBoost library [2].

3.4 Training
During training our goal was to ensure that the model would gen-
eralizes well to both offline and online test data. To simulate test
evaluation we partitioned the interaction data forward in time us-
ing the last two weeks of interactions as validation set and the rest
as training set. Within the validation set we randomly selected a
subset of 20K unique items that had at least one positive interaction.
These items became the target items, and the joint set of users
(approximately 50K) that interacted with these items during the
validation time period became the target users. To simulate cold
start, all interactions for target items were removed from the train-
ing set. Validation set was used to guide both feature and model
selection, and the best performing model was submitted for test
evaluation to XING.

After partitioning the data we applied a similar approach to [3],
and sampled positive and negative user-item pairs to train the
model. Specifically, to stay consistent with the target scoring func-
tion in Equation 1 we took an item-oriented approach and sampled
sets of unique positive and negative users for each item. Positive
users were sampled from users that positively interacted with the
item and are selected according to the scoring weight. For example,
recruiter interaction is 4x more important than bookmark/reply
and 20x more important than click. Similarly, negative users were

sampled from users that only deleted the item. For items that didn’t
have enough deletes we randomly sampled negative users from
the entire user set (excluding users that already interacted with the
item). Random negative sampling is appropriate here since both
user and item sets are large enough to ensure that any randomly
selected user-item pair is not going to be relevant with very high
probability. In all cases cold start items and users were removed
from the data before sampling to avoid biasing the model.

Similar procedure was applied to the validation set by including
all positive user for each target item and sampling negative users
from the target validation users. This allowed us to quickly validate
models throughout learning using metrics such as AUC without
having to compute the full score from Equation 1. We found that
validation AUC correlated well with the test score and most im-
provements translated to the offline leader board. Note that we
chose the AUC metric here due to its ranking interpretation and
insensitivity to class imbalance.

The sampling procedure was designed to balance the training
data. First, by selecting the same number of positive and negative
samples for each item we reduce bias towards popular items that
receive significantly more interactions. Empirically we found that
balancing item interactions significantly improved generalization
with relative gains of over 10%. Reducing popularity bias was also
found to be important by other studies [3], leading to better metrics
on live A/B tests. Second, controlling the sample sizes for each class
allowed us to in turn control the positive/negative class distribution
during training. Training with highly imbalanced classes is well
known to be difficult and often leads to over/under-fitted models.
We avoid these problems by explicitly selecting the number of ex-
amples for each class. Finally, sampling positive examples according
to the scoring function emphasizes stronger interactions such as
bookmark/reply and recruiter interest that indicate higher degree
of preference.

After selecting positive and negative samples we minimize the
following classification objective for each item v :

O(v,θ) = −
∑

u ∈U(v)POS

log P(yuv = 1) −
∑

u ∈U(v)NEG

log(1 − P(yuv = 1))

= −
∑

u ∈U(v)POS

log
1

1 + e−f (u,v,θ)
−
∑

u ∈U(v)NEG

log
(
1 −

1
1 + e−f (u,v,θ)

)
(2)

whereU(v)POS andU(v)NEG are positive and negative user sam-
ples for v , and θ is the set of free parameters. By minimizing O

we raise the probability for positive samples and lower it for nega-
tive samples, indirectly achieving the desired effect where relevant
users are ranked higher than the irrelevant users.

It is important to note here that f (u,v,θ) is applied to features ex-
tracted for each (u,v) pair using the approach outlined in Section 3.2.
To simulate forward in time prediction and prevent data leakage it
is common practice to only include interactions that occurred be-
fore (u,v) (if (u,v) is a positive pair) to compute interaction-based
features. However, given the sparsity of interaction data we found
that there wasn’t enough data to partition interactions forward in
time and still get meaningfully dense features. Moreover, consider-
ing that the overall timeframe of the data is only four months we
can assume that the users’ intent didn’t change significantly during

Content-based Neighbor Models for Cold Start
in Recommender Systems RecSys Challenge ’17, August 27, 2017, Como, Italy

that time period. Consequently, we don’t partition the interaction
data forward in time during feature extraction, and extract features
using all available training data including interactions after (u,v).
Empirically we found this to generalize well consistently giving us
the best accuracy for both offline and online phases.

3.5 Inference
Once the model is trained we use the predicted relevance proba-
bilities P(yuv = 1) to select recommendations. We experimented
with various approaches to reduce the number of candidate pairs
that needed to be ranked, including job-specific (same industry,
discipline etc.) and location-specific (same region, country etc.) fil-
ters. However, we found that these filters were too restrictive and
dropped many relevant candidates significantly hurting recall. To
generate predictions for the offline phase, we thus opted to sort all
target users for each item and select top-100 highest scoring users.
Similarly, in the online phase, to satisfy the constraints of maximum
1 item per user and 250 users per item, we first computed lists of
top-100 most relevant items for each user. Each list was pruned by
applying a probability threshold and concatenated together to form
one global list of top user-item pairs. We then sorted this global list
by relevance probability and iterated in sorted order adding each
(u,v) pair into the submission if (1) u hasn’t been added already
and (2) if v didn’t already have 250 users. This procedure greed-
ily maximized the sum of probabilities of all selected pairs while
also satisfying the target constraints. Note that the same relevance
model was used for both phases with the only difference that in the
online phase the model was re-trained on the online training set.

Both online and offline inference procedures required scoring
and ranking all available user-item pairs. Given that there are
74, 840 × 46, 559 ≈ 3.5B pairs in the offline phase and between
50M and 400M pairs daily in the online phase, we implemented a
highly optimized inference routine with feature caching and full
multi-core support. User content and item content features were
cached while all other feature categories were extracted on the fly
using optimized data structures with efficient access to content and
interactions for any given user and item. Running this procedure
on a server with 20 Intel Xeon E5-2630 cores we were able to obtain
sub-millisecond inference runtimes (feature extraction and scoring)
for individual user-item pairs, and generate full predictions in under
12 hours for the offline phase and in 0.5-1.5 hours for the online
phase.

Finally, we also experimented with various post-processing ap-
proaches tomaximize the target score function in Equation 1. Specif-
ically, we tried to prioritize paid users and items, as well as apply
diversity metrics to ensure broader user and item coverage. How-
ever, we found that the gains from these procedures were too small
to warrant the additional hyper parameter tuning.

4 RESULTS
We conducted extensive experiments to validate the training/validation
framework and model parameters. Through these experiments we
found that sampling up to 40 positive and 40 negative users for
each item produced good results. The 40-40 sampling scheme pro-
vided a large training set with over 20M user-item-target triplets,

Offline
model validation auc leaderboard

1-2 0.8873 17,708
1-2-3 0.8951 21,605
1-2-3-4 0.9497 70,072
1-2-3-4-5 0.9522 71,995

1. layer6.ai 75,782
2. Lunatic Goats 71,372
3. Hushpar 61,427
4. rho 59,461
5. Get all the data 57,043

Online
team best two weeks total

1. layer6.ai 10,963 17,979
2. Lunatic Goats 9,741 15,651
3. chome 9,648 15,290
4. rho 9,536 14,791
5. leavingseason 9,173 15,021

Table 2: Results for offline and online phases of the compe-
tition. Top-5 teams are shown for each phase; our team was
called layer6.ai. In the offline section we also show both val-
idation auc accuracy and corresponding leaderboard score
for different combinations of input feature categories. The
models are labeled using the corresponding feature cate-
gories: 1=user content, 2=item content, 3=user-item content,
4=user-item interaction and 5=user-item temporal.

allowing to train deeper and more complex GBM models with-
out over-fitting. For GBM the typical parameter settings (using
XGBoost notation) were: eta = 0.1, max_depth = 15 and
colsample_bytree = 0.6.We used the logistic objective and
trained 500 to 1000 trees. Throughout learning we didn’t observe
any over-fitting, so it is possible that increasingmax_depthwould
lead to better models. However, since inference time is directly pro-
portional to depth × number of trees, we opted to sacrifice model
complexity for inference speed.

Table 2 shows results for both offline and online phases of the
competition. For each offline model we show the corresponding
feature categories from 1 to 5 that were used as input. From the
offline results we see a significant improvement in both validation
auc and leaderboard score when content feature categories 1, 2 and
3 are augmented with interaction categories 4 and 5. Validation auc
improves by almost 6 points from 0.8951 to 0.9522, and leaderboard
score more than triples. This indicates that interaction neighbor-
based content features are highly useful and should always be
included when available. Table 3 shows feature importances for
the best offline model trained with all five feature categories using
depth 15 and 500 trees. We show both overall category importance
as well as top-5 features for each category. From this table we see a
similar pattern where user-item interaction category is nearly three
times more important than the next category item content. We also
see a common pattern where location features such as distance
between items that user interacted with and current item, as well as
content features such as overlap between user’s job roles and item’s

RecSys Challenge ’17, August 27, 2017, Como, Italy Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen

Feature Importance

user-item interaction 1048528
cli distance(v, v’) 57565
cli intersect(tags(v), tags(v’)) 51671
cli career_level(v) - career_level(v’) 47504
imp intersect(tags(v), tags(v’)) 45135
imp distance(v, v’) 39735
item content 337514
latitude(v) 34423
longitude(v) 31158
is_payed(v) 6586
industry_id(v) 4376
career_level(v) 3986
user-item temporal 226226
cli distance(v, v’) 50925
imp distance(v, v’) 42798
cli intersect(tags(v), tags(v’)) 17515
imp intersect(tags(v), tags(v’)) 14531
del distance(v, v’) 11197
user content 118374
experience_n_entries(u) 4343
industry_id(u) 4271
career_level(u) 4211
discipline_id(u) 3721
experience_years(u) 3185
user-item content 36506
career_level(u) - career_level(v) 9602
intersect(job_roles(u), tags(v)) 7476
intersect(job_roles(u), title(v)) 6460
I[region(u) == region(v))] 3792
I[career_level(u) == career_level(v)] 3156
Table 3: Feature importance statistics for a GBMmodel with
500 trees of depth 15. For each of the five feature categories
we show the cumulative category importance together with
top-5 most important features. Features from user-item in-
teraction and user-item temporal categories are extracted
separately for each interaction type, and we show the
corresponding interaction type (cli=click, imp=impression,
del=delete) for each feature from these categories.

tags, are the most important. This leads to an expected conclusion
that recommended jobs should be both relevant and in the right
location. Finally, user-item temporal is the third most important
category significantly outperforming both user content and user-
item content categories. Temporal modeling has repeatedly been
found to be important for recommender systems [5, 9, 10] and these
results further support that. Throughout our experiments we saw
small but consistent gain by incorporating temporal features into
the model.

Results for the top-5 teams in each phase are also shown in Ta-
ble 2. Our team was called layer6.ai and our best submission
used a blend of two GBMmodels each trained with different param-
eter settings. Blending the models improved the offline leaderboard
score from 71,995 to 75,782 outperforming the next best team by
over 6%. However, even a single model would have been enough
to win this phase. In the online phase teams were ranked by the

sum of the two best week scores out of a total of five weeks. The
lower half of Table 2 shows top-5 team results for the online phase.
From these results it is seen that we outperformed all other teams
achieving the highest best two week score beating the next best
team by over 12%. Our model also had the most consistent perfor-
mance winning four of the five weeks and achieving the highest
total score over the five weeks. To put this into perspective no other
team placed 2’nd for more than two weeks. Consistency is highly
important for recommender systems since unstable performance
can lead to significant user dissatisfaction and churn. Given that the
same features and model were used for both phases, these results
confirm that our approach generalizes well with consistently strong
online A/B performance.

5 CONCLUSION
We have presented our solution to the 2017 ACM Recommender
Systems Challenge. Our team placed first in both offline and online
phases of the challenge achieving the most consistent performance
in the online phase winning four of the five weeks. For future work,
a promising area of research is to further explore temporal aspects
of user interactions. Users typically have specific intents when it
comes to career-related services, and intent can change quickly
over time. Modeling temporal patterns can lead to a model that
better anticipates and reacts to these changes. Another interesting
area for future work is to explore a training framework that more
closely aligns with the target scoring function.

REFERENCES
[1] F. Abel, Y. Deldjoo, M. Elahi, and D. Kohlsdorf. 2017. RecSys Challenge 2017:

Offline and Online Evaluation. In ACM Recommender Systems Conference.
[2] T. Chen and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In

Knowledge Discovery and Data Mining.
[3] P. Covington, J. Adams, and E. Sargin. 2016. Deep Neural Networks for YouTube

Recommendations. In ACM Recommender Systems Conference.
[4] J. H. Friedman. 2001. Greedy function approximation: A gradient boosting

machine. Annals of statistics (2001).
[5] Y. Koren. 2009. Collaborative filtering with temporal dynamics. In Knowledge

Discovery and Data Mining Conference.
[6] A. Pacuk, P. Sankowski, K. Węgrzycki, A. Witkowski, and P. Wygocki. 2016.

RecSys Challenge 2016: Job recommendations based on preselection of offers and
gradient boosting. In ACM Recommender Systems Conference.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. 2001. Item-based collaborative fil-
tering recommendation algorithms. In International World Wide Web Conference.

[8] X. Su and T. M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence (2009).

[9] C.-Y. Wu, A. Ahmed, A. Beutel, A. Smola, and H. Jing. 2017. Recurrent recom-
mender networks. In ACM International Conference on Web Search and Data
Mining.

[10] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell. 2010. Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In IEEE
International Conference on Data Mining.

	Abstract
	1 Introduction
	2 Challenge Framework
	3 Our Approach
	3.1 Framework
	3.2 Input Features
	3.3 Model
	3.4 Training
	3.5 Inference

	4 Results
	5 Conclusion
	References

