
Practical Variational Inference
for Neural Networks

Alex Graves
University of Toronto

graves@cs.toronto.edu

Introduction

Variational methods offer a powerful approximation to
Bayesian inference for parametric models. The basic idea
is to replace the true posterior Pr(w|D) over the parameters
w given the data D with an approximate distribution Q(w)
that is easier to work with.

Q(w) ≈ Pr(w|D)

In particular Q(w) is usually chosen so that the variational
free energy F , which is needed to perform Bayesian infer-
ence, can be calculated exactly. However the correspond-
ing integral is difficult to solve for neural network models,
where the data distribution Pr(D|w) is a complex and highly
nonlinear function of the parameters.

F = −
〈

ln

(
Pr(D|w)P (w)

Q(w)

)〉
w∼Q(w)

= ?

As a result, previous variational methods have been re-
stricted to simple neural networks such as Multilayer Per-
ceptrons with single hidden layers and linear output units.
The goal of this work is a method that also works for com-
plex architectures such as recurrent neural networks.

✘✔

Our approach is to forget about solving the integrals exactly
and look instead for ways to approximately calculate and
differentiate Q(w) using sampling methods. In other words
we approximate the variational approximation.

F ≈ − 1

N

N∑
i=1

ln

(
Pr(D|wi)P (wi)

Q(wi)

)

The result is a simple, stochastic form of variational in-
ference that can be applied to any differentiable log-loss
parametric model (which includes most directed neural net-
works).

Variational Inference and MDL

The variational free energy can be rearranged into a sum
of two terms: the expected log-loss of the network with
weights drawn from Q(w), and the Kullback-Leibler diver-
gence between Q(w) and the weight prior P (w).

Error cost Complexity cost

The first term is the expected number of nats required to de-
scribe the data to someone who has a network with weights
drawn from Q(w) (using, for example, arithmetic coding to
compress the network errors). We therefore identify it as
the error cost.

The second term is the expected number of nats required
to describe the weights (using ‘bits-back’ coding) to some-
one who has the weight prior. Intuitively, the more different
Q(w) is from P (w) the more it costs to describe; in partic-
ular, distributions that precisely describe individual weights
are expensive. Because this term measures the amount of
information the network can store in its weights we identify
it as the complexity cost.

weight prior

cheap distribution

expensive distribution

F is therefore equivalent to a minimum description length
(MDL) loss function that measures the total cost of describ-
ing the model and the data. One advantage of the MDL in-
terpretation is that it separates model complexity from pre-
dictive accuracy. Another is that it makes it clear whether
the data has really been compressed or not.

Choice of Distributions

To train the network we must first choose a parametric form
for the weight prior P (w) and the variational posterior Q(w),
then minimise F with respect to these parameters.

If Q(w) is a delta distribution (all probability is concen-
trated on a single point in weight space) we recover ordi-
nary maximum likelihood training with a regularisation term
that depends on the prior.

None

L2 (weight noise)

L1

Uniform

Gaussian

Laplacian

PRIOR REGULARISER

Normal L1 and L2 regularisation are equivalent to priors
with location zero and fixed scale (the smaller the scale the
stronger the regularisation). However it is also possible to
adapt the prior parameters during training.

IfQ(w) is a diagonal Gaussian then instead of optimising a
point in weight space, we optimise a multivariate Gaussian
centred on a point.

The key mathematical identities that make this possible are
the following, valid for any multivariate Gaussian N (µ,Σ):

∇µ 〈ln Pr(D|w)〉w∼N = 〈∇w ln Pr(D|w)〉w∼N (1)

∇Σ 〈ln Pr(D|w)〉w∼N =
1

2

〈
∇2
w ln Pr(D|w)

〉
w∼N

(2)

These allow us to approximate the gradient of the error cost
with respect to the parameters of Q(w) by sampling weights
from Q(w) and averaging the usual gradient of the log-loss
with respect to the weights. For networks whose second
derivatives are difficult to calculate, the Hessian in Eq. 2
can be approximated with the negative Fisher matrix.

If the variances in Q(w) are fixed and only the means are
optimised, the optimisation is equivalent to training with
Gaussian weight noise. For normal weight-noise training
P (w) is implicitly uniform. However it is also possible to use
a Gaussian prior with or without adaptive parameters.

Adapting the variances using Eq. 2 gives adaptive weight
noise. This allows the network to specify ‘important’
weights precisely (at the cost of higher complexity) while
allowing other, less important weights to tend to the prior.

Weight Costs

Visualising the complexity costs of the weights can give
valuable insight into the workings of the network. Let’s
look at a single-layer feedforward network trained to clas-
sify handwritten digits from the MNIST database.

Here are the costs of the input weights to some of the hid-
den units.

Each square corresponds to a unit in the hidden layer, and
each pixel corresponds to an input weight. The lighter the
pixels the more the weight costs. Note that some of the
squares have uniformly low cost weights (meaning that the
hidden unit is essentially ignored) and that weights with high
cost are distributed over the part of the image where the
digits are drawn.

Here are the costs of the weights from the same hidden
units to the ten output units (one for each digit class).

Note that the same units are ignored here as above. This
makes sense, as the network should not pay for precise
weights from a unit whose activation does not carry use-
ful information. Also note that the hidden units have varying
degrees of importance to the different output units; presum-
ably they embody input features that are more useful for
identifying some digits than others.

Weight Pruning

A simple pruning heuristic can be defined for adaptive
weight noise by removing weights that are almost as likely
to be zero as they are to be anything else. This tends to
prune low cost weights, as shown in the following figure for
the same input to hidden weights as above (black weights
are pruned, white weights are not).

Experimental Results

We compared the different choices of P (w) and Q(w) for a
hierarchical, multidimensional recurrent neural network do-
ing phoneme recognition on the TIMIT database.

Name Phoneme Error Rate Training Epochs

Adaptive mean L2 28.0% 53
L2 27.4% 59
Maximum likelihood 27.1% 44
L1 26.0% 545
Adaptive mean L1 25.4% 765
Weight noise 25.4% 220
Adaptive prior weight noise 24.7% 260
Adaptive weight noise 23.8% 384

We also assessed the effect of weight pruning at different
thresholds on the error rate (before and after retraining)

Weights Remaining Initial error Retrain error

77.4% 23.8% 24.0%
45.2% 23.9% 23.5%
30.9% 23.9% 23.7%
22.3% 24.0% 23.3%
16.3% 24.5% 24.1%
11.5% 28.0% 24.5%

Overfitting

A major advantage of adaptive weight noise is that it does
not overfit on the training data (as long as the training tar-
gets are sensibly defined). Therefore early-stopping is not
needed and all available data can be used for training. This
point is illustrated by the training error curves below (green
for training set, blue for test set, red for validation set).

Adaptive weight noise Weight noise Maximum likelihood

Future Work

An obvious way to extend this work would be to find richer
distributions for P (w) and Q(w) for which the free energy
can still be easily approximated. We are currently investi-
gating non diagonal Gaussians and spike-and-slab distribu-
tions for Q(w) and Gaussian mixtures for P (w).

