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Why Generate Sequences?

• To improve classification?

• To create synthetic training data?

• Practical tasks like speech synthesis?

• To simulate situations?

• To understand the data



Generation and Prediction

• Obvious way to generate a sequence: 
repeatedly predict what will happen next

• Best to split into smallest chunks possible: 
more flexible, fewer parameters, avoids 
‘blurred edges’
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The Role of Memory

• Need to remember the past to predict the 
future

• Having a longer memory has several 
advantages:

• can store and generate longer range patterns

• especially ‘disconnected’ patterns like 
balanced quotes and brackets

• more robust to ‘mistakes’



Long Short-Term Memory

• LSTM is an RNN architecture designed to have a better memory. 
It uses linear memory cells surrounded by multiplicative gate 
units to store read, write and reset information

• S.	
  Hochreiter	
  and	
  J.	
  Schmidhuber,	
  “Long	
  Short-­‐term	
  Memory”	
  Neural	
  Computa:on	
  1997

Input gate: scales input to cell (write)

Output gate: scales output from cell (read) 

Forget gate: scales old cell value (reset)



Basic Architecture

• Deep recurrent LSTM net with 
skip connections

• Inputs arrive one at a time, 
outputs determine predictive 
distribution over next input

• Train by minimising log-loss:

• Generate by sampling from output 
distribution and feeding into input
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Text Generation

• Task: generate text sequences one character at a time

• Data: raw wikipedia markup from Hutter challenge 
(100 MB)

• 205 inputs (unicode bytes), 205 way softmax output 
layer, 5 hidden layers of 700 LSTM cells, ~21M weights

• Split into length 100 sequences, no resets in between

• Trained with SGD, learn rate 0.0001, momentum 0.9 

• Took forever!



Compression Results

Method Bits per Character

bzip2 2.32

M-RNN1 1.6 (text only)

deep LSTM 1.42 (1.33 validation)

PAQ-82 1.28

1)	
  I.	
  Sutskever	
  et.	
  al.	
  “Genera1ng	
  Text	
  with	
  Recurrent	
  Neural	
  Networks”	
  ICML,	
  2011
2)	
  M.	
  Mahoney,	
  “Adap1ve	
  Weighing	
  of	
  Context	
  Models	
  for	
  Lossless	
  Data	
  Compression”,	
  Florida	
  Tech.	
  CS-­‐2005-­‐16,	
  2005

http://www.cs.fit.edu/~mmahoney/compression/cs200516.pdf
http://www.cs.fit.edu/~mmahoney/compression/cs200516.pdf


Handwriting Generation

• Task: generate pen trajectories by predicting one (x,y) 
point at a time

• Data: IAM online handwriting,10K training sequences, many 
writers, unconstrained style, captured from whiteboard

• First problem: how to predict real-valued coordinates?



Recurrent Mixture 
Density Networks

• Can model continuous sequences with RMDNs

• Suitably squashed output units parameterise a mixture 
distribution (usually Gaussian)

• Not just fitting Gaussians to data: every output 
distribution conditioned on all inputs so far

• For prediction, number of components is number of 
choices for what comes next

• M.	
  Schuster,	
  “BeNer	
  Genera:ve	
  Models	
  for	
  Sequen:al	
  Data	
  Problems:	
  Bidirec:onal	
  Recurrent	
  
Mixture	
  Density	
  Networks”,	
  NIPS	
  1999
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http://www.informatik.uni-trier.de/~ley/db/conf/nips/nips1999.html#Schuster99
http://www.informatik.uni-trier.de/~ley/db/conf/nips/nips1999.html#Schuster99


Network Details

• 3 inputs: Δx, Δy, pen up/down

• 121 output units

• 20 two dimensional Gaussians for x,y = 40 means (linear) + 40 
std. devs (exp) + 20 correlations (tanh) + 20 weights (softmax) 

• 1 sigmoid for up/down

• 3 hidden Layers, 400 LSTM cells in each

• 3.6M weights total

• Trained with RMSprop, learn rate 0.0001, momentum 0.9

• Error clipped during backward pass (lots of numerical problems)

• Trained overnight on fast multicore CPU



Samples
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Output Density



Handwriting Synthesis 

• Want to tell the network what to write without 
losing the distribution over how it writes

• Can do this by conditioning the predictions on 
a text sequence

• Problem: alignment between text and writing 
unknown

• Solution: before each prediction, let the 
network decide where it is in the text sequence



Soft Windows

window vector (input to net)
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Network Architecture
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Which is Real?



Which is Real?



Which is Real?



Unbiased Sampling



Biased Sampling



Primed Sampling
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Synthesis Output Density



Prediction Output Density



Some Numbers
Network Δ Nats

3 layer tanh prediction +1139(!)

1 layer prediction +15

3 layer prediction (baseline) 0

3 layer synthesis -56

3 layer synthesis + var. Bayes -86

3 layer synthesis + text -25



Where Next?

• Speech synthesis

• Better understanding of internal 
representation

• Learn high level features (strokes, letters, 
words...) rather than adding them manually



Thank You!


