
Generating Sequences with
Recurrent Neural Networks

Alex Graves
CIFAR Global Scholar
University of Toronto

Why Generate Sequences?

• To improve classification?

• To create synthetic training data?

• Practical tasks like speech synthesis?

• To simulate situations?

• To understand the data

Generation and Prediction

• Obvious way to generate a sequence:
repeatedly predict what will happen next

• Best to split into smallest chunks possible:
more flexible, fewer parameters, avoids
‘blurred edges’

Pr(x) =
Y

t

Pr(xt|x1:t�1)

The Role of Memory

• Need to remember the past to predict the
future

• Having a longer memory has several
advantages:

• can store and generate longer range patterns

• especially ‘disconnected’ patterns like
balanced quotes and brackets

• more robust to ‘mistakes’

Long Short-Term Memory

• LSTM is an RNN architecture designed to have a better memory.
It uses linear memory cells surrounded by multiplicative gate
units to store read, write and reset information

• S.	
 Hochreiter	
 and	
 J.	
 Schmidhuber,	
 “Long	
 Short-­‐term	
 Memory”	
 Neural	
 Computa:on	
 1997

Input gate: scales input to cell (write)

Output gate: scales output from cell (read)

Forget gate: scales old cell value (reset)

Basic Architecture

• Deep recurrent LSTM net with
skip connections

• Inputs arrive one at a time,
outputs determine predictive
distribution over next input

• Train by minimising log-loss:

• Generate by sampling from output
distribution and feeding into input

TX

t=1

� log Pr(xt|x1:t�1)

output
layer

LSTM
layers

inputs

Text Generation

• Task: generate text sequences one character at a time

• Data: raw wikipedia markup from Hutter challenge
(100 MB)

• 205 inputs (unicode bytes), 205 way softmax output
layer, 5 hidden layers of 700 LSTM cells, ~21M weights

• Split into length 100 sequences, no resets in between

• Trained with SGD, learn rate 0.0001, momentum 0.9

• Took forever!

Compression Results

Method Bits per Character

bzip2 2.32

M-RNN1 1.6 (text only)

deep LSTM 1.42 (1.33 validation)

PAQ-82 1.28

1)	
 I.	
 Sutskever	
 et.	
 al.	
 “Genera1ng	
 Text	
 with	
 Recurrent	
 Neural	
 Networks”	
 ICML,	
 2011
2)	
 M.	
 Mahoney,	
 “Adap1ve	
 Weighing	
 of	
 Context	
 Models	
 for	
 Lossless	
 Data	
 Compression”,	
 Florida	
 Tech.	
 CS-­‐2005-­‐16,	
 2005

http://www.cs.fit.edu/~mmahoney/compression/cs200516.pdf
http://www.cs.fit.edu/~mmahoney/compression/cs200516.pdf

Handwriting Generation

• Task: generate pen trajectories by predicting one (x,y)
point at a time

• Data: IAM online handwriting,10K training sequences, many
writers, unconstrained style, captured from whiteboard

• First problem: how to predict real-valued coordinates?

Recurrent Mixture
Density Networks

• Can model continuous sequences with RMDNs

• Suitably squashed output units parameterise a mixture
distribution (usually Gaussian)

• Not just fitting Gaussians to data: every output
distribution conditioned on all inputs so far

• For prediction, number of components is number of
choices for what comes next

• M.	
 Schuster,	
 “BeNer	
 Genera:ve	
 Models	
 for	
 Sequen:al	
 Data	
 Problems:	
 Bidirec:onal	
 Recurrent	

Mixture	
 Density	
 Networks”,	
 NIPS	
 1999

Pr(ot) =
X

i

wi(x1:t)N (ot|�i(x1:t),⌃i(x1:t))

http://www.informatik.uni-trier.de/~ley/db/conf/nips/nips1999.html#Schuster99
http://www.informatik.uni-trier.de/~ley/db/conf/nips/nips1999.html#Schuster99

Network Details

• 3 inputs: Δx, Δy, pen up/down

• 121 output units

• 20 two dimensional Gaussians for x,y = 40 means (linear) + 40
std. devs (exp) + 20 correlations (tanh) + 20 weights (softmax)

• 1 sigmoid for up/down

• 3 hidden Layers, 400 LSTM cells in each

• 3.6M weights total

• Trained with RMSprop, learn rate 0.0001, momentum 0.9

• Error clipped during backward pass (lots of numerical problems)

• Trained overnight on fast multicore CPU

Samples

Samples

Output Density

Handwriting Synthesis

• Want to tell the network what to write without
losing the distribution over how it writes

• Can do this by conditioning the predictions on
a text sequence

• Problem: alignment between text and writing
unknown

• Solution: before each prediction, let the
network decide where it is in the text sequence

Soft Windows

window vector (input to net)

vt+1 =
SX

i=1

wt
isi

kernel weights (net outputs for a,b,c)

wt
i =

KX

k=1

atk exp
�
�btk[c

t
k � i]2

�

input vectors (text)
(s1, . . . , sS)

Network Architecture

Alignment
T
h
o
u
g
h
t

t
h
a
t

t
h
e

m
u
s
t
e
r

f
r
o
m

Which is Real?

Which is Real?

Which is Real?

Unbiased Sampling

Biased Sampling

Primed Sampling

)(

()

Synthesis Output Density

Prediction Output Density

Some Numbers
Network Δ Nats

3 layer tanh prediction +1139(!)

1 layer prediction +15

3 layer prediction (baseline) 0

3 layer synthesis -56

3 layer synthesis + var. Bayes -86

3 layer synthesis + text -25

Where Next?

• Speech synthesis

• Better understanding of internal
representation

• Learn high level features (strokes, letters,
words...) rather than adding them manually

Thank You!

