Efficient Transitive Closure of Sparse Matrices over Closed
Semirings

Gerald Penn
Department of Computer Science
University of Toronto
gpennecs.toronto.edu

Keywords: sparse matrix multiplication, semirings, typed feature logic, parsing

1 BACKGROUND

Let M be an n x n matrix over the Boolean semiring. We can elect to interpret this matrix as
an adjacency representation of a finite directed acyclic graph on n nodes, where M[i,j] = 1 iff
there is an arc from node ¢ to node j. Under this interpretation, adding in the identity matrix
and multiplying the result by itself until it reaches a fixed point, M*, corresponds to computing
the path accessibility relation in the graph. In the category of partial orders, this amounts to
computing the reflexive-transitive closure of a cover relation. For brevity, we can refer to M* as
the transitive closure of M.

In computational linguistics, this computation is necessary for computing the subtype relation
in HPSG type signatures. By generalizing semirings to semi-lattices of more than two elements (1
and 0), we can similarly compute all of the feature appropriateness conditions for defining feature
structure unification from HPSG feature declarations (Penn, 2000). Here, we left-multiply a ¢ x f
matrix of declarations by the transitive closure of this generalized subtyping matrix, where ¢ is
the number of types in the grammar and f is the number of features.

Let M be an n X n matrix over a non-commutative semiring in which the carrier is the powerset
of some finite set, IV, and addition is set-union. We can interpret the elements of NV as the set of
non-terminals of a context-free grammar plus a distinguished unit element for the “empty cate-
gory,” and multiplication as a powerset extension of the phrase-structure rules of that grammar.
Then constructing M* corresponds to deriving an all-paths parse forest over an (n — 1)-word input
string: M*[i, j] = S C P(N) iff every non-terminal of S can be rewritten to w;;1 ... w; (Goodman,
1999). A similar generalization for adjacency representations lets us compute path accessibility in
labelled graphs, such as graphical lexical semantic representations like WordNet.

In practical contexts, we expect all of these linguistic applications to begin with a matrix M
that is very sparse, and end with a matrix M* that is still fairly sparse — crucially, there exists a
topological ordering of the n vertices implicit in M’s graph-theoretic interpretation such that M
can be rendered upper-triangular, resulting in a worst-case (n? + n)/2 non-zero elements.

In this talk, an alternative representation of matrices will be presented that allows for the
efficient computation of transitive closure over closed semirings. An empirical evaluation will also
be provided.

2 RELATED WORK

Warshall (1962) developed his famous algorithm for transitive closure on the Boolean semiring.
Floyd (1962) developed his for transitive closure on the tropical semiring (which computes the
solution to the weighted all-pairs-shortest-path problem). Neither of these pays any attention to
sparseness. There are, of course, many algorithms that do, cf. Press et al. (1993), including the Yale
algorithm, which is used in the empirical comparisons given below. Sparse matrix multiplication

algorithms, however, are almost always designed for matrices over integer-or-real-valued rings,!
and are generally not developed with transitive closure specifically in mind.

Many semirings, including the Boolean semiring, can be embedded into another ring (R, in
the case of the Boolean semiring) in which matrix multiplication preserves enough structure for
an answer in the original semiring to be recovered. Lee (2002) tacitly relies on this in her more
theoretical discussion of Boolean matrix multiplication and parsing. From a practical perspective,
this would allow us to use a standard sparse matrix multiplication algorithm.

In the specific case of transitive closure, there is a good reason not to do this, even when the
embedding exists. In a closed semiring (Aho et al., 1974):

%) (A B)*:<A* A*BC*)

0 C 0 c*
This reduction does not, by itself, yield a sub-cubic transitive closure algorithm, but it does reduce
the number of basic operations by a constant 75%. The present research programme began as
an attempt to provide a sparse matrix multiplication algorithm directly for closed semirings that
could avail itself of this property.

Note: In the case of rings, Strassen’s algorithm and all other non-probabilistic sub-cubic al-
gorithms have very large constant factors that make them realistic only for very dense matrices.
In the case of semirings, the Four Russians’ algorithm is more co-operative in this respect, but is
also less well-suited to large sparse matrices.

3 ZERO-COUNTING BY QUADRANTS

For simplicity, we will consider only the Boolean semiring in the development here. For any ¢ and
n such that 1 < i < n, let d,(7) be defined such that:

0 i1=1
dn(z) = d[n/2] (Z) +1 1<i< |-TL/21
dins2) (i = [n/2])+1 i> [n/2]

In addition, for any d > d,, (i), let ¢Z(i) be defined such that:

n d=0 (thusi =1)
g2 (6) = {4y (0) d>0,i < [n/2]
q‘f;/12j (i—[n/2]) d>0,i>[n/2]

We will use these functions to recursively divide a matrix evenly into quadrants. One way of
looking at them is as measures defined on a balanced binary tree with n leaves. Given the ith leaf
from the left, there will be some subtrees for which 4 is the leftmost leaf. In that case, d,, (i) is the
least depth of such a subtree, and ¢Z(i) is the total number of leaves that such a subtree at depth
d has.

Given a matrix M, we shall say that a submatrix is rooted at MT[i, j] iff [¢,7] is its leftmost,
uppermost coordinate in M.

Given 4, j, m and n such that 1 <i <m, and 1 < j < n, let Vi ny (4, J) = max(dm (i), dn (7))
When we divide an m x n matrix M evenly into quadrants, then the largest quadrant rooted at
MTi, j] will be q%”’")(zd) (1) x qz(”’")(w) (4) in size. It can be proven that if m and n differ by no
more than 1, then these two dimensions will differ by no more than 1.

Now, given a matrix M over the Boolean semiring, there is a unique matrix Z(M) over the
non-negative integers such that the value of Z(M)[i,j] is the size of the largest zero-quadrant
rooted at M[i,j] in the largest quadrant rooted at M[i,j]. If this largest zero-quadrant is not
square, then we use the larger of its dimensions as the value. As a simple example, consider the

1The present author has yet to find even one exception to this statement.

4 x 4 identity matrix as M:

100 0 01 2 1
0100 101 1
M=19010 | ZM=(45 1 ¢,
000 1 1110

Note that the 1s in M are replaced by Os in Z(M) — there are no zero-quadrants rooted at those
coordinates. Also notice that many values of Z(M) can be inferred from other values. The fact
that Z(M)[1, 3] is 2, for example, tells us that Z(M)[1,4], Z(M)[2,3], and Z(M)[2,4] must be 1,
and vice versa. It is perhaps useful to conventionally write Z(M) with as few values as can be
used to infer the rest of the matrix:

)
|

|
= o
(=

This convention accentuates the sparseness of the original matrix M.

4 TRANSITIVE CLOSURE WITH ZCQ

To transitively close a matrix in its ZCQ-representation, we first recurse on its diagonal quadrants,
as suggested by (*), to obtain A* and C*. We then compute A* BC* with two matrix multiplica-
tions. Matrix multiplication in ZCQ is given by the quadrant-based recursive formulation:

A B E F\ (AE+BG AF+BH
(C D)(G H>_<CE+DG CF+DH)
Summation in ZCQ is given by a coordinate-wise min operation. In addition to the size-one base
cases, an efficient implementation of ZCQ would include in both summation and multiplication a
sparse case, in which the value of Z(M) is checked first against the dimensions of the submatrices
being multiplied. In this context, the base case of multiplication thus always returns 0 (indicating

a non-zero element).
It is, in fact, possible to compute A* BC* simultaneously with two recursive functions:

out(A,B,C) : computes B := A*BC*
Bys :=in(Ba1, C11, C12, B2s)

Bis :=in(A12, Ass, Bas, B12)
By :=in(Bi1,C11,C12, B12)
out(A11, Bi2, Cz)

out(A22 , Bao, 022)

By :=in(A12, Az, Ba1, B11)
out(Ay1, Bi1,Ch1)

out(Asz, Ba1,Ch1)

R :=in(A,B,C,R°) : computes R := AB*C + R°
temp = in(An, Bll; B12, A12)

R11 = in(All;Bll;CllaR?I)
R := in(temp,ng,Cm,Rn)

R12 = in(Au, Bll) 0123 R(I)Q)
Ri5 := in(temp, Bas, Ca2, R12)

temp := in(Az, Bi1, Bi2, As2)

Ro1 :=in(As1, Bi1,Ch1, RY;)
Ry :=in(temp, Bay, Co1, Ray)

Ray :=in(As1, Bi1,Ci2, RY,)
Ry; := in(temp, Baa, C2, Ra2)

where the transitive closures are again assumed to apply to upper-triangular matrices only. These
functions decompose their arguments by quadrant, as does ZCQ. in/4 has complexity O(n!°810)
because of the number of recursive calls in its definition. One might expect that sparseness would
still favour performing two simultaneous closures and multiplications in this way since even a single
zero argument produces a zero result. Experimentally, this has proven not to be the case: this
method is over 1000 times slower than performing the left and right multiplications separately, as
described earlier, with even modest values of n. It also consumes more memory, although total
memory consumption by the temporary buffer, temp, in computing the closure of an n x n matrix
is bounded above by in(2n + 5).

5 EVALUATION

So far, this representation and algorithm have only been partially evaluated on Boolean semiring
closures. For this, the typing partial orders from three HPSG grammars are being used: the one
distributed with ALE, and two versions distributed by the English Resource Grammar (ERG)
project. Times are given in milliseconds, and were measured as an average of three runs on a

ALE(162) | Baby-ERG(2763) | ERG(4305)
Naive-BOR 315 3600870 | > 5.8 x 107
Naive-Z* 7 271488 865742
Naive-BOR* 3 225698 570967
Yale- BOR <1 2992 6865
Yale-Z <1 1579 3573
ZCQ <1 425 547

Table 1: Preliminary evaluation of ZCQ. Times are in milliseconds.

Dell dual-Xeon 2.4GHz server with 2GB of RAM available. The two asterisked methods were
obtained by using naive matrix multiplication over the integer ring and the Boolean semiring,
respectively, in combination with the reduction given in (*) above. The Yale algorithm is based
on a row-indexed representation scheme, and cannot straightforwardly be adapted to use (*). All
implementations are those of the present author.

Why is ZCQ so fast? A preliminary analysis of its performance reveals that the step in
which zero subquadrants are re-combined to form larger zero quadrants is crucial to efficient
performance — without it, ZCQ is roughly as fast as the Yale algorithm. In their lattice-theoretic
interpretation, large zero quadrants of size n x n occur off-diagonally as representatives of anti-
chains of n elements. Large n x n quadrants consisting only of non-zero elements correspond to
a number of other structures, ranging from the generalised crown S,,, in which case the matrix
has zeros in its remaining positions, to a chain of length 2n, in which case the quadrant would
be contained in a 2n x 2n triangle of exclusively non-zero elements. The ERG contains few if
any generalised crowns, and its largest chain is of length 21. We may thus conjecture that the

success of ZCQ on these data is a result of HPSG’s predilection for short, “bushy,” sparsely joined
partially ordered sets.

6 FUTURE WORK

The above evaluation needs to be extended to a wider range of partial orders, from the domain of
computational linguistics and elsewhere, as well as a wide range of synthetically generated cases.
In addition, ZCQ should be adapted and tested with other closed semirings, including those that
can be used for parsing. These two extensions will permit us to engage in a finer-grained analysis
of ZCQ’s practical efficiency. It seems rather fortuitous that decomposing matrices into roughly
square quadrants would turn out to be the optimal choice of shape into which M could be cut.
It may very well be that there is some degree of flexibility there that would allow us to tailor the
quadrants of M according to some prior knowledge of the domain from which the interpretation
of M arises.

REFERENCES

Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of Computer Algorithms.
Addison-Wesley.

Floyd, R. W. (1962). Algorithm 97 (shortest path). Communications of the ACM, 5(6):345.
Goodman, J. (1999). Semiring parsing. Computational Linguistics, 25(4):573-605.

Lee, L. (2002). Fast context-free grammar parsing requires fast Boolean matrix multiplication.
Journal of the ACM, 49(1):1-15.

Penn, G. (2000). The algebraic structure of transitive closure and its application to attributed
type signatures. Grammars, 3(2-3):295-312.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1993). Numerical Recipes
in C : The Art of Scientific Computing. Cambridge University Press, 2nd edition.

Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1):11-12.

