CSC485/2501 A2

TA: Ruiyu Teddy Wang

From Last Week...

- Now available!
- Due 17.00 Monday, Nov 3.
- Word Sense Disambiguation (q0, q1, q2) <- last tutorial
- LLM causal tracing (q3) <- this tutorial!
- After A2, you will be familiar with...
 - NLTK
 - WordNet
 - The Lesk algorithm
 - Word embeddings methods such as word2vec and BERT
 - How LLMs work internally when prompting

Casual Tracing

In question 3, we explore how modern transformer LLMs store facts

- Specifically, how they answer simple, relational questions
- e.g. The capital of France is ____? The CN Tower is located in the city of ____?

In order to find how LLMs interact with them, we measure a metric called the indirect effect

- i.e. the impact of disabling some hidden states in the model
- We will go through all the terminologies in this tutorial

Preliminaries

What is a neural network?

Two key components:

- 1. Preset network architectures (neurons)
- 2. Learn patterns of large datasets

Why is #1 important: you don't compute and specify each parameter; the learning does Why is #2 important: task matters!

Preliminaries: the Transformer

Attention Is All You Need. NeurIPS 2017.

Architecture:

- Multiple attention layers. In each layer:
 - An attention block
 - 2. A feed-forward layer (basically, an MLP)
 - Residual connections between the modules and the input
 i.e. out = input + f(input)
- Encoder: self-attention; decoder: cross-attention (Enc-dec)

Output Probabilities

*we do not go in detail of this architecture. Just some high-level ideas

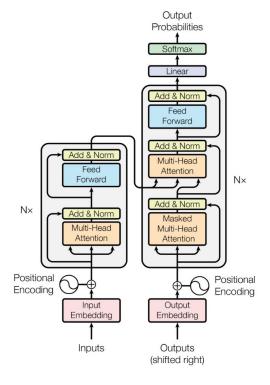
Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Positional Positional Encodina Encodina Embeddina Embeddina Inputs Outputs (shifted right)

Preliminaries: the Transformer

Attention Is All You Need. NeurIPS 2017.

Task: next-token prediction

- Given the sentence prefix {t_0, ..., t_(n-1)}, predict token t_n
- Applications: machine translations, language modelling, and a lot of extrinsic tasks (like how you use the LLMs these days)

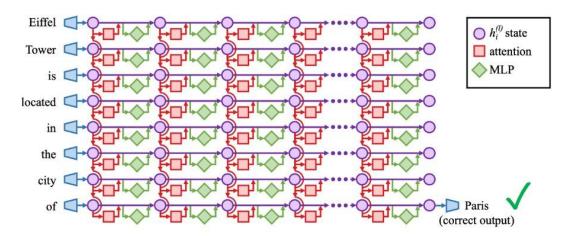


*we do not go in detail of this architecture. Just some high-level ideas

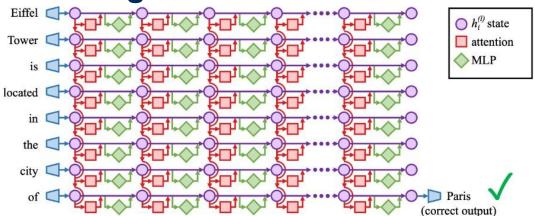
Preliminaries: GPT

(GPT-2) Language Models are Unsupervised Multitask Learners. OpenAl tech report 2019

- The backbone model we are using!
- A decoder-only model: self-attention on the (auto-regressive) input
 - ... which means we can simplify the graph of information flows as below:



Casual Tracking



Given the sentence "Eiffel Tower is located in the city of ...", when does the language model realizes that the answer is "Paris"?

Assumption: the factual knowledges must be stored somewhere in the model weights

Casual Tracking

We explore three different location types:

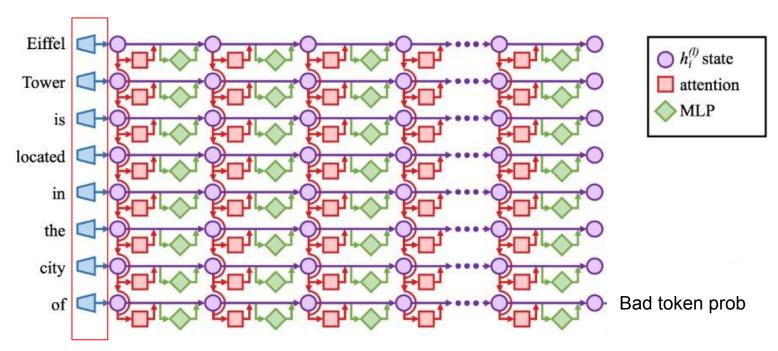
- Each entire layer;
- 2. Each attention interval;
- 3. Each MLP interval (interval = a window of 10)

What we do:

- 1. Conduct a **corrupted run**: obfuscate some hidden states, compute the output distribution (the logit)
- 2. Conduct a **corrupted with restoration run**: corrupt the inputs, but restore the hidden state at some token positions and layers. Compute the output dist.
- 3. **Indirect Effect**: the difference between the corrupted and restored probability

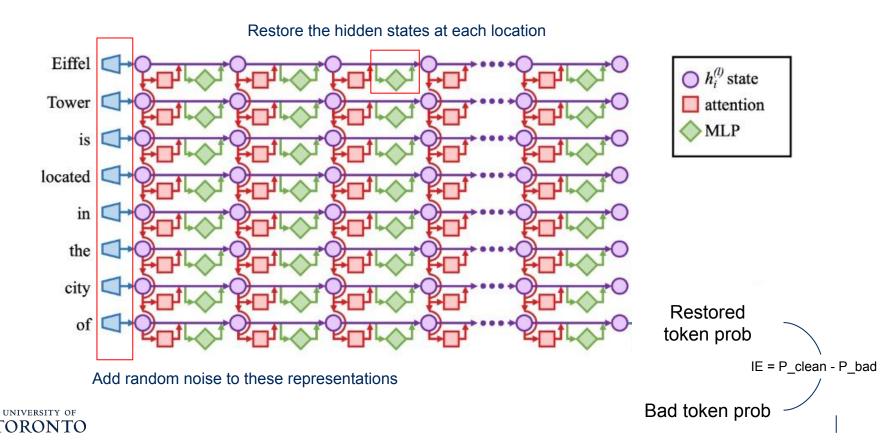
How to corrupt: given the located hidden state, add a random noise (noise * randn)

1. Corrupt



Add random noise to these representations

2. Restore



TransformerLens

A Library we use for mechanistic interpretability of generative language models.

How we run the process:

- Specify a location (hook)
- 2. Define a function of what to do at that location
- 3. Run model.run_with_hooks

run_with_hooks():

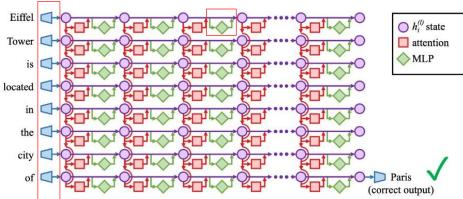
- Input: the tokenized prompts, and a *forward hook*
- Return: the logits

Hooks: List[Tuple[str, Callable]]: a list of hooked LM locations and the relevant functions

- How to retrieve the locations: utils.get_act_name(NAME)
- NAME could be 'embed', 'resid_pre', 'mlp_post', 'attn_out' # don't forget the embedding!

How the Hook Works...

```
hooks = [
     (utils.get_act_name('embed'), fn),
     (utils.get act name('mlp post', 2), restore fn),
logits = run with hooks(prompt tokens, fwd hooks=hooks)
                                            Eiffel
# compute your prob based on the logits
                                            Tower
```

Functions To-do

We have implemented these for you:

- get_target_id(): get the id of the token (you will need it to get your logit probability)
- record_clean_activations(): provide a record for you to restore the hidden states in the future

You should implement the following methods:

- get_restore_fn(): provide a function that uses the activation record (computed above) to retrieve the activations for the specified token
- 2. get_patch_emb_fn(): provide a function that corrupts the specified span
- 3. get_corrupted_probs(): conduct the **corrupted run**
- 4. find_sequence_span(): find the token indices of the given sequence part e.g. find_sequence_span('The Space Needle', 'The Space Needle is located in ...') = [0, 1, 2, 3] # note that tokenization splits 'Needle' into 'Need', '#le'

Functions To-do

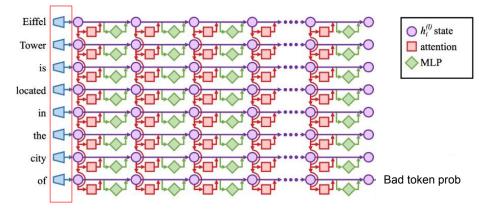
You should implement the following methods:

- 5. get_forward_hooks(): get your hook.
 - Recall: Hooks is List[Tuple[str, Callable]]
 - What does this list mean: for each LLM location (described by the str), use the relevant function to do certain computation (either corrupt the embeddings or restore the hidden states)
- 6. casual_trace_analysis():
 - 1. Corrupt the model and get the token probability
 - 2. For each layer and each token in the sequence, get the new probability computed by restoring the specific layer and token
 - 3. Compute the difference between the restored prob and the corrupted prob
 - Result: a tensor of shape (seq_length 1, layer_num)
 - # need to remove the start-of-sequence token!

The Complete Process

- 1. Implement your function to corrupt the embeddings (actually, the function to get that function)
- 2. Design a hook for the corrupt run
- 3. Run the corrupt run

Nothing happens inside of the LLM.



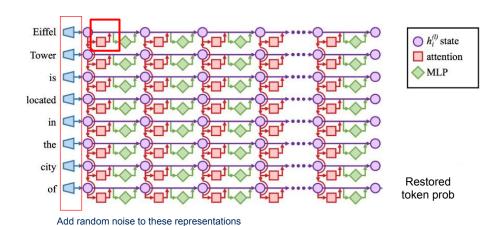
Add random noise to these representations

The Complete Process

After the corrupted run:

- Implement your restoration function (actually, the function to get that function)
- Design a hook for each token index and model layer, and run
- 3. Compute the probability difference, observe if there is an increase in the final likelihood
- 4. Form a graph!

run three times: layer, attn, mlp





Some Reminders

- At get_forward_hooks(), you should have the MLP and Attn layers implemented with windowed layers and leave the entire-layer experiment individual i.e. [(some_names, some_funcs) for layer in window_layers] # you determine the windows
- 2. You should only take the last logit's distribution as your probability measurement
- 3. Easy assignment: $x[span] = x_updated$, as long as the size of the former matches the latter
- 4. The reason to create and retrieve a callable: we want dynamic function setups!
 - get_restore_fn(record, 1) should yield a different callable than get_restore_fn(record, 2)

GLHF!

- If you have questions...
 - Ask now!
 - Post your questions on piazza (I do monitor the forum frequently)
- Other useful resources:
 - The Official Documentation of TransformerLens
 - https://rome.baulab.info/
 - https://stanfordnlp.github.io/pyvene/tutorials/advanced_tutorials/Causal_Tracing.html

