

CSC485/2501 A2

TA: Jinman Zhao

Assignment 2

Is now available.

Due date: 23.59pm on Friday, November 3rd.

Assignment 2

Word Sense Disambiguation

After A2, you will be familiar with:

NLTK, WordNet, Lesk algorithm, using Word2Vec/Bert word embeddings

NLTK Package

WordNet.

• Tokenizer.

WordNet

```
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar')
     [Synset('car.n.01')]
>>> wn.synset('car.n.01').lemma names()
     ['car', 'auto', 'automobile', 'machine', 'motorcar']
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'), Synset('cable car.n.01')]
```

Tokenizer

- Tokenize a string to split off punctuation other than periods.
- Input:

s = "Good muffins cost \$3.88\nin New York. Please buy me two of them.\n\nThanks."

Output:

```
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
```

Tokenizer

• "\$3.88": ["\$3.88"] or ["\$","3",".","88"]

sometimes: ["sometimes"] or ["some","times"]

Stopwords

```
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']
```

Lesk Algorithm

```
Algorithm 1: The simplified Lesk algorithm.
 input: a word to disambiguate and the sentence in which it appears
 best_sense ← most_frequent_sense word
 best\_score \longleftarrow 0
 context the bag of words in sentence
 for each sense of word do
     signature — the bag of words in the definition and examples of sense
     score ← Overlap(signature, context)
     if score > best_score then
        best\_sense \longleftarrow sense
        best\_score \longleftarrow score
     end
 end
 return best_sense
```

Score

- Count(overlap).
- Bag of words VS set of words.
- Vector representation.
 - Vector with counts.
 - o Embedding.
- Vector similarity
 - Euclidean distance.
 - Cosine similarity.
 - Dot product.

Word2Vec

Pretrained word vectors from large amount of text.

Words are mapped to vectors of real numbers.

word2vec(word:str)->vector:np.array()

• Each word only has one fixed vector representation, although it could have multiple senses.

Word2Vec

Word2Vec

Contextual Word Embedding

		Source	Nearest Neighbors		
	Fixed	play	playing, game, games, played, players, plays, player, Play, football, multiplayer		
-	ntextual	Chico Ruiz made a spectacular play on Alusik's grounder {}	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play.		
JON		Olivia De Havilland signed to do a Broadway play for Garson {}	{} they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles competently, with nice understatement.		

BERT: pretrained language model

Bert: Next Sentence Prediction

BERT

Feed model indices instead of strings.

Input embedding layers + 12 hidden layers.

• Dimension.

Realigning: BERT Tokenizer VS NLTK Tokenizer.

Do not use LOOP!

Consider matrix multiplication:

```
for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j)

for (int k = 0; k < K; ++k)

C[i][i] += A[i][k] * B[k][j];
```

Too slow!!!

Questions?