
CSC485/2501 A1 Tutorial #1

Zhewei Sun

Assignment 1

▪ Is now available!

▪ Asks you to implement a set of neural dependency parsers.

▪ Due on Fri. Oct. 6th, at 11:59 pm.

Assignment 1

▪ Note: Remote GPU access on teach.cs is currently unavailable due to an
ongoing system upgrade.

▪ An announcement will be made on Piazza if this changes.

▪ Instructions on how to access GPUs via Slurm:
https://www.teach.cs.toronto.edu/using-labs/remote-gpu-computing/

https://www.teach.cs.toronto.edu/using-labs/remote-gpu-computing/

Assignment 1

▪ Part 1: Transition-based dependency parser

▪ Part 2: Graph-based dependency parser

Assignment 1

▪ Part 1: Transition-based dependency parser
§ We will focus on this part today.

▪ Part 2: Graph-based dependency parser

Outline

▪ Dependency Parsing Example
– Obtaining the necessary parsing steps for a dependency tree.

▪ Gap Degree Example

▪ Neural Dependency Parser
– With PyTorch pointers J

Quiz

▪ Which of the following *is not* a well-formedness criterion for
dependency graphs?
a) Every node has at most one dependent.

b) Every node has at most one head.

c) The graph is weakly connected.

d) The graph contains no cycles.

Quiz

▪ Which of the following *is not* a well-formedness criterion for
dependency graphs?
a) Every node has at most one dependent.

b) Every node has at most one head.

c) The graph is weakly connected.

d) The graph contains no cycles.

Transition-based Parser - Review

▪ Dependency parser: Given a sentence, output a dependency
parse tree.

▪ Three things to keep track of:
1. A stack of words being processed.

2. A buffer of words to be eventually pushed onto the stack.

3. A list of predicted dependencies (i.e. arcs).

Transition-based Parser - Review

▪ Three possible operations:
1. SHIFT: removes the first word from the buffer and pushes it onto the

stack.

2. LEFT-ARC: marks the second-from-top item (i.e., second-most recently
added word) on the stack as a dependent of the first item and
removes the second item from the stack.

3. RIGHT-ARC: marks the top item (i.e., most recently added word) on the
stack as a dependent of the second item and removes the first item
from the stack.

SHIFT Operation

▪ Removes the first word from the buffer and pushes it onto the
stack.

▪ Step T:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step T+1:
– Stack: [ROOT, John, saw, dogs]; Buffer: [yesterday]

– Action: SHIFT

LEFT-ARC Operation

▪ Marks the second-from-top item (i.e., second-most recently added
word) on the stack as a dependent of the first item and removes the
second item from the stack.

▪ Step T:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step T+1:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

– New Dependency: saw -> John, nsubj

– Action: LEFT-ARC

RIGHT-ARC Operation

▪ Marks the top item (i.e., most recently added word) on the stack as
a dependent of the second item and removes the first item from the
stack.

▪ Step T:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

▪ Step T+1:
– Stack: [ROOT, saw]; Buffer: [yesterday]

– New Dependency: saw -> dogs, dobj

– Action: RIGHT-ARC

Dependency Parsing Example

▪ Given a dependency tree, figure out the intermediate parsing steps.

▪ Check the top of your stack to see whether it is appropriate to create
an arc.

▪ After creating an arc, record it, and then remove the dependent word
from the stack.

Dependency Parsing Example

▪ Step 0:
– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

Dependency Parsing Example

▪ Step 0:
– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

▪ Step 1:
– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parsing Example

▪ From Step 1:
– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]

▪ Step 2:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parsing Example

▪ From Step 2:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step 3:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]
– New Dependency: saw -> John, nsubj
– Action: LEFT-ARC

For this assignment:

Choose LEFT-ARC over SHIFT
when both are valid and
generate the same tree.

Dependency Parsing Example

▪ From Step 3:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

▪ Step 4:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parsing Example

▪ From Step 4:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

▪ Step 5:
– Stack: [ROOT, saw]; Buffer: [yesterday]
– New Dependency: saw -> dogs, dobj
– Action: RIGHT-ARC

Dependency Parsing Example

▪ From Step 5:
– Stack: [ROOT, saw]; Buffer: [yesterday]

▪ Step 6:
– Stack: [ROOT, saw, yesterday]; Buffer: []
– New Dependency: None
– Action: SHIFT

Dependency Parsing Example

▪ From Step 6:
– Stack: [ROOT, saw, yesterday]; Buffer: []

▪ Step 7:
– Stack: [ROOT, saw]; Buffer: []
– New Dependency: saw -> yesterday, npadvmod
– Action: RIGHT-ARC

Dependency Parsing Example

▪ From Step 7:
– Stack: [ROOT, saw]; Buffer: []

▪ Step 8:
– Stack: [ROOT]; Buffer: []
– New Dependency: ROOT -> saw, root
– Action: RIGHT-ARC

Dependency Parsing Example

▪ We’ve figured out all the parsing steps!

▪ Similar exercise in the assignment.

▪ How to do this algorithmically? What are the conditions?

Gap Degree Example

▪ The gap degree of a word in a dependency tree is the least k for which
the subsequence consisting of the word and its descendants (both
direct and indirect) is entirely comprised of k + 1 maximally
contiguous substrings. Equivalently, the gap degree of a word is the
number of gaps in the subsequence formed by the word and all of its
descendants, regardless of the size of the gaps.

▪ The gap degree of a dependency tree is the greatest gap degree of
any word in the tree.

Gap Degree Example

▪ For each word, check the substring consisting itself and all its
descendants:
– ROOT: ROOT John saw dogs yesterday
– John: John
– saw: John saw dogs yesterday
– dogs: dogs
– yesterday: yesterday

All substrings are contiguous!
k = 0

Neural Dependency Parser

▪ Now assume we don’t have the dependency tree.

Neural Dependency Parser

▪ Now assume we don’t have the dependency tree.

▪ When do we need to make decisions when parsing?

Neural Dependency Parser

▪ Suppose we have the following partial parse:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Now we need to decide which transition to do next:
a) SHIFT: Shift dogs onto the stack
b) LEFT-ARC: create the arc: saw -> john
c) RIGHT-ARC: create the arc john -> saw

Neural Dependency Parser

▪ Use a neural network to make a prediction at each parse step.

▪ Implement this in PyTorch, read the docs if you’re not familiar:
– https://pytorch.org/docs/stable/index.html

https://pytorch.org/docs/stable/index.html

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each
word in the sentence.
– torch.nn.Embedding(size, shape)

– torch.nn.Embedding.from_pretrained(…)

▪ Make sure you DON’T freeze the pre-trained embeddings!!

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each word in the
sentence.

▪ One linear (fully-connected) hidden layer.
– hidden_layer = torch.nn.Linear(input_size, output_size)

– To apply: hidden_layer(features)

▪ Also checkout torch.nn.relu(…) and torch.nn.dropout(…)

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each word in
the sentence.

▪ One linear (fully-connected) hidden layer.

▪ A softmax layer to obtain a probability distribution over transitions.
– torch.nn.CrossEntropyLoss / torch.nn.functional.CrossEntropy

Neural Dependency Parser

▪ Suppose our neural network gives us an answer:
a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

▪ How can we tell whether we have made the right choice?

Neural Dependency Parser

▪ How can we tell whether we have made the right choice?
– Implement an ”oracle” that peaks into the parsed tree and tells us the
correct transition to make.

▪ Think about the first example we did in this tutorial.
– How to make the process automatic?
– What conditions need to be met to make a particular transition?

To be continued…

▪ The transition-based parser can only handle projective parse trees
(think about why this is the case).

▪ Next time, we will look at graph-based dependency parsing, which
accounts for non-projective trees.

