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Abstract. Recent models of natural language processing employ statistical reasoning for dealing
with the ambiguity of formal grammars. In this approach, statistics, concerning the various linguistic
phenomena of interest, are gathered from actual linguistic data and used to estimate the probabilities
of the various entities that are generated by a given grammar, e.g., derivations, parse-trees and sen-
tences. The extension of grammars with probabilities makes it possible to state ambiguity resolution
as a constrained optimization formula, which aims at maximizing the probability of some entity
that the grammar generates given the input (e.g., maximum probability parse-tree given some input
sentence). The implementation of these optimization formulae in efficient algorithms, however, does
not always proceed smoothly. In this paper, we address the computational complexity of ambiguity
resolution under various kinds of probabilistic models. We provide proofs that some, frequently
occurring problems of ambiguity resolution are NP-complete. These problems are encountered in
various applications, e.g., language understanding for text- and speech-based applications. Assuming
the common model of computation, this result implies that, for many existing probabilistic models it
is not possible to devise tractable algorithms for solving these optimization problems.
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1. Introduction

No matter what its state of knowledge is, a so called performance model (Chomsky,
1965) of syntactic processing is expected to model, as accurately as possible, the
input–output language processing behavior of a human. One particular “input-
output property” of the human language processing system is of interest here: a
human tends to associate a single, “most plausible” analysis with every utterance
that she encounters. Remarkably, this is in sheer contrast with the highly ambigu-
ous formal linguistic grammars of natural languages. In this paper, we take a closer
look at some probabilistic performance models of syntactic processing, which are
aimed at resolving grammatical ambiguity. We inspect the computational com-
plexity that accompanies the application of these models to various problems of
syntactic ambiguity resolution. Before we enter the computational complexity is-
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sues, however, we start out this paper with a brief overview of the general approach
to probabilistic ambiguity resolution in Natural Language Processing (NLP).

In the field of NLP, it is widely believed that the solution to syntactic gram-
matical ambiguity lies in the modeling of the extra-linguistic knowledge, e.g.,
world-knowledge, which plays a pivotal role in human language processing. Be-
cause of their vastness and dynamic nature, the major extra-linguistic factors (e.g.,
world-knowledge or knowledge on cultural preferences) seem to be beyond com-
plete modeling. Therefore, it seems inevitable that a model of syntactic ambiguity
resolution must approximate these extra-syntactic factors by suitable means that
allow for the optimization of its behavior given the current state of knowledge.

Recently, empirical performance models of syntactic processing started to im-
plement ambiguity resolution through the projection of probabilistic grammars
from so called tree-banks1 (e.g., Scha, 1990; Bod, 1992; Pereira and Schabes,
1992; Jelinek et al., 1994; Magerman, 1995; Collins, 1997; Charniak, 1999). In
the context of this paper we are not so much interested in the different methods of
projecting probabilistic grammars as much as in the computational aspects of the
disambiguation problems under these probabilistic models.

Informally speaking, a probabilistic grammar (e.g., Salomaa, 1969) attaches to
every rewrite-event (or grammar rule) r a conditional probability P(r|C), express-
ing the probability of applying the rule given some context C. The probabilities are
essentially “statistics” over syntactic phenomena in the tree-bank; they can be seen
to represent the accumulations of the various extra-syntactic factors. Beyond the
probabilistic grammar, a probabilistic language model stipulates how the probab-
ility of a derivation of the grammar is estimated from the conditional probabilities
of the individual rewrite-events. Consequently, the probabilities of parse-trees and
sentences are defined in terms of the probabilities of the derivations that generate
them (Section 3 provides example models). In other words, a probabilistic model
defines probability functions over derivations, parse-trees and sentences of the
probabilistic grammar.

In this probabilistic view, the problem of syntactic ambiguity resolution for
language utterances can be expressed as an optimization problem. Given an input
utterance U , the goal is to find the parse-tree T ∗ with the highest probability (most

1 A tree-bank consists of a bag (or multi-set or distribution) of parse-trees (lexicalized with ter-
minal symbols) from some source grammar. In natural language processing, a tree-bank is usually
obtained by collecting utterances from some domain of language use “at random” and manually
annotating them with parse-trees. This way, it can be assumed (to some extent) that the tree-bank
provides a representative sample of that domain. Most existing tree-banks (e.g., Marcus et al., 1993)
are annotated with Phrase-Structure linguistic notions.
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probable parse) under the optimization formula:2

T ∗ = arg max
T ∈T

P(T |U) = arg max
T ∈T

P(T ,U)

P (U)

= arg max
T ∈T

P(T ,U) (1)

where T is the set of parse-trees defined by the grammar, i.e.„ the tree-language
of the grammar. Hence, T ∗ is the most probable parse-tree which co-occurs with
utterance U . A major question in applying probabilistic models for syntactic dis-
ambiguation is whether it is possible in any way, and then how, to transform
optimization formula 1 into efficient algorithms?

In Computational Complexity theory, the departure point in addressing these
questions lies in classifying the problems according to the time-complexities of the
most efficient algorithms that can be devised for solving these problems. A problem
that does not have any solutions of some desirable time-complexity constitutes a
source of inconvenience and demands special treatment.

The present paper provides proofs that many of the common problems of prob-
abilistic disambiguation, under various existing probabilistic models, belong to a
class of problems for which we do not know whether we can devise deterministic
polynomial-time algorithms. In fact, there is substantial evidence (see Garey and
Johnson, 1981; Barton et al., 1987) that the problems that belong to this class,
the NP-complete class, do not have such algorithms. For NP-complete problems,
the only known deterministic algorithms have exponential-time complexity. This is
inconvenient since exponential-time algorithms imply a serious limitation on the
kinds and sizes of applications for which probabilistic models can be applied.

Each of the problems considered in this paper involves probabilistic disambig-
uation of some kind of input under performance models that are based either on
Stochastic Context-Free Grammars (SCFGs) (e.g., Jelinek et al., 1990; Black et al.,
1993; Charniak, 1996) or on Stochastic Tree-Substitution Grammars (STSGs) (e.g.,
Bod, 1992, 1995a; Sekine and Grishman, 1995; Sima’an, 2000). The results of the
present proofs apply also to the various Stochastic versions of Tree Adjoining-
Grammars (STAG) (Joshi, 1985; Resnik, 1992; Schabes, 1992; Schabes and Wa-
ters, 1993). It is noteworthy that the present proofs concern disambiguation prob-
lems that arise within various, actually existing applications that range from those
that involve parsing and interpretation of text to those that involve speech-under-
standing and information retrieval. We will elaborate on these applications during
the presentation of the problems, and, where possible, we also provide pointers to
related literature.

This paper is aimed at readership both from Computer Science and Linguistics.
Therefore, it includes an intuitive (rather than formal) brief overview of the no-
tions of intractability and NP-completeness (Section 2), and formalizations of the

2 The meaning of the expression arg maxx∈X f (x) is “the element x ∈ X for which f (x) is
maximal”.
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abstract forms of some of the existing models of ambiguity resolution in language
processing (Section 3). Section 4 states the disambiguation problems in question.
Section 5 provides the proofs of NP-completeness. Finally, Section 6 discusses the
informal conclusions of this study and provides pointers to existing research toward
approximate, efficient solutions to some of these problems.

2. Intractability and NP-Completeness

This section provides a short, informal overview of the notions of intractability
and NP-completeness. Our aim is to provide the basic terminology and explain
the intuitive side of intractability, thereby also highlighting some of its limitations.
The reader that is interested in further details and formalizations of intractability
and NP-completeness are referred to (e.g., Hopcroft and Ullman, 1979; Garey and
Johnson, 1981; Lewis and Papadimitriou, 1981; Davis and Weyuker, 1983; Barton
et al., 1987). This section also serves as a reference to the 3SAT problem, used in
the sequel for our proofs of NP-completeness of disambiguation problems.

2.1. WHAT IS A DECISION PROBLEM?

The notion in focus in this section is that of a tractable decision problem. Inform-
ally speaking, a problem is a pair: a generic instance, stating the formal devices
and components involved in the problem, and a question asked in terms of the
generic instance. A decision problem is a problem where the question can have
only one of two possible answers: Yes or No. For example, the well known 3SAT
(3-satisfiability) problem3 is stated as follows:

INSTANCE: A Boolean formula in 3-conjunctive normal form (3CNF) over the
variables u1, . . . , un.

QUESTION: Is the formula in INSTANCE satisfiable? i.e., is there an assignment
of values true (T) or false (F) to the Boolean variables u1, . . . , un such that the
given formula is true?

In the sequel, we refer to the (generic) instance of 3SAT with the name INS, and
we use the following generic form to express the formula in INS:

(d11 ∨ d12 ∨ d13) ∧ (d21 ∨ d22 ∨ d23) ∧ · · · ∧ (dm1 ∨ dm2 ∨ dm3),

where m � 1 and dij is a literal4 over {u1, . . . , un}, for all 1 � i � m and all
1 � j � 3. In some cases it is convenient to express the same formula using
the notation C1 ∧ C2 ∧ · · · ∧ Cm, where Ci represents (di1 ∨ di2 ∨ di3), for all
1 � i � m.

3 The 3SAT problem is a restriction of the more general satisfiability problem SAT which is the
first problem proven to be NP-complete (known as Cook’s theorem).

4 A literal is a Boolean variable (e.g., uk ), or the negation of a Boolean variable (e.g., uk ).
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Decision problems are particularly convenient for complexity studies mainly
because of the natural correspondence between them and the formal object called
“language”; the formal form of a decision problem is usually stated in terms of
a language and a question concerning set-membership. The size or length of an
instance of a decision problem is the main variable in any measure of the time-
complexity of the algorithmic solutions to the problem (in case these solutions
exist). Roughly speaking, this length is measured with respect to some reason-
able encoding (deterministic polynomial-time computable) from each instance of
the decision problem to a string in the corresponding language. In order not to
complicate the discussion more than necessary, we follow common practice, as ex-
plained in Garey and Johnson (1981), and assume measures of length that are more
“natural” to the decision problem at hand (knowing that it is at most a polynomial-
time cost to transform an instance to a string in the language corresponding to the
decision problem). For 3SAT, for example, the length of an instance is 3m+(m−1)
+2m, i.e., the number of symbols in the formula (not counting the parentheses) is
linear in the number of conjuncts m.

2.2. TRACTABLE PROBLEMS, CLASS P AND CLASS NP

Roughly speaking, the theory of intractability and NP-completeness deals with the
question whether a given problem has a general solution that is “computationally
feasible”. In other words:

For every instance of the problem and for every input that is fed to that instance,
of length n � 1: is there a (deterministic) algorithmic solution, which computes
the answer in a number of computation steps that is proportional to a “cheap”
function in n?

The problem with defining the term “cheap” lies in finding a borderline between
those functions that can be considered expensive and those that can be considered
cheap. A first borderline that has been drawn by a widely accepted thesis (Cook-
Karp) is between polynomials and exponentials. Problems for which there is a
deterministic polynomial-time solution (i.e.„ can be solved by a Deterministic Tur-
ing Machine — DTM — in Polynomial-time) are called tractable. Other problems
(in the set of problems that can be solved by Turing Machines) for which there
are only deterministic exponential-time solutions (Turing Machines) are called
intractable. The motivation behind the Cook-Karp discrimination between poly-
nomials and exponentials is the difference in rate of growth between these two
families. Generally speaking, exponentials tend to grow much faster than poly-
nomials. Strong support for the Cook-Karp thesis came from practice, but here
we will not go into the discussion concerning the stability of this thesis (see the
discussions in e.g., Garey and Johnson, 1981; Barton et al., 1987).

In any case, the tractable decision problems, i.e.„ those that have a deterministic
polynomial-time algorithmic solution (i.e., a polynomial-time DTM), are referred
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to with the term class P problems. All other decision problems,5 that are intract-
able, are referred to with the term NP-hard problems (see below for the reason for
this terminology).

Besides the problems that can be solved in polynomial-time by a deterministic
algorithmic solution, there exist problems that are solvable in polynomial-time
provided that the algorithmic solution has access to an oracle, which is able to
guess the right computation-steps without extra cost (i.e., these problems are solv-
able by a so called Non-Deterministic Turing Machine (NDTM) in polynomial-
time). Clearly, every problem in class P is found among these so called Non-
deterministic Polynomial-time solvable problems, also called class NP problems
(i.e., P ⊆ NP). The question is, of course, are there more problems in class NP than
in class P, i.e., P ⊂ NP?

2.3. NP-COMPLETE PROBLEMS

Empirical clues to the hypothesis P �= NP is embodied by the discovery of many
practical and theoretical problems that are known to be in class NP but for which
nobody knows how to devise deterministic polynomial-time algorithmic solutions;
these problems are in class NP but are not known to be in class P. This set of
problems is called the class of NP-complete problems. NP-complete problems are
the hardest problems in class NP.

Further of interest here is the class of NP-hard problems. This class consists
of those problems that are at least as hard as any problem that is in NP, i.e., an
NP-hard decision problem is one that is at least as hard as those that can be solved
by an NDTM in polynomial-time.

To prove that a given problem L is NP-hard, it is sufficient6 to show that another
problem that is already known to be NP-complete is deterministic polynomial-time
reducible to L. This is done by providing a polynomial-time reduction (i.e., trans-
form) from the NP-complete problem to problem L. Such a reduction shows how
every instance of the NP-complete problem can be transformed into an instance
of problem L. Naturally, the reduction must be answer-preserving, i.e., for every
instance of the NP-complete problem and for every possible input, the instance’s
answer is Yes to that input iff the L-instance’s (resulting from the reduction) answer
is also Yes to the transformed-form of the input. Note that the reducibility relation
between problems is a transitive relation.

Practically speaking, once we lay our hands on one NP-complete problem, we
can prove other problems to be NP-hard. A problem that has been proven to be
NP-complete is the 3SAT problem stated above. Therefore 3SAT can serve us
in proving other problems to be NP-hard. To prove that a new problem is NP-

5 In the class of problems solved by Turing Machines.
6 The fact that every instance of an NP-complete problem T can be reduced into an instance of L

in deterministic polynomial-time implies that L is at least as hard as T – if L would be solvable in
deterministic polynomial-time then T would also be.
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completeness, however, one needs to prove that it is NP-hard and that it is in
class NP.

In this work the focus is on optimization problems rather than decision prob-
lems. In general, it is possible to derive from every optimization problem a decision
problem that is (at most) as hard as the optimization problem (Garey and Johnson,
1981). Therefore, the proof of NP-completeness of an optimization problem goes
through proving that its decision counterpart is NP-complete. We will exemplify
how an optimization problem is translated into a decision problem in Section 4
which states the problems that this paper addresses: probabilistic ambiguity resol-
ution. But first, however, we consider the formal probabilistic models that play a
role in these problems.

2.4. GENERAL NOTATION

In the sequel we employ the notation xn1 for an ordered sequence of entities x1, . . . ,

xn (and also for the concatenation of symbols x1 . . . xn), for any kind of entity
xi, 1 � i � n. We also use the symbols T and F to represent respectively the
Boolean values true and false.

3. Probabilistic Models of Ambiguity Resolution

The generic devices that are involved in the disambiguation problems considered in
this paper are of three kinds: Stochastic Finite State Automata (SFSAs), Stochastic
Context-Free Grammars (SCFGs) and Stochastic Tree-Substitution Grammars
(STSGs). Next we provide the formal definitions of these devices, and specify the
probability formulae common for most existing models of ambiguity resolution. It
is relevant here to mention that the proofs of NP-hardness in this paper hold for any
“weighted” forms of the above grammars in general. However, in this presentation
we stick to “probabilistic/stochastic” versions because of the current wide interest
in applying these specific versions to NLP tasks. Moreover, this allows us to specify
some general aspects of existing probabilistic models, which might be of interest
for the general readership.

Throughout the paper we assume that all automata and grammars are ε-free
(i.e., do not allow empty-rewritings) and cycle-free.

3.1. STOCHASTIC FINITE STATE AUTOMATA

Stochastic Finite State Automaton (SFSA): An SFSA is a six-tuple 〈Q,�, T , s,
f, P 〉 where Q, � and T are finite sets of, respectively, symbols, states and trans-
itions; a transition is a triple 〈s1, s2, w〉, where s1, s2 ∈ � and w ∈ Q (called
the label of the transition). The special states s and f (both in �) are respectively
the start and target states. Finally, P : T → (0, 1] is a probability function which
fulfills the equation ∀l ∈ �:

∑
〈l,r,w〉∈T P (〈l, r, w〉) = 1.
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Two transitions 〈a, b1, w〉 and 〈b2, c, v〉 are called connected iff b1 = b2. An
ordered sequence of one or more transitions t1, · · · , tn, with ti = 〈li , ri , wi〉 for
all i, is called a path iff: (1) l1 = s, (2) rn = f and (3) for all 1 � i < n

holds ti and ti+1 are connected. For any path 〈l1, r1, w1〉, · · · , 〈lm, rm,wm〉, the
concatenation of the labels of the transitions, i.e., w1 · · ·wm, is called a sentence
generated by the SFSA through that path7. The set of all paths that generate the
same sentence X under a given SFSA is denoted by Paths(X). In the present
context, two probability definitions are relevant:

Path probability: the probability8 of a path tn1 = t1, · · · , tn is approximated9 by
the formula P(tn1 ) = P(t1)∏n

i=2 P(ti|t1, · · · , ti−1) ≈ ∏n
i=1 P(ti).

Sentence probability: the probability of a sequence of symbols wn1 = w1 · · ·wn
from Q+ is given by:

P(wn1) =
∑

path∈Paths(wn1)
P (path). (2)

Note that if the set Paths(wn1 ) is empty P(wn1) = 0 by definition.

Further definitions pertaining to methods of probability estimation and probab-
ility computation under SFSAs originate from the well known Hidden-Markov
models (HMM) (Rabiner and Juang, 1986). HMMs are commonly used in speech-
recognition as speech and language models. HMMs also provide a general inter-
face between speech-recognizers and more advanced probabilistic language mod-
els (e.g., based on linguistic knowledge): the output of the speech-recognizer is cast
in an SFSA (over some lexicon), called a “word-lattice” or “word-graph” (Oeder
and Ney, 1993), which is fed as input to the language model (e.g., a syntactic ana-
lyzer); usually, the output of the language model is the single sentence (among the
sentences accepted by the SFSA) which constitutes the system’s “best” guess of the
spoken utterance. The formal version of the latter disambiguation task constitutes
one of the problems which we prove NP-hard (under various probabilistic language
models).

For the purposes of the present paper it is sufficient to consider a special case
of SFSAs, which we refer to with the term “Simple FSA” (abbreviated SIFSA).

7 In this paper we will assume that all states in the SFSA are “found” on paths, i.e., (1) all states
are reachable (i.e., through sequences of connected transitions) from the start state s, and (2) the final
state f is reachable from all other states.

8 We will allow overloading of P since it is a probability mass function over entities which are
always clear from the context.

9 Considering the path as the joint-event of the individual transitions, this formula assumes
stochastic independence between the different transitions. In Markov models, this independence
assumption is relaxed to a certain degree by conditioning the probability of every transition on
a few of the transitions that precede it in the path, e.g., for a first-order Markov model P(tn1 ) ≈
P(t1)

∏n
i=2 P(ti |t1). Although important for modeling various tasks, this Markovian conditioning

of probabilities is of no impact on our complexity results.
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Figure 1. Upper: an SIFSA. Lower: SFSA’s which are not an SIFSA.

To this end, we define the term “non-labeled transition”: a non-labeled transition
is the pair 〈si, sj 〉 obtained from any transition 〈si, sj , w〉 ∈ T . A non-labeled path
consists of a sequence of connected non-labeled transitions starting from s and
ending at f , i.e., 〈s, s1〉, · · · , 〈sn, f 〉.
Simple SFSA: An SIFSA is an SFSA 〈Q,�, T , s, f, P 〉 in which (1) all non-
labeled paths constitute exactly the same sequence of connected non-labeled trans-
itions and (2) the probabilities of transitions are uniform, i.e., ∀l∈�, P(〈l, r, w〉)=

1
|NEXT (l)| , where NEXT (l) = {r|〈l, r, w〉 ∈ T }, and |Y | represents the cardinality
of set Y .

Figure 1 exhibits examples of SIFSAs and other SFSAs. The definition of
SIFSA implies the following notation for representing SIFSA’s:

States: the states of an SIFSA can be mapped to successive positive natural num-
bers. We will represent the natural number that a state si is mapped to by N(si).
For the start state s: N(s) = 1. For every other state sj , if there is a transition
〈si, sj 〉 ∈ T with N(si) = k, then N(sj ) = k + 1.

Sentences: the set of sentences accepted by an SIFSA can be written as the
product between sets Q1 × · · · ×Qm, where Qi ⊆ Q, for all 1 � i � m.
Precisely, the set Qi consists of the labels of the transitions between the state sx
for which N(sx) = i and the state sy for which N(sy) = i + 1, ∀1 � i � m.

Because in this paper we are mainly interested in the set of sentencesQ1×· · ·×Qm
accepted by an SIFSA, we will be informal in referring to this set with the term
“an SIFSA” (under the understanding that we can readily construct an SIFSA
for recognizing this set). Furthermore, we will use the notation Qm1 as shorthand
forQ1 × · · · ×Qm.

SIFSAs are often encountered in applications such as spelling-correction, un-
der the assumption that typos do not add or remove white-space10. Clearly, because

10 For every word containing a typo, it is assumed that a set of words are hypothesized from an
external dictionary.
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the proofs in this paper concern SIFSAs, they also hold for SFSAs in general. We
undertook the task of formalizing general SFSAs precisely because they constitute
the most common device which plays a major role in practical applications of
probabilistic models of ambiguity resolution (Figure 1).

3.2. STOCHASTIC TREE-SUBSTITUTION GRAMMARS

We define Stochastic Context-Free Grammars (SCFGs) (Salomaa, 1969; Jelinek
et al., 1990) through the definition of the more general Stochastic Tree-Substitution
Grammars (STSG) (Bod, 1992; Schabes, 1992).

Let N and T denote respectively the finite set of non-terminal symbols and
terminal symbols.

Elementary-tree: An elementary-tree is a tree-structure which fulfills: the non-
leaf nodes are labeled with non-terminal symbols from N and the leaf nodes are
labeled with symbols from N ∪ T .

We use the functional notation root (t) to represent the non-terminal label of the
root node of the elementary-tree t .

Stochastic Tree-Substitution Grammar (STSG) An STSG G is a five tuple
〈N, T ,R,S, P 〉, where the first three components are respectively the finite set of
non-terminals, terminals and elementary-trees. The non-terminal S ∈ N is called
the start-symbol. The function P : R → (0, 1] fulfills the following set of equations
(constraints): ∀A ∈ N : ∑

{t∈R:root (t)=A}P(t) = 1.

The term partial parse-tree is central in defining the various rewrite notions under
STSGs. Every elementary-tree is a partial parse-tree. Further partial parse-trees
are generated through partial derivations as defined next.

Given a partial parse-tree T , let node µ be the left-most leaf node in T and
let µ be labeled with the non-terminal X. A derivation-step from µ under STSG
G is a rewriting of non-terminal X with an elementary-tree t ∈ R which fulfills
root (t) = X. The result of this rewrite step is just as in the well known algebraic
“variable substitution”: it results in a new partial parse-tree T ◦ t which consists of
a duplicate of T with a duplicate of elementary-tree t substituted11 for the duplicate
ofµ. The operation of (left-most) substitution, denoted by ◦, distinguishes this kind
of grammar. Hence “Stochastic Tree-Substitution Grammar”.

A sequence of left-most substitutions t1 ◦ · · · ◦ tm is called a partial derivation
of G. A partial-derivation generates a partial parse-tree under the interpretation
(· · · (t1 ◦ t2) ◦ · · · ◦ tm).
Probability of a partial derivation: The probability of partial derivation d is cal-
culated by the formula P(d) = ∏m

i=1 P(ti).

11 In the sense that the duplicate of µ now is a non-leaf node dominating a duplicate of t .
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In STSGs (in contrast with SCFGs), it is possible that various partial derivations
generate one and the same partial parse-tree. This happens, for example, whenever
there are elementary-trees t1, t2, t3, t4 ∈ R such that t1◦t2 generates the same partial
parse-tree as t3 ◦ t4.

Probability of a partial parse-tree: Let der(T ) denote the finite set of all par-
tial derivations that generate partial parse-tree T . The probability of T being
generated is then defined by:

P(T ) =
∑

d∈der(T )
P (d). (3)

A partial derivation d = t1 ◦ · · · ◦ tm is also called a derivation iff it fulfills:
(1) root (t1) = S , and (2) d generates a partial parse-tree T with leaf nodes labeled
only with terminal symbols; in that case, T is called a parse-tree and the ordered
sequence of terminal symbols labeling the leaf nodes (left-to-right) of T is called a
sentence (generated by d).

In natural language processing, often the grammars are highly ambiguous such
that one and the same sentence can be generated together with different parse-trees.

Probability of a sentence: Let the set of parse-trees which are generated together
with sentence U under G be denoted by par(U) and the set of all derivations that
generate U be denoted by der(U), then:

P(U) =
∑

T ∈par(U)
P (T ). (4)

=
∑

d∈der(U)
P (d). (5)

Formulae (3) and (5) are quite important in the context of this paper. We will see
that this kind of a definition (a sum over multiplications) plays a central role in all
the optimization problems which we prove NP-hard.

3.2.1. Some convenient notation

Whenever we do not wish to specify the sets par(U) we may consider the prob-
ability of the joint occurrence of a parse-tree T with sentence U , i.e., P(T ,U).
This probability is defined to be zero if the sequence of terminal labels on the
leaf nodes of T is different from U . Under this definition we may write: P(U) =∑
T PG(T ,U), where the subscript G implies that the summation ranges over all

parse trees T generated by STSGG. Similarly, the joint probability of a derivation
d with parse-tree T (or sentence U ) is defined to be zero if d does not gener-
ate T (respectively U ) in the given STSG. Under this definition we may write
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P(U) = ∑
d PG(d,U) and P(T ) = ∑

d PG(d, T ), where again the summation
ranges over all derivations possible under STSGG.

3.3. STOCHASTIC CONTEXT-FREE GRAMMARS

Now that we defined STSGs, we can define Stochastic Context-Free Grammars
(SCFGs) as a subclass thereof:

Stochastic Context-Free Grammar: An SCFG 〈N, T ,R,S, P 〉 is an STSG which
fulfills: every elementary-tree t ∈ R consists of a single “level” of non-leaf nodes,
i.e., the root node of t dominates directly all its leaf nodes In SCFG terminology,
elementary-trees are also called productions or (rewrite-)rules.

In contrast with general STSGs, in SCFGs there is a one-to-one mapping between
derivations12 and parse-trees. On the one hand, we will use SCFGs to show that
this fact makes the syntactic ambiguity resolution of an input sentence easier under
SCFGs than under STSGs (in general). On the other hand, we will also show that
when the input to the SCFG becomes ambiguous (i.e., an SFSA), the selection of
the most probable sentence is also NP-hard (this is related to formula (2)). The
latter problem emerges, e.g., in applications of speech-understanding that involve
an SCFG-based language model. This shows that the hard problems of ambiguity
resolution are not so much inherent to the more advanced grammar formalisms
as much as to the construction of the problem as optimization over summation
formulae as in e.g., formula 5. In the next section we define each of the problems
more formally.

4. Definition of the Optimization Problems

In this section we state the four optimization problems that this study concerns.
Subsequently, each of these problems is transformed into a suitable decision prob-
lem that will be proven to be NP-complete in Section 5.

4.1. DISAMBIGUATION PROBLEMS

Problem MPP:

INSTANCE: An STSGG and a sentence wn0 .

QUESTION: What is the Most Probable Parse (MPP) of sentence wn0 under
STSGG?, i.e., compute arg maxT PG(T ,wn0 ).

12 Assuming that the choice of what non-terminal (in the current sentential-form) to expand at any
derivation-step is fixed, e.g., left-most.
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This problem was put forward by Bod (1995b). As mentioned earlier, problem
MPP plays a prominent role in various applications: in order to derive the semantics
of an input sentence, most NLP systems (and the linguistic theories they are based
on) assume that one needs a syntactic representation of that sentence. Under most
linguistic theories, the syntactic representation is a parse-tree. For various probab-
ilistic models (Bod, 1995a; Goodman, 1998; Schabes, 1992; Resnik, 1992), it can
be shown that (under certain methods for estimating the model parameters from
data) the MPP is the parse that maximizes the exact tree-match measure (under the
given model) (Goodman, 1998).
Problem MPPWG:

INSTANCE: An STSGG and an SIFSAWG.

QUESTION: What is the MPP of WG under13 STSGG?, i.e., compute
arg maxT PG(T ,WG).

Applications of this problem are similar to the applications of problem MPP. In
these applications, the input is ambiguous and the parser must select the most prob-
able of the set of parses of all sentences which the SIFSA generates. By selecting
the MPP, the parser selects a sentence of the SIFSA also. Typical applications lie
in Speech Understanding (Oeder and Ney, 1993), morphological analysis (Sima’an
et al., 2001), but also in parsing the ambiguous output of a part-of-speech (PoS)
tagger14 or morphological analyzer which provides more than one solution for
every word in the input sentence.

Problem MPS:

INSTANCE: An STSGG and an SIFSAWG.

QUESTION: What is the Most Probable Sentence (MPS) in WG under STSG
G?, i.e., compute arg maxU PG(U,WG).

This problem has applications that are similar to problem MPPWG. In Speech
Understanding it is often argued that the language model should select the MPS
rather than the MPP of the input SIFSA. Selecting the MPS, however, does not
entail the selection of a syntactic structure for the sentence (which is important for
further interpretation).

Problem MPS-SCFG:

13 A parse generated for an SIFSA by some grammar is a parse generated by the grammar for
a sentence that is generated by the SIFSA. In formal terms we should speak of a sentence in the
intersection between the language of SIFSA and that of the grammar (van Noord, 1995). We will
be slightly less formal than this to avoid complicating the notation more than necessary. Hence, we
use the joint probability notation PG(T ,WG) with the understanding that this is a set containing all
PG(T ,U) for every sentence U generated by WG.

14 PoS-taggers assign to input words their lexical categories similar to lexical-analyzers that are
used in compilers for programming languages.
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INSTANCE: An SCFG G and an SIFSAWG.

QUESTION: What is the MPS in WG under SCFG G?, i.e., compute
arg maxU PG(U,WG).

This problem is a special case of problem MPS and applications that face this
problem are similar to those that face problem MPS described above. The proof
that this problem is also NP-complete shows that the source of hardness of MPS is
not inherent to the fact that the language model involves an STSG.

4.2. THE CORRESPONDING DECISION PROBLEMS

The decision problems that correspond to problems MPP, MPPWG, MPS and
MPS-SCFG are given the same names. In these decision problems, we will supply
with every problem instance a “threshold” (or “lower bound”) 0 < Q � 1.0 on the
value of the optimization formula. Then, instead of asking for the maximum value,
we now ask whether there is any value which exceeds Q.
Decision problem MPP:

INSTANCE: An STSGG, a sentence wn0 and a real number 0 < Q � 1.

QUESTION: Does STSG G generate for sentence wn0 a parse T for which it
assigns a probability PG(T ,wn0 ) � Q?

Decision problem MPPWG:

INSTANCE: An STSGG, an SIFSAWG and a real number 0 < Q � 1.

QUESTION: Does STSG G generate for WG a parse T for which it assigns
a probability PG(T ,WG) � Q?

Decision problem MPS:

INSTANCE: An STSGG, an SIFSAWG and a real number 0 < Q � 1.

QUESTION: Does WG accept a sentence U for which STSG G assigns a
probability PG(U,WG) � Q?

Decision problem MPS-SCFG:

INSTANCE: An SCFG G, an SIFSAWG and a real number 0 < Q � 1.

QUESTION: Does WG accept a sentence U for which SCFG G assigns a
probability PG(U,WG) � Q?

5. NP-Completeness Proofs

In order to prove the NP-completeness of a given problem, it is sufficient to prove
that the problem is NP-hard and is also a member of the class NP. For proving the
NP-hardness of the problem, it is sufficient to exhibit a deterministic polynomial-
time reduction from every instance of 3SAT to some instance of the problem at
hand. This is what we do next for each of the decision problems listed in the
preceding section. To this end, we restate the generic instance INS of 3SAT.
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Figure 2. The elementary-trees for the example 3SAT instance.

INSTANCE: A Boolean formula in 3-conjunctive normal form (3CNF) over the
variables u1, . . . , un:

(d11 ∨ d12 ∨ d13) ∧ (d21 ∨ d22 ∨ d23) ∧ · · · ∧ (dm1 ∨ dm2 ∨ dm3),

where m � 1 and dij is a literal over {u1, . . . , un}, for all 1 � i � m and all
1 � j � 3. This formula is also denoted C1 ∧C2 ∧ · · ·∧Cm, where Ci represents
(di1 ∨ di2 ∨ di3), for all 1 � i � m.

QUESTION: Is the formula in INS satisfiable?
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PROPOSITION 5.1. Decision problems MPP, MPPWG, MPS and MPS-SCFG
are NP-complete.

5.1. A GUIDE TO THE REDUCTIONS

The reductions in the next section are structured as follows. The first two reductions
are conducted simultaneously from 3SAT to MPPWG and from 3SAT to MPS. Then
the reductions from 3SAT to MPP and from 3SAT to MPS-SCFG are obtained from
the preceding reduction by some minor changes.

5.2. 3SAT TO MPPWG AND MPS SIMULTANEOUSLY

In the following, a reduction is devised which proves that both MPPWG and MPS
are NP-hard. For convenience, the discussion concentrates on problem MPPWG,
but also explains why the same reduction is suitable also for MPS.

The reduction from the 3SAT instance INS to an MPPWG instance must con-
struct an STSG, an SIFSA and a threshold value Q in deterministic polynomial-
time. Moreover, the answers to the MPPWG instance must correspond exactly to
the answers to INS. The presentation of the reduction shall be accompanied by an
example of the following 3SAT instance (Barton et al., 1987):

(u1 ∨ u2 ∨ u3) ∧ (u1 ∨ u2 ∨ u3),

where u1, u2 and u3 are Boolean variables.

5.2.1. Some Intuition

A 3SAT instance is satisfiable iff at least one of the literals in each conjunct is
assigned the value true. Implicit in this, but crucial, the different occurrences of the
literals of the same variable must be assigned values consistently. These two obser-
vations constitute the basis of the reduction. The reduction must capture these two
“satisfiability-requirements” of INS in the problem-instances that it constructs. For
example, for MPPWG we will construct an STSG and an SIFSA. The SIFSA
will be WG = {T, F}3m

1 , where 3m is the number of literals in the formula of
INS. The STSG will be constructed such that it has two kinds of derivations for
every path (in WG) which constitutes a solution for INS (if INS is satisfiable):
one kind of derivations takes care of the consistent assignment of truth values, and
the other takes care of the assignment of the value true for exactly one literal in
every conjunct. Crucially, the derivations will be assigned such probabilities that
will enable us to know whether a path in WG is a solution for INS by inspecting
the probability of that path. In other words, the probability of a path in WG will
tell us whether the STSG derives that path by enough derivations of each of the
two kinds of derivations in order for that path to be a solution for INS.
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5.2.2. The Reduction

The reduction constructs an STSG and an SIFSA. The STSG has start-symbol
labeled S , two terminals represented by T and F, non-terminals which include
(beside S) all Ck, for 1 � k � m, and both literals of each Boolean variable of
the formula of INS. The set of elementary-trees and probability function and the
SIFSA are constructed as follows:

1. The reduction constructs for each Boolean variable ui , 1 � i � n, two
elementary-trees that correspond to assigning the values true (T) and false (F)
to ui consistently through the whole formula. Each of these elementary-trees
has root S , with children Ck, 1 � k � m, in the same order as they appear in
the formula of INS; subsequently the children of Ck are the non-terminals that
correspond to its three disjuncts dk1, dk2 and dk3. And, finally, the assignment
of true (false) to ui is achieved by creating a child terminal T (resp. F) to each
non-terminal ui and F (resp. T) to each ui . The two elementary-trees for u1, of
our running example, are shown in the top left corner of figure 2.

2. The reduction constructs three elementary-trees for each conjunct Ck. The
three elementary-trees for conjunct Ck have the same internal structure: root
Ck, with three children that correspond to the disjuncts dk1, dk2 and dk3. In
each of these elementary-trees exactly one of the disjuncts has a child labeled
with the terminal T; in each of the three elementary-trees this T child is a
different one. Each of these elementary-trees corresponds to the given con-
junct where one of the three possible literals is assigned the value T. For the
elementary-trees which are constructed for our example see the top right corner
of figure 2.

3. The reduction constructs for each of the literals of each variable ui two elemen-
tary-trees where the literal is assigned in one case T and in the other F. Figure 2
shows these elementary-trees for variable u1 in the bottom left corner.

4. The reduction constructs one elementary-tree that has root S with children Ck,
1 � k � m, in the same order as these appear in the formula of INS (see the
bottom right corner of Figure 2).

5. The reduction assigns probabilities to the elementary-trees that were construc-
ted by the preceding steps. The probabilities of the elementary-trees that have
the same root non-terminal must sum up to 1. The probability of an elementary-
tree with root label S that was constructed in step 1 of this reduction is a value
pi , 1 � i � n, where ui is the only variable of which the literals in the
elementary-tree at hand are lexicalized (i.e., have terminal children). Let ni
denote the number of occurrences of both literals of variable ui in the formula
of INS. Then pi = θ

(
1
2

)ni , for some real θ that has to fulfill some conditions
which will be derived in Section 5.2.3.

The probability of the tree rooted with S and constructed at step 4 of this
reduction must then be p0 = [1 − 2

∑n
i=1 pi].
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The probability of the elementary-trees of root Ck (step 2) is
(

1
3

)
, and of root ui

or ui (step 3) is
(

1
2

)
. Suitable probabilities are shown in figure 2 for our running

example.
Let Q denote a threshold probability that shall be derived below. The MPPWG
(MPS) instance produced by this reduction is:

INSTANCE: The STSG produced by the above reduction (probabilities are de-
rived below), the SIFSA WG = {T, F}3m

1 , and a probability threshold 0 <
Q � 1.

QUESTION: Does this STSG generate for the SIFSAWG = {T, F}3m
1 a parse

(resp. a sentence) for which it assigns a probability greater than or equal to Q?

5.2.3. Deriving the Probabilities and the Threshold

The parses generated by the constructed STSG differ only in the sentences on their
frontiers. Therefore, if a sentence is generated by this STSG then it has exactly
one parse. This clarifies why we choose to reduce 3SAT to MPPWG and MPS
simultaneously.

S

✟✟✟✟
❍❍❍❍

C1

✟✟✟ ❍❍❍

u1

T

u2

...

u2

T

u3

...

u3

F

C2

✟✟✟ ❍❍❍

u1

F

u2

...

u2

F

u3

...

u3

T

S

✟✟✟✟
❍❍❍❍

C1

...

C1

✟✟✟ ❍❍❍

u1

T

u2

...

u2

T

u3

...

u3

F

C2

...

C2

✟✟✟ ❍❍❍

u1

...

u1

F

u2

...

u2

F

u3

u3

T

Figure 3. Left: example of the first kind of derivations. Right: example of the second kind. In
this figure, the vertical dots signify substitutions.

By inspecting the STSG resulting from the reduction, one can recognize exactly
two types of derivations in this STSG (see Figure 3):
1. The first type corresponds to substituting a suitable elementary-tree for a non-

terminal leaf node (i.e., literal) in any of the 2n elementary-trees constructed
in step 1 of the reduction. This type of derivation corresponds to the consistent
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assignment of values to all literals of some variable ui . For all 1 � i � n the
probability of a derivation of this type is:

pi

(
1

2

)3m−ni
= θ

(
1

2

)3m

2. The second type of derivation corresponds to substituting the elementary-trees
that has Ck as root for the leaf-node labeled Ck in S → C1 . . . Cm, and sub-
sequently substituting suitable elementary-trees for the non-terminal leaf-nodes
that correspond to literals. This type of derivation corresponds to the assign-
ment of the value true to at least one literal in each conjunct. The probability
of any such derivation is:

p0

(
1

2

)2m (
1

3

)m
= [1 − 2θ

n∑
i=1

(
1

2

)ni
]
(

1

2

)2m (
1

3

)m

Next we derive both the threshold Q and the parameter θ . Any parse (or sentence)
that fulfills both the “consistency of assignment” requirements and the requirement
that each conjunct has at least one literal with child T, must be generated by n
derivations of the first type and at least one derivation of the second type. Note that
a parse can never be generated by more than n derivations of the first type. Thus
the threshold Q must be set at:

Q = nθ
(

1

2

)3m

+ [1 − 2θ
n∑
i=1

(
1

2

)ni
]
(

1

2

)2m (
1

3

)m

However, θ must fulfill some requirements for our reduction to be acceptable:
1. For all i: 0 < pi < 1. Hence, for 1 � i � n: 0 < θ

(
1
2

)ni
< 1, and

0 < p0 < 1. However, the last requirement on p0 implies that 0 < 2θ
∑n
i=1(

1
2

)ni
< 1, which is a stronger requirement than the other n requirements.

This requirement can also be stated as follows:

0 < θ <
1

2
n∑
i=1

(
1

2

)ni

2. Since we want to be able to know whether a parse is generated by a second
type derivation only by looking at the probability of the parse, the probability
of a second type derivation must be distinguishable from first type derivations.
Moreover, if a parse is generated by more than one derivation of the second
type, we do not want the sum of the probabilities of these derivations to be
mistaken for one (or more) first type derivation(s). For any parse, there are
at most 3m second type derivations (e.g., the sentence T. . .T). Therefore we



144 K. SIMA’AN

require that: 3m[1 − 2θ
∑n
i=1

(
1
2

)ni ] ( 1
2

)2m (
1
3

)m
< θ

(
1
2

)3m
. Hence:

θ >
1

2
n∑
i=1

(
1

2

)ni
+

(
1

2

)m

3. For the resulting STSG to be a probabilistic model, the “probabilities” of parses
and sentences must be in the interval (0, 1]. This is taken care of by demand-
ing that the sum of the probabilities of elementary-trees that have the same
root non-terminal is 1, and by the definition of the derivation’s probability, the
parse’s probability, and the sentence’s probability.

There exists a θ that fulfills the requirements expressed in the inequalities 1 and 2
because the lower bound 1/2

∑n
i=1

(
1
2

)ni + (
1
2

)m
is always larger than zero and

is strictly smaller than the upper bound 1/2
∑n
i=1

(
1
2

)ni .
5.2.3.1. Polynomiality of the reduction: This reduction is deterministic poly-
nomial-time in m and n (note that n � 3m always). It constructs not more than
2n+ 1 + 3m+ 4n elementary-trees, each consisting of at most 7m+ 1 nodes. And
the computation of the probabilities and the threshold is also conducted in determ-
inistic polynomial-time. Furthermore, the construction of the SIFSA{T,F}3m

1 is
polynomial15 in m.

5.2.3.2. The reduction preserves answers: The proof that this reduction pre-
serves answers concerns the two possible answers Yes and No:

Yes: If INS’s answer is Yes then there is an assignment to the variables that is
consistent and where each conjunct has at least one literal assigned true. Any
possible assignment is represented by one sentence in WG. A sentence which
corresponds to a “successful” assignment must be generated by n derivations of
the first type and at least one derivation of the second type; this is because the
sentence w3m

1 fulfills n consistency requirements (one per Boolean variable)
and has at least one T assignment for any of w3k+1, w3k+2 or w3k+3, for all
0 � k < m. Both this sentence and its corresponding parse have probabilities
� Q. Thus MPPWG and MPS also answer Yes.

No: If INS’s answer is No, then all possible assignments are either not consistent or
result in at least one conjunct with three false disjuncts, or both. The sentences
(parses) that correspond to non-consistent assignments each have a probability
that cannot result in a Yes answer. This is the case because such sentences have
fewer than n derivations of the first type, and the derivations of the second type
can never compensate for that (the requirements on θ take care of this). For the
sentences (parses) that correspond to consistent assignments, there is at least
some 0 � k < m such that w3k+1, w3k+2 and w3k+3 are all F. These sentences

15 Recall that the notation Qm1 is a shorthand for Q1, · · · , Qm.
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do not have second type derivations. Thus, there is no sentence (parse) that has
a probability that can result in a Yes answer; the answer of MPPWG and MPS
is NO. �

To summarize, we have deterministic polynomial-time reductions, that preserve an-
swers, from 3SAT to MPPWG and from 3SAT to MPS. We conclude that MPPWG
and MPS are both NP-hard problems. Next we prove NP-completeness in order to
show that these problems are deterministic polynomial-time solvable iff P = NP.

5.2.4. NP-completeness of MPS and MPPWG

We show that MPPWG and MPS are in NP. A problem is in NP if it is decidable
by a non-deterministic Turing Machine in polynomial-time. In general, however,
it is possible to be less formal than this. It is sufficient to exhibit a suitable non-
deterministic algorithm, which does the following: it proposes some entity as a
solution (e.g., a parse for MPPWG and a sentence for MPS), and then computes
an answer (Yes/NO) to the question of the decision problem, on this entity, in
deterministic polynomial-time (cf. Garey and Johnson, 1981; Barton et al., 1987).
The non-deterministic part lies in guessing or proposing an entity as a solution.

For MPPWG, a possible algorithm proposes a parse, from the set of all parses
which the STSG G assigns to WG, and computes its probability in deterministic
polynomial-time (Sima’an, 1999) and verifies whether this probability is larger or
equal to the threshold Q. Similarly, an algorithm for MPS proposes a sentence,
from those accepted by the SIFSA, and computes its probability in polynomial-
time (Sima’an, 1999) and then verifies whether this probability is larger or equal to
the threshold Q. In total, both algorithms are non-deterministic polynomial-time,
which proves that MPPWG and MPS are both in class NP.

In summary, now we proved that decision problems MPPWG and MPS are
both NP-hard and in NP, thus both are NP-complete. Therefore, the corresponding
optimization problems MPPWG and MPS are NP-hard.

5.3. NP-COMPLETENESS OF MPP

The NP-completeness of MPP can be easily deduced from the proof in Section 5.2.
The proof of NP-hardness of MPP is based on a reduction from 3SAT to MPP
obtained from the preceding reduction by minor changes. The main idea now is
to construct a sentence and a threshold, and to adapt the STSG in such a way that
the sentence has many parses, each corresponding to some possible assignment of
truth values to the literals of the 3SAT instance. As in the preceding reduction,
the STSG will have at most two kinds of derivations and suitable probabilities;
again the probabilities of the two kinds of derivations enable inspecting whether a
parse is generated by enough derivations that it corresponds to an assignment that
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satisfies the 3SAT instance, i.e., a consistent assignment that assigns the value true
to at least one literal in every conjunct.

The preceding reduction is adapted as follows. In the present reduction, the
terminals of the constructed STSG are fresh new symbols vij , 1 � i � m and
1 � j � 3; the symbols T and F are now non-terminals of the STSG (instead of
terminals as in the preceding reduction). Then, some of the elementary-trees and
some of the probabilities, constructed by the preceding reduction, are adapted as
follows (any entity not mentioned below remains exactly the same):
1. In each elementary-tree, constructed in step 1 or step 2 of the preceding re-

duction (with root node labeled either S or Ck), the leaf node labeled T/F (a
non-terminal), which is the child of the j th child (a literal) of Ck, now has a
child node labeled vkj .

2. Instead of each of the elementary-trees that have a root labeled with a literal
(i.e., uk or uk), which were constructed in step 3 of the preceding reduction,
there are now 3m elementary-trees, each corresponding to adding a terminal-
child vij , 1 � i � m and 1 � j � 3, under the node labeled T/F (previously
a leaf node).

3. The probability of an elementary-tree rooted by a literal (adapted in the preced-
ing step) is now 1/6m. The probabilities of elementary-trees rooted with Ck do
not change. The probabilities of the elementary-trees that have a root labeled
S are adapted from the previous reduction by substituting for every (1/2) the
value 1/6m.

4. The threshold Q and the requirements on θ are updated accordingly, and then
derived as done for the preceding reduction.

5. The decision problem:

INSTANCE: The STSG constructed in this reduction, sentence v11 . . . vm3

and a probability threshold 0 < Q � 1.

QUESTION: Does this STSG generate for sentence v11 . . . vm3 any parse-tree
that has probability larger than or equal toQ?

The proofs that this reduction is polynomial-time and answer-preserving are very
similar to that in Section 5.2. It is easy also to prove that MPP is in class NP (very
much like MPPWG). Therefore, the decision problem MPP is NP-complete and
the corresponding optimization problem is NP-hard.

5.4. NP-COMPLETENESS OF MPS-SCFG

The decision problem MPS is NP-complete also under SCFG, i.e., MPS-SCFG
is NP-complete. The proof is easily deducible from the proof concerning MPS
for STSGs by a simple adaptation of the reduction for MPS. Every elementary-
tree of the MPS reduction is now simplified by “masking” its internal structure,
thereby obtaining simple CFG rules/productions, i.e., elementary-trees of one level.
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Crucially, each elementary-tree results in one unique CFG production. The prob-
abilities are kept the same and also the threshold. The SIFSA is also the same
SIFSA as in the reduction of MPS. The present decision-problem’s question is:
does the thus created SCFG generate a sentence with probability � Q, accepted
by the SIFSAWG = {T, F}3m

1 .
Note that for each derivation, which is possible in the STSG of problem MPS

there is one corresponding unique derivation in the SCFG of problem MPS-SCFG.
Moreover, there are no extra derivations. Of course, each derivation in the SCFG of
problem MPS-SCFG generates a different parse. But that does not affect the prob-
ability of a sentence at all: it remains the sum of the probabilities of all derivations
that generate it in the SCFG. The rest of the proof follows directly from Section 5.2.
Therefore, computing the MPS of an SIFSA for SCFGs is also NP-complete and
the corresponding optimization problem is NP-hard.

6. Discussion and Conclusions

We provided proofs that probabilistic disambiguation problems MPP, MPPWG and
MPS are NP-hard. As a direct result of the proofs, we conclude that probabilistic
disambiguation of language utterances, as specified in Section 4, under models
based on STSGs and STAGs is (as far as we know) not solvable by deterministic
polynomial-time algorithms. Examples of models based on STSGs are Bod (1992,
1995a), Sekine and Grishman (1995), Bod and Kaplan (1998), Sima’an (2000) and
on STAGs are Schabes (1992), Resnik (1992), Schabes and Waters (1993), Chiang
(2000). Maybe more surprising is the fact that we proved that problem MPS-SCFG
is NP-complete. Problem MPS-SCFG applies SCFGs, i.e., the “shallowest” of all
STSGs, for the disambiguation of “ambiguous” inputs, in the form of Finite State
Automata (FSAs), e.g., word-graphs output by speech-recognizers Oeder and Ney
(1993). Example models that (formally) employ SCFGs are Jelinek et al. (1990),
Black et al. (1993), Charniak (1996, 1999), Collins (1996, 1997), Ratnaparkhi
(1997).

The proofs also provide some insight into why the problems are so hard to solve
efficiently. The fact that computing the MPS of an FSA under SCFGs is also NP-
complete implies that the complexity of these problems is not due to the kind of
grammar underlying the models. Rather, the main source of NP-completeness is
the following common structure for these problems:

The probability of the entity which the problem aims at optimizing is expressed
in terms of the sum of the probabilities of multiple (possibly exponentially
many) stochastic processes that generate that entity.

For example, in problem MPS-SCFG, the model searches for the sentence, in a
finite, yet possibly exponential, set accepted by an FSA, which maximizes the sum
of the probabilities of the derivations that generate that sentence.

There are some practical situations where exponential algorithms can be useful.
This is usually the case if the exponential function exhibits growth that is similar to
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that of a “low degree” polynomial. Unfortunately, however, for parsing algorithms
for natural language grammars, the common exponentials, concerning derived en-
tities, e.g., the number of possible parse-trees, exhibit a growth function which
exceeds by far the growth of so called “low degree” polynomials. In Martin et al.
(1987), the authors conduct an empirical study on two language corpora and con-
clude that the number of parses for a sentence, under a realistic linguistic grammar,
can be described by the Catalan series and in some cases by the Fibonacci series.
The authors conclude:

· · · , many of these series grow quickly; it may be impossible to enumerate these
numbers beyond the first few values. · · ·

For applications such as speech-understanding, the situation is at least as bad!
Typical “word-graphs” output by a speech-recognizer (for a small lexicon of 2000
words) complicate both input-length and the ambiguity factor by multiplying the
complexity function at least by a large constant – which can be exponential in the
length of the actually spoken-utterance.

It is unclear what conclusions can be drawn from NP-hardness results with
respect to the “goodness” of the probabilistic component in existing language mod-
els. In any case, it is clear that having proved the NP-completeness of these prob-
lems does not imply that we should avoid them. Rather, we think that the proofs
imply that for practical situations, it might be necessary to resort to non-standard
and non-conventional solutions. For example, (Bod, 1993, 1995a) proposes Monte-
Carlo sampling methods for obtaining an approximate solution for problem MPP
under an STSG-based model. Although the proposed algorithm remains expon-
ential-time (Goodman, 1998) in the worst-case, there is some hope that the kind
of empirical distributions exhibited by linguistic data might result in observable-
times that are better than exponential-time parsing. This has not been confirmed by
empirical experiments, though.

Another traditional possibility is to model the extra-syntactic aspects of lan-
guage processing, e.g., semantic interpretation, discourse structure and world-know-
ledge. Indeed, this could reduce the ambiguity problem in various cases. However,
we suspect that this will not solve the problem completely for two reasons. Firstly,
the extra-linguistic factors, such as world-knowledge, seem to be beyond complete
modeling, especially because of their dynamic nature. And secondly, in applica-
tions where the input itself is ambiguous, e.g., speech understanding, such know-
ledge will be of little help. It seems that approximation of “what input to expect
next” will remain a useful strategy for real applications. The question, however, is
whether there is a way to exploit the statistics for efficient processing.

One effective way out, which has been extensively explored is the use of pruning
techniques (e.g., Goodman, 1998; Caraballo and Charniak, 1998). A disadvantage
of pruning, however, is the need to partially generate and evaluate various paths
before one can prune them. An alternative approach is the machine learning method
of “model specialization” to limited domains. In this respect, Samuelsson (1994),
Sima’an (1999), Cancedda and Samuelsson (2000) suggest that probabilistic mod-
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els must also capture important efficiency properties of the human language pro-
cessing system in limited domains of language-use, through learning methods such
as the Minimum-Description Length Principle (Rissanen, 1983; Li and Vitányi,
1997). For example, an interesting property that could be captured by a language
model is to process more expected inputs (i.e., expected to be more frequent) more
efficiently. The more “regular” the input in a given domain of language-use is, the
less time and space it should demand. This kind of reasoning has been explored
within small applications, leading to improved processing times, where indeed,
more probable inputs are processed more efficiently. The modeling of this kind
of distributional properties of limited language domains through precompilation
techniques could prove to be a fruitful path for the sake of more efficient models
of language processing.
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