COMPUTATIONAL LINGUISTICS CSC 485/2501 Fall 2023

9

9. Supertagging

Gerald Penn Department of Computer Science, University of Toronto

> Copyright © 2017 Suzanne Stevenson, Graeme Hirst and Gerald Penn. All rights reserved.

Based upon slides by Michael Auli, Rober Hass and Aravind Joshi

WHY SUPERTAG?

- If lexical items have more description associated with them, parsing is easier
 - Only useful if the supertag space is not huge
- Straightforward to compile parse from accurate supertagging
 - But impossible if there are any supertag errors
 - We can account for *some* supertag errors
 - Don't always want a full parse anyway

WHAT IS SUPERTAGGING?

- Systematic assignment of supertagsSupertags are:
 - Statistically selected
 - Robust
 - Tends to work
 - Linguistically motivated
 This makes sense

WHAT IS SUPERTAGGING?

• Many supertags for each word

the

- Extended Domain of Locality
 - Each lexical item has one supertag for every syntactic environment it appears in

NP

es

- Inspiration comes from LTAG, lexicalized tree-adjoining grammars, in which all dependencies are localized.
- Generally, agreement features such as number and tense, are not part of the supertag

- "Alice opened her eyes and saw."
- Supertags:
 - Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...
 - Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction

• ...

- Nominal modifier
- Nominal predicative subject extraction

• ...

• A supertag can be ruled out for a given word in a given input string...

- Left and/or right context is too long/short for the input
- If the supertag contains other terminals not found in the input

"Alice opened her eyes and saw."

• Supertags:

- Verb
 - o Transitive verb
 o Intransitive verb
 o Infinitive verb
 - ...
- Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction

• ...but there's more to be done

- Good: average number of possible supertags per word reduced from 47 to 25
- Bad: average of 25 possible supertags per word

• Disambiguation by unigrams?

- Give each word its most frequent supertag after PoS tagging
 - $\circ \sim 75\%$ accurate
 - Better results than one might expect given large number of possible supertags
 - Common words (determiners, etc.) usually correct
 - This helps accuracy
 - Back off to PoS for unknown words
 - Also usually correct

• Disambiguation by n-grams?

 $T = \underset{T}{\operatorname{argmax}} \Pr(T_1, T_2, ..., T_N) * \Pr(W_1, W_2, ..., W_N | T_1, T_2, ..., T_N)$

• We assume that subsequent words are independent

 $\Pr(W_1, W_2, ..., W_N | T_1, T_2, ..., T_N) \approx \prod_{i=1}^N \Pr(W_i | T_i)$

- Trigrams plus Good-Turing smoothing
 - Accuracy around 90%
 - Versus 75% from unigrams
 - Contextual information more important than lexical
 - Reversal of trend for PoS tagging

HOWEVER...

- Correctly supertagged text yields a 30X parsing speedup
 - But even one mistake can cause parsing to fail completely
 - This is rather likely
- Solution: n-best supertags?
 - When n=3, we get up to 96% accuracy...
 - Not bad at all for such a simple method
 - 425 lexical categories (PTB-CFG: ~50)
 - 12 combinatory rules (PTB-CFG: > 500,000)