9. Supertagging

Gerald Penn
Department of Computer Science, University of Toronto

Based upon slides by Michael Auli, Rober Hass and Aravind Joshi
Why supertag?

- If lexical items have more description associated with them, parsing is easier
 - Only useful if the supertag space is not huge

- Straightforward to compile parse from accurate supertagging
 - But impossible if there are any supertag errors
 - We can account for some supertag errors
 - Don’t always want a full parse anyway
WHAT IS SUPERTAGGING?

- Systematic assignment of supertags
- Supertags are:
 - Statistically selected
 - Robust
 - Tends to work
 - Linguistically motivated
 - This makes sense
What is supertagging?

- Many supertags for each word
 - **Extended Domain of Locality**
 - Each lexical item has one supertag for every syntactic environment it appears in
 - Inspiration comes from LTAG, lexicalized tree-adjoining grammars, in which *all* dependencies are localized.
 - Generally, agreement features such as number and tense, are not part of the supertag.
HOW TO SUPERTAG

“Alice opened her eyes and saw.”

Supertags:

- Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...

- Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

• Supertags:
 • Verb
 ○ Transitive verb
 ○ Intransitive verb
 ○ Infinitive verb
 ○ ...
 • Noun
 ○ Noun phrase (subject)
 ○ Nominal predicative
 ○ Nominal modifier
 ○ Nominal predicative subject extraction
 ○ ...

Diagram:

```
S
  VP
    NP↓ saw
    NP↓
```

Notes:

- Supertags:
 - Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...
 - Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...

- The diagram shows the syntactic structure of the sentence: S (sentence) → VP (verb phrase) → NP (noun phrase) → saw.
HOW TO SUPERTAG

- A supertag can be ruled out for a given word in a given input string...
 - Left and/or right context is too long/short for the input
 - If the supertag contains other terminals not found in the input
HOW TO SUPERTAG

“Alice opened her eyes and saw.”

- Supertags:
 - Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...
 - Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...

... saw to ...
HOW TO SUPERTAG

- This works fairly well
 - 50% average reduction in number of possible supertags
HOW TO SUPERTAG

• ...but there’s more to be done
 • Good: average number of possible supertags per word reduced from 47 to 25
 • Bad: average of 25 possible supertags per word
HOW TO SUPERTAG

- Disambiguation by unigrams?
 - Give each word its most frequent supertag after PoS tagging
 - ~75% accurate
 - Better results than one might expect given large number of possible supertags
 - Common words (determiners, etc.) usually correct
 - This helps accuracy
 - Back off to PoS for unknown words
 - Also usually correct
HOW TO SUPERTAG

- Disambiguation by n-grams?

\[T = \arg \max \Pr(T_1, T_2, ..., T_N) \times \Pr(W_1, W_2, ..., W_N | T_1, T_2, ..., T_N) \]

- We assume that subsequent words are independent

\[\Pr(W_1, W_2, ..., W_N | T_1, T_2, ..., T_N) \approx \prod_{i=1}^{N} \Pr(W_i | T_i) \]

- Trigrams plus Good-Turing smoothing
 - Accuracy around 90%
 - Versus 75% from unigrams
 - Contextual information more important than lexical
 - Reversal of trend for PoS tagging
However...

- Correctly supertagged text yields a 30X parsing speedup
 - But even one mistake can cause parsing to fail completely
 - This is rather likely

- Solution: n-best supertags?
 - When n=3, we get up to 96% accuracy...
 - Not bad at all for such a simple method
 - 425 lexical categories (PTB-CFG: ~50)
 - 12 combinatory rules (PTB-CFG: > 500,000)