Computational Linguistics CSC 485/2

8. Mildly Context-Sensitive Grammar Formalisms

Gerald Penn
Department of Computer Science, University of Toronto

Based on slides by David Smith, Dan Klein, Stephen Clark and Eva Banik

Fall 2023

Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG)

- Categorial grammar (CG) is one of the oldest grammar formalisms
- Combinatory Categorial Grammar now well established and computationally well founded (Steedman, 1996, 2000)
 - Account of syntax; semantics; prosody and information structure; automatic parsers; generation

Combinatory Categorial Grammar (CCG)

- CCG is a lexicalized grammar
- An elementary syntactic structure for CCG a lexical category – is assigned to each word in a sentence
 walked: S\NP "give me an NP to my left and I return a sentence"
- A small number of rules define how categories can combine
 - Rules based on the combinators from Combinatory Logic

CCG Lexical Categories

- Atomic categories: S, N, NP, PP, ... (not many more)
- Complex categories are built recursively from atomic categories and slashes, which indicate the directions of arguments
- Complex categories encode subcategorisation information
 - intransitive verb: S \NP walked
 - transitive verb: (S \NP)/NP respected
 - ditransitive verb: ((S \NP)/NP)/NP gave
- Complex categories can encode modification
 - PP nominal: (NP \NP)/NP
 - PP verbal: ((S \NP)\(S \NP))/NP

Simple CCG Derivation

- > forward application
- < backward application

Function Application Schemata

Forward (>) and backward (<) application:

$$X/Y \quad Y \quad \Rightarrow \quad X \quad (>)$$
 $Y \quad X \setminus Y \quad \Rightarrow \quad X \quad (<)$

Classical Categorial Grammar

- 'Classical' Categorial Grammar only has application rules
- Classical Categorial Grammar is context free

Classical Categorial Grammar

- 'Classical' Categorial Grammar only has application rules
- Classical Categorial Grammar is context free

The	company	which	Microsoft	bought
$\overline{NP/N}$	\overline{N}	$(\overline{NP \backslash NP)/(S/NP)}$	\overline{NP}	$(\overline{S \backslash NP})/NP$

$$\frac{The}{NP/N} \quad \frac{company}{N} \quad \frac{which}{(NP\backslash NP)/(S/NP)} \quad \frac{Microsoft}{NP} \quad \frac{bought}{(S\backslash NP)/NP} \\ \frac{S}{/(S\backslash NP)} \quad \frac{S}{NP} \quad$$

> **T** type-raising

- > **T** type-raising
- > **B** forward composition

Forward Composition and Type-Raising

• Forward composition $(>_B)$:

$$X/Y Y/Z \Rightarrow X/Z (>_{\mathbf{B}})$$

Type-raising (T):

$$X \Rightarrow T/(T\backslash X) \quad (>_{\mathsf{T}})$$

$$X \Rightarrow T \backslash (T/X) \quad (<_{\mathsf{T}})$$

 Extra combinatory rules increase the weak generative power to mild context -sensitivity

> **T** type-raising

- > **T** type-raising
- > **B** forward composition

Combinatory Categorial Grammar

- CCG is *mildly* context sensitive
- Natural language is provably non-context free
- Constructions in Dutch and Swiss German (Shieber, 1985) require more than context free power for their analysis
 - these have *crossing* dependencies (which CCG can handle)

CCG Semantics

- Categories encode argument sequences
- Parallel syntactic combinator operations and lambda calculus semantic operations

```
John \vdash NP : john'

shares \vdash NP : shares'

buys \vdash (S\NP)/NP : \lambda x.\lambda y.buys'xy

sleeps \vdash S\NP : \lambda x.sleeps'x

well \vdash (S\NP)\(S\NP) : \lambda f.\lambda x.well'(fx)
```


CCG Semantics

Left arg.	Right arg.	Operation	Result
X/Y : f	Y:a	Forward application	X : f(a)
Y:a	X\Y:f	Backward application	X : f(a)
X/Y : f	Y/Z:g	Forward composition	$X/Z : \lambda x.f(g(x))$
X:a		Type raising	$T/(T\backslash X):\lambda f.f(a)$

etc.

Tree Adjoining Grammar

TAG Building Blocks

- Elementary trees (of many depths)
- Substitution at \$\frac{1}{2}\$
- Tree Substitution Grammar equivalent to CFG

TAG Building Blocks

- Auxiliary trees for adjunction
- Adds extra power beyond CFG

Derivation Tree

Derived Tree

Semantics

 $Harry(x) \wedge likes(e, x, y) \wedge peanuts(y) \wedge passionately(e)$

4