Computational

7. Statistical parsing

Gerald Penn
Department of Computer Science, University of Toronto

Reading: Jurafsky \& Martin: 5.2-5.5.2, 5.6, 12.4, 14.0-1, 14.3-4, 14.6-7. Bird et al: 8.6.

Statistical parsing

General idea:

- Assign probabilities to rules in a context-free grammar.
- Use a likelihood model.
- Combine probabilities of rules in a tree.
- Yields likelihood of a parse.
- The best parse is the most likely one.

Statistical

- Motivations:
- Uniform process for attachment decisions.
- Use lexical preferences in all decisions.

Three general approaches

1. Assign a probability to each rule of grammar, including lexical productions.
-Parse string of input words with probabilistic rules. The can will rust.
2. Assign probabilities only to non-lexical productions.
-Probabilistically tag input words with syntactic categories using a part-of-speech tagger.
-Consider the pre-terminal syntactic categories to be terminals, parse that string with probabilistic rules. Det N Modal Verb.
3. "Supertagging" - parsing as tagging with tree fragments.

Part-of-speech tagging

- Part-of-speech (PoS) tagging: Given a sequence of words $w_{1} \ldots w_{n}$ (from well-formed text), determine the syntactic category (PoS) C_{i} of each word.
- I.e, the best category sequence $C_{1} \ldots C_{n}$ to assign to the word sequence $w_{1} \ldots w_{n}$.

Most likely

Part-of-speech tagging

Example:
The can
will rust
det modal verb modal weettb noun noun verb verb

Part-of-speech tagging

$$
P\left(C_{1} \ldots C_{n} \mid w_{1} \ldots w_{n}\right)=\frac{P\left(C_{1} \ldots C_{n} \wedge w_{1} \ldots w_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)}
$$

- We cannot get this probability directly.
- Have to estimate it (through counts).
- Perhaps after first approximating it (by modifying the formula).
- Counts: Need representative corpus.

PoS tagging: Unigram MLE

- Look at individual words (unigrams):

$$
P(C \mid w)=\frac{P(C \wedge w)}{P(w)}
$$

Maximum likelihood estimator (MLE):

$$
P(C \mid w)=\frac{c(w \text { is } C)}{c(w)}
$$

PoS tagging: Unigram MLE

Problems of MLE:

- Sparse data.
- Extreme cases:
a. Undefined if w is not in the corpus.
b. 0 if w does not appear in a particular category.

PoS tagging: Unigram MLE

- Smoothing of formula, e.g.,:

$$
P(C \mid w) \approx \frac{c(w i s C)+\epsilon}{c(w)+\epsilon N}
$$

- Give small (non-zero) probability value to unseen events, taken from seen events by discounting them.
- Various methods to ensure we still have valid probability distribution.

PoS tagging: Unigram MLE

Just choosing the most frequent PoS for each word yields 90% accuracy in PoS tagging.

- But:
- Not uniform across words.
- Accuracy is low $\left(0.9^{n}\right)$ when multiplied over n words.
- No context: The fly vs. I will fly.
- Need better approximations for

$$
P\left(C_{1} \ldots C_{n} \mid w_{1} \ldots w_{n}\right)
$$

PoS tagging: Bayesian method

- Use Bayes's rule to rewrite:

$$
\begin{aligned}
& P\left(C_{1} \ldots C_{n} \mid w_{1} \ldots w_{n}\right) \\
& =\frac{\mathbf{1}^{P\left(C_{1} \ldots C_{n}\right) \times P\left(w_{1} \ldots w_{n} \mid C_{1} \ldots C_{n}\right)^{2}}}{}{ }^{\mathbf{2}}
\end{aligned}
$$

- For a given word string, we want to maximize this, find most likely $C_{1} \ldots C_{n}$:

$$
\underset{C_{1} \ldots C_{n}}{\operatorname{argmax}} P\left(C_{1} \ldots C_{n} \mid w_{1} \ldots w_{n}\right)
$$

- So just need to maximize the numerator.

Approximating probabilities

- Approximate 1 P($\left.C_{1} \ldots C\right)$ by predicting each category from previous \mathbb{N} - 1 categories: an \mathbf{N}-gram model.
- Bigram (2-gram) model:

Warning: Not the same n!!

$$
P\left(C_{1} \ldots C_{n}\right) \approx \prod_{i=1}^{n} P\left(C_{i} \mid C_{i-1}\right)
$$

- Posit pseudo-categories START at C_{0}, and END as C_{n}. Example:
$P(\mathrm{~A} N V \mathrm{~N}) \approx P(\mathrm{~A} \mid \mathrm{START}) \cdot P(\mathrm{~N} \mid \mathrm{A}) \cdot P(\mathrm{~V} \mid \mathrm{N}) \cdot P(\mathrm{~N} \mid \mathrm{V}) \cdot P(\mathrm{END} \mid \mathrm{N})$

Approximating probabilities

- Approximate $2 P\left(w_{1} \ldots w_{n} \mid C_{1} \ldots C_{n}\right)$ by assuming that the probability of a word appearing in a category is independent of the words surrounding it.

$$
P\left(w_{1} \ldots w_{n} \mid C_{1} \ldots C_{n}\right) \approx \prod_{i=1}^{n} P\left(w_{i} \mid C_{i}\right)
$$

Approximating probabilities

- Why is $P(w \mid C)$ better than $P(C \mid w)$?
- $P(C \mid w)$ is clearly not independent of surrounding categories.
- Lexical generation probability is somewhat more independent.
- Complete formula for PoS includes bigrams, and so it does capture some context.

Putting it all together

$$
\begin{aligned}
& P\left(C_{1} \ldots C_{n} \mid w_{1} \ldots w_{n}\right) \\
& \quad=\frac{P\left(C_{1} \ldots C_{n} \wedge w_{1} \ldots w_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)} \\
& \quad=\frac{P\left(C_{1} \ldots C_{n}\right) \times P\left(w_{1} \ldots w_{n} \mid C_{1} \ldots C_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)} \\
&
\end{aligned} \quad \begin{aligned}
& \\
& \quad \prod_{i=1}^{n} P\left(C_{1} \ldots C_{n}\right) \times P\left(w_{1} \mid C_{i-1}\right) \times P\left(w_{n} \mid C_{i}\right) \\
& \\
& =\prod_{i=1}^{n} \frac{c\left(C_{i-1} C_{i}\right)}{c\left(C_{i-1}\right)} \times \frac{c\left(w_{i} i s C_{i}\right)}{c\left(C_{i}\right)}
\end{aligned}
$$

Really should use smoothed MLE; MLE for categories not the same as for words;

Finding

- Want to find the argmax (most probable) $C_{1} \ldots C_{n}$.
- Brute force method: Find all possible sequences of categories and compute P. Unnecessary: Our approximation assumes independence:
- Category bigrams: C_{i} depends only on C_{i-1}. Lexical generation: wi depends only on C_{i}.
- Hence we do not need to enumerate all sequences independently.

Finding max

- Bigrams:

Markov model.

- States are categories and transitions are bigrams.
- Lexical generation probabilities:

Hidden Markov model.

- Words are outputs (with given probability) of states.
- A word could be the output of more than one state.
- Current state is unknown ("hidden").
- Artificial corpus of PoS-tagged 300 sentences using only Det, N, V, P.
- The flower flowers like a bird.

Some birds like a flower with fruit beetles.
Like flies like flies.

- Some lexical generation probabilities:

$$
\begin{array}{cllc}
P(\text { the } \mid \text { Det })=.54 & P(\text { like } \mid \mathrm{N})=.012 & P(\text { flower } \mid \mathrm{N})=.063 & P(\text { birds } \mid \mathrm{N})=.076 \\
P(a \mid \text { Det })=.36 & P(\text { like } \mid \mathrm{V})=.1 & P(\text { flower } \mid \mathrm{V})=.050 & P(\text { flies } \mid \mathrm{V})=.076 \\
P(a \mid \mathrm{N})=.001 & P(\text { like } \mid \mathrm{P})=.068 & P(\text { flowers } \mid \mathrm{N})=.050 & P(\text { flies } \mid \mathrm{N})=.025 \\
\vdots & \vdots & P(\text { flowers } \mid \mathrm{V})=.053 & \vdots
\end{array}
$$

Markov model: Bigram table

Bigram C_{i-1}, C_{i}	Count $\mathrm{C}_{\text {i-1 }}$	Count $\mathrm{C}_{i-1}, \mathrm{C}_{\boldsymbol{i}}$	$P\left(C_{i} \mid C_{i-1}\right)$	Estimate
$\begin{aligned} & \text { START, } \\ & \text { Det } \end{aligned}$	300	213	P (Det ${ }^{\text {START }}$)	0.710
START, N	300	87	$P(\mathrm{~N} \mid$ START $)$	0.290
Det, N	558	558	$P(\mathrm{~N} \mid$ Det $)$	1.000
N, V	883	300	$P(\mathrm{~V} \mid \mathrm{N})$	0.340
N, N	883	51	$P(\mathrm{~N} \mid \mathrm{N})$	0.058
N, P	883	307	$P(\mathrm{P} \mid \mathrm{N})$	0.348
N, END	883	225	$P(E N D \mid N)$	0.255
V, N	300	106	$P(\mathrm{~N} \mid \mathrm{V})$	0.353
V, Det	300	119	$P($ Det \mid N)	0.397
V, END	300	75	P (END\|V)	0.250
P, Det	307	226	P (Det\|P)	0.740
P, N	307	81	$P(\mathrm{~N} \mid \mathrm{P})$	0.260

Markov model: Transition probabilities

HMM: Lexical generation probabilities

$$
\begin{array}{cll}
P(\text { the } \mid \text { Det })=.54 & P(\text { like } \mid \mathrm{N})=.012 & P(\text { flower } \mid \mathrm{N})=.063 \\
P(a \mid \text { Det })=.36 & P(\text { like } \mid \mathrm{V})=.1 & P(\text { flower } \mid \mathrm{V})=.050 \\
P(a \mid \mathrm{N})=.001 & P(\text { like } \mid \mathrm{P})=.068 & P(\text { flowers } \mid \mathrm{N})=.050 \\
\vdots & \vdots & P(\text { flowers } \mid \mathrm{V})=.053
\end{array}
$$

$P($ birds $\mid \mathrm{N})=.076$
$P(f l i e s \mid V)=.076$

Hidden Markov models

- Given the observed output, we want to find the most likely path through the model.

The can will rust
det modal verb modal verb noun

noun	noun	verb
verb	verb	

Hidden Markov models

- At any state in an HMM, how you got there is irrelevant to computing the next transition.
- So, just need to remember the best path and probability up to that point.
- Define $\phi\left({ }_{(c i-1}\right)$ as the probability of the best sequence up to state C_{i-1}.
- Then find C_{i} that maximizes $\varphi\left(C_{i-1}\right) \times P\left(C_{i} \mid C_{i-1}\right) \times P\left(w \mid C_{i}\right)$
(3) from slide 17

Viterbi Algorithm

- Given an HMM and an observation O of its output, finds the most probable sequence S of states that produced O .
- $O=$ words of sentence, $S=P o S$ tags of sentence
- Parameters of HMM based on large training corpus.
- Then find C_{i} that maximizes $\varphi\left(C_{i-1}\right) \times P\left(C_{i} \mid C_{i-1}\right) \times P\left(w \mid C_{i}\right)$ $B_{i}=C_{i-1} \quad$ [backtrace]

Baum-Welch Algorithm

Given an HMM M and an observation O, adjust the parameters of M to improve the probability $\mathrm{P}(\mathrm{O})$.

- $\mathrm{O}=$ words of sentence, $\mathrm{M}=<\pi, A, B>$

This is an instance of ExpectationMaximization (EM).

Statistical chart parsing

- Consider tags as terminals (i.e., use a PoS tagger to pre-process input texts).

Det N Modal Verb.

- For probability of each grammar rule, use MLE.
- Probabilities derived from hand-parsed corpora (treebanks).
- Count frequency of use c of each rule $C \rightarrow \alpha$, for each non-terminal C and each different RHS α.

What are some problems with this approach?

Statistical chart parsing

- MLE probability of rules:
- For each rule $C \rightarrow \alpha$:

$$
P(C \rightarrow \alpha \mid C)=\frac{c(C \rightarrow \alpha)}{\sum_{\beta} c(C \rightarrow \beta)}=\frac{c(C \rightarrow \alpha)}{c(C)}
$$

- Takes no account of the context of use of a rule: independence assumption.
- Source-normalized: assumes a top-down generative process.
- NLTK's pchart demo doesn't POS-tag first (words are generated top-down), and it shows $\mathrm{P}(\mathrm{t})$ rather than $\mathrm{P}(\mathrm{t} \mid \mathrm{s})$. Why?
>>> import nltk
>>> nltk.parse.pchart.demo()
1: I saw John with my telescope <Grammar with 17 productions>

2: the boy saw Jack with Bob under the table with a telescope <Grammar with 23 productions>

Which demo (1-2)? 1
s: I saw John with my telescope
parser: <nltk.parse.pchart.InsideChartParser object at 0x7f61288f3290>
grammar: Grammar with 17 productions (start state $=$ S)

```
    S -> NP VP [1.0]
```

 NP -> Det N [0.5]
 NP -> NP PP [0.25]
 NP -> 'John' [0.1]
 NP -> 'I' [0.15]
 Det -> 'the' [0.8]
 Det -> 'my' [0.2]
 N -> 'man' [0.5]
 N -> 'telescope' [0.5]
 VP -> VP PP [0.1]
 VP -> V NP [0.7]
 VP -> V [0.2]
 V -> 'ate' [0.35]
 V -> 'saw' [0.65]
 PP -> P NP [1.0]
 P -> 'with' [0.61]
 P -> 'under' [0.39]
 | \| [-] \mid | [0:1] 'I' | [1.0] | |
|---|---|---|---|
| . [-] 1 | [1:2] 'saw' | [1.0] |
| \|. . [-] . . .| | [2:3] 'John' | [1.0] |
| \|. . . [-] . .| | [3:4] 'with' | [1.0] |
| . . . [-] . | [4:5] 'my' | [1.0] |
| \|. [-] | | [5:6] 'telescope' | [1.0] |
| \|. [-]| | [5:6] 'telescope' | [1.0] |
| [-] . | [4:5] 'my' | [1.0] |
| \|. . . [-] . .| | [3:4] 'with' | [1.0] |
| \|. . [-] . . .| | [2:3] 'John' | [1.0] |
| [-] 1 | [1:2] 'saw' | [1.0] |
| \| [-] \mid | [0:1] 'I' | [1.0] |
| \|. [-] \mid | [1:2] V -> 'saw' * | [0.65] |
| . > \mid | [1:1] VP -> * V NP | [0.7] |
| > | [1:1] V -> * 'saw' | [0.65] |
| [-] . . 1 | [3:4] P -> 'with' * | [0.61] |
| . 1 | [3:3] PP -> * P NP | [1.0] |
| [-> . . 1 | [3:4] PP -> P * NP | [0.61] |
| > . . . 1 | [3:3] P -> * 'with' | [0.61] |
| . . [-]\| | [5:6] N -> 'telescope' * | [0.5] |
| > . 1 | [5:5] N -> * 'telescope' | [0.5] |
| [-> 1 | [1:2] VP -> V * NP | [0.455] |
| . | [1:1] VP -> * V | [0.2] |
| . [-] . 1 | [4:5] Det -> 'my' * | [0.2] |
| > . . | [4:4] NP -> * Det N | [0.5] |
| > . . | [4:4] Det -> * 'my' | [0.2] |

Draw parses (y / n)? y
please wait...


```
Print parses (y/n)? y
    (S
        (NP I)
    (VP
        (VP (V saw) (NP John))
        (PP (P with) (NP (Det my) (N telescope))))) [2.081625e-05]
(S
(NP I)
(VP
    (V saw)
    (NP
        (NP John)
        (PP (P with) (NP (Det my) (N telescope)))))) [5.2040625e-05]
```


Statistical chart parsing

- In this view of chart parsing, probability of chart entries is relatively simple to calculate. For completed constituents, maximize over $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}$ (like Viterbi):

$$
P\left(e_{0}\right)=P\left(C_{0} \rightarrow C_{1} \ldots C_{n} \mid C_{0}\right) \times P\left(e_{1}\right) \times \cdots \times P\left(e_{n}\right)
$$

$$
=P\left(C_{0} \rightarrow C_{1} \ldots C_{n} \mid C_{0}\right) \times \prod_{i=1}^{n} P\left(e_{i}\right)
$$

e_{0} is the entry for current constituent, of category C_{0}; $e_{1} \ldots e_{n}$ are chart entries for $C_{1} \ldots C_{n}$ in the RHS of the rule.

NB: Unlike for PoS tagging above, the C_{i} are not necessarily lexical categories.

Statistical chart parsing

- Consider a complete parse tree, t, with root label S.
- Recasting 5, t has the probability:

$$
P(t)=P(S) * \Pi_{n} P(\text { rule }(n) \mid \text { cat }(n))
$$

where n ranges over all nodes in the tree t; rule (n) is the rule used for n; $\operatorname{cat}(n)$ is the category of n.

- $P(S)=1$!
- "Bottoms out" at lexical categories.
- Note that we're parsing bottom-up, but the generative model "thinks" top-down regardless.
- EM for PCFGs: maximum likelihood estimates on an annotated corpus can be improved to increase the likelihood of a different, unannotated corpus
- Step 1: parse the unannotated corpus using the MLE parameters.
- Step 2: adjust the parameters according to the expected relative frequencies of different rules in the parse trees obtained in Step 1:
- $\dot{p}(A \rightarrow B C)=\mu(A \rightarrow B C) / Z$
- $\dot{\mathrm{p}}(\mathrm{A} \rightarrow \mathrm{w})=\mu(\mathrm{A} \rightarrow \mathrm{w}) / \mathrm{Z}$

Inside-Outside Algorithm

- $\mu(A \rightarrow B C)=\sum_{\{i, k, j\}} \mu(A \rightarrow B C, i, k, j)$
- $\mu(A \rightarrow w)=\sum_{i} \mu(A, i) \delta_{i}(w)$
where we now count having seen an A from i to j, a B from i to k, and a C from k to j,
...or an A at location i, where there appears the word w.

Inside-Outside Algorithm

- We can define these position-specific μ 's in terms of:
- outside probability
- inside probability
$\beta(N, p, q)$

w_{1}
w_{p-1}
w_{p}
w_{q}
W_{q+1}
$W_{m} 44$
- $\mu(A \rightarrow B C, i, k, j)=$
$p(A \rightarrow B C) \beta(A, i, j) \alpha(B, i, k) \alpha(C, k+1, j)$
- $\mu(A, i)=\mu(A, i, i)$
- $\mu(A, i, j)=\alpha(A, i, j) \beta(A, i, j)$
- $Z=\alpha(S, 1, n)$

There are also very terse, recursive formulations of α and β that are amenable to dynamic programming.

Statistical chart parsing

- But just like non-statistical chart parsers, this one only answers 'yes' or 'no' (with a probability) in polynomial time:
- It's not supposed to matter how we got each constituent. Just the non-terminal label and the span are all that should matter.
- There might be exponentially many trees in this formulation.
- And we're not calculating the probability that the input is a sentence - this is only the probability of one interpretation (tree).

Evaluation

- Evaluation method:
- Train on part of a parsed corpus.
(I.e., gather rules and statistics.)
- Test on a different part of the corpus.
- Development test: early stopping, metaparameters
- Evaluation test: evaluate (and then done)
- In one sense, the best evaluation of a method like this would be data likelihood, but since we're scoring trees instead of strings, it's difficult to defend any sort of intuition about the numbers assigned to them.

Evaluation

Evaluation: PARSEVAL measures compare

 parser output to known correct parse:- Labelled precision, labelled recall.

- F-measure = harmonic mean of precision and recall $=2 P R /(P+R)$

Evaluation

- Evaluation: PARSEVAL measures compare parser output to known correct parse:
- Penalize for cross-brackets per sentence: Constituents in output that overlap two (or more) correct ones; e.g., [[A B] C] for [A [B C]].
[[Nadia] [[smelled] [the eggplant]]]
[[[Nadia] [smelled]] [the eggplant]]
The labels on the subtrees aren't necessary for this one.

Evaluation

- PARSEVAL is a classifier accuracy score much more extensional. All that matters is the right answer at the end.
- But that still means that we can look at parts of the right answer.
Can get $\sim 75 \%$ labelled precision, recall, and F with above methods.

Improving statistical parsing

- Problem: Probabilities are based only on structures and categories:

$$
P(C \rightarrow \alpha \mid C)=\frac{c(C \rightarrow \alpha)}{\sum_{\beta} c(C \rightarrow \beta)}=\frac{c(C \rightarrow \alpha)}{c(C)}
$$

- But actual words strongly condition which rule is used (of Ratnaparkhi).
- Improve results by conditioning on more factors, including words. Think semantics the words themselves give us a little bit of access to this.

exicalized grammars

- Head of a phrase: its central or key word. - The noun of an NP, the preposition of a PP, etc.
- Lexicalized grammar: Refine the grammar so that rules take heads of phrases into account - the actual words.
- Before: Rule for NP.

AFTER: Rules for NP-whose-head-is-aardvark, NP-whose-head-is-abacus, ..., NP-whose-head-iszymurgy.

- And similarly for VP, PP, etc.

exicalized

- Notation: cat(head,tag) for constituent category cat headed by head with part-ofspeech tag.
- e.g., NP(aardvark,NN), PP(without,IN)

NP-whose-head-is-the-NN-aardvark
PP-whose-head-is-the-IN-without

A lexicalized grammar

TOP \rightarrow S(bought,VBD)
$\mathrm{S}($ bought, VBD $) \rightarrow \mathrm{NP}($ week,NN) NP (IBM,NNP) VP(bought,VBD)
$\mathrm{NP}($ week, NN $) \rightarrow \mathrm{JJ}($ Last, JJ) $\mathrm{NN}($ week, NN$)$
NP (IBM,NNP) \rightarrow NNP(IBM,NNP)
$\mathrm{VP}($ bought, VBD $) \rightarrow$ VBD (bought, VBD)
NP(Lotus,NNP)

NP(Lotus,NNP) \rightarrow NNP(Lotus,NNP)

Lexical Rules:

$\mathrm{JJ}($ Last, JJ) \rightarrow Last
$\mathrm{NN}($ week,NN) \rightarrow week
NNP (IBM,NNP) \rightarrow IBM
VBD (bought,VBD) \rightarrow bought
NNP(Lotus,NNP) \rightarrow Lotus

- Number of rules and categories explodes, but no theoretical change in parsing process (whether statistical or not).
- But far too specific for practical use; each is too rarely used to determine its probability.
- Need something more than regular (unlexicalized) rules and less than complete lexicalization...
- ... perhaps we should change the process after all.

Lexicalized parsing

Starting from unlexicalized rules:

- 1. Lexicalization: Consider the head word of each node, not just its category:
- $P(t)=P(S) * \Pi_{n} P\left(\right.$ rule $(n) \mid$ head (n)) $\begin{array}{l}\text { Replaces © } 6 \\ \text { from slide } 41\end{array}$ where head(n) is the PoS-tagged head word of node n.
- Needs finer-grained probabilities:
- e.g., probability that rule r is used, given we have an NP whose head is the noun deficit.

exicalized

2. Head and parent: Condition on the head and the head of the parent node in the tree:

P (Sentence, Tree)
$=\prod_{n \in \text { Tree }} P(\operatorname{rule}(n) \mid \operatorname{head}(n)) \times P($ head $(n) \mid \operatorname{head}(\operatorname{parent}(n)))$
e.g., probability of rule r given that head is the noun deficit.
e.g., probability that head is the noun deficit, given that parent phrase's head is the verb report.

Effects on parsing

- Lexical information introduces context into CFG.
- Grammar is larger.
- Potential problems of sparse data.
- Possible solutions: Smoothing; back-off estimates.

If you don't have data for a fine-grained situation, use data from a coarser-grained situation that it's contained in.

Bikel's 2004 intepretation

- Can condition on any information available in generating the tree.
Basic idea: Avoid sparseness of lexicalization by decomposing rules.
- Make plausible independence assumptions.
- Break rules down into small steps (small number of parameters).
- Each rule still parameterized with word/PoS pair: $\mathrm{S}($ bought,vBD $) \rightarrow \mathrm{NP}($ week,NN) NP(IBM,NNP) VP(bought,vBD)

Collins's "model 1 "

- Lexical Rules, with probability 1: tag(word, tag) \rightarrow word
- Internal Rules, with treebank-based probabilities. Separate terminals to the left and right of the head; generate one at a time:
$\mathrm{X} \rightarrow \mathrm{L}_{n} \mathrm{~L}_{n-1} \ldots \mathrm{~L}_{1} \mathrm{HR}_{1} \ldots \mathrm{R}_{m-1} \mathrm{R}_{m} \quad(n, m \geq 0)$
$\mathrm{X}, \mathrm{L}_{i}, \mathrm{H}$, and R_{i} all have the form cat(head,tag). Notation: Italic lowercase symbol for (head,tag):
$\mathrm{X}(x) \rightarrow \mathrm{L}_{n}\left(l_{n}\right) \mathrm{L}_{n-1}\left(l_{n-1}\right) \ldots \mathrm{L}_{1}\left(l_{1}\right) \mathrm{H}(h) \mathrm{R}_{1}\left(r_{1}\right) \ldots \mathrm{R}_{m-1}\left(r_{m-1}\right) \mathrm{R}_{m}\left(r_{m}\right)$

Collins's "m model 1

- Assume there are additional L_{n+1} and R_{m+1} representing phrase boundaries ("STOP").
- Example:

S(bought,VBD) \rightarrow NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
$n=2, m=0$ (two constituents on the left of the head, zero on the right).
$\mathrm{X}=\mathrm{S}, \mathrm{H}=\mathrm{VP}, \mathrm{L}_{1}=\mathrm{NP}, \mathrm{L}_{2}=\mathrm{NP}, \mathrm{L}_{3}=\mathrm{STOP}, \mathrm{R}_{1}=\mathrm{STOP}$.
$h=($ bought, VBD $), l_{1}=(I B M, N N P), l_{2}=($ week,NN $)$.

- Distinguish probabilities of heads P_{h}, of left constituents P_{l}, and of right constituents P_{r}.

Probabilities of internal rules

$$
\begin{aligned}
& P(\mathrm{X}(h)) \\
&= P\left(\mathrm{~L}_{n+1}\left(l_{n+1}\right) \mathrm{L}_{n}\left(l_{n}\right) \ldots \mathrm{L}_{1}\left(l_{1}\right) \mathrm{H}(h) \mathrm{R}_{1}\left(r_{1}\right) \ldots \mathrm{R}_{m}\left(r_{m}\right) \mathrm{R}_{m+1}\left(r_{m+1}\right) \mid \mathrm{X}, h\right) \\
&= P_{h}(\mathrm{H} \mid \mathrm{X}, h) \\
& \times \prod_{i=1}^{n+1} / P_{l}\left(\mathrm{~L}_{i}\left(l_{i}\right) \mid \mathrm{L}_{1}\left(l_{1}\right) \ldots \mathrm{L}_{i-1}\left(l_{i-1}\right), \mathrm{X}, h, \mathrm{H}\right) \\
& \times \prod_{j=1}^{m+1} P_{r}\left(\mathrm{R}_{j}\left(r_{j}\right) \mid \mathrm{L}_{1}\left(l_{1}\right) \ldots \mathrm{L}_{n}\left(l_{n}\right), \mathrm{R}_{1}\left(r_{1}\right) \ldots \mathrm{R}_{j-1}\left(r_{j-1}\right), \mathrm{X}, h, \mathrm{H}\right) \\
& \approx P_{h}(\mathrm{H} \mid \mathrm{X}, h) \times \prod_{i=1}^{n+1} P_{l}\left(\mathrm{~L}_{i}\left(l_{i}\right)\right)(\mathrm{X}, h, \mathrm{H}) \times \prod_{j=1}^{m+1} P_{\lambda}\left(\mathrm{R}_{j}\left(r_{j}\right) \mid \mathrm{X}, h, \mathrm{H}\right)
\end{aligned}
$$

Generate left modifiers (stop at STOP)
By independence assumption

Probabilities of internal rules

Example:

P(S(bought, VBD)
\rightarrow NP(week,NN) NP(IBM,NNP) VP(bought,VBD))
$\approx P_{h}(\mathrm{VP} \mid \mathrm{S}$, bought, VBD $) \quad$ Generate head constituent $\times P_{(}(\mathrm{NP}(I B M, \mathrm{NNP}) \mid \mathrm{S}$, bought,VBD, VP) $\times P_{(}(\mathrm{NP}($ week,NN $) \mid \mathrm{S}$, bought, vBd, VP) $\times P_{l}(\mathrm{STOP} \mid \mathrm{S}$, bought, VBD, VP) $\times P_{r}($ STOP $\mid S$, bought, VBD, VP)

Adding other dependencies

(Badly-named) "distance measure" to capture properties of attachment relevant to current modifier.

- $P_{l}\left(\mathrm{~L}_{i}\left(l_{i}\right) \mid \mathrm{X}, h, \mathrm{H}\right)$ becomes
$P_{l}\left(\mathrm{~L}_{i}\left(l_{i}\right) \mid \mathrm{X}, h, \mathrm{H}, \operatorname{distance}_{l}(i-1)\right)$
and analogously on the right.
- The value of distance x_{x} is actually a pair of Boolean random variables:
- Is string $1 . .(i-1)$ of length 0 ?
i.e., is attachment of modifier i to the head?
- Does string $1 . .(i-1)$ contain a verb?
i.e., is attachment of modifier i crossing a verb?

Collins's "model 1"

Backs off ...

- to tag probability when no data for specific word;
- to complete non-lexicalization when necessary.

Collins's Models 2 and 3

- Model 2: Add verb subcategorization and argument/adjunct distinction.
- Model 3: Integrate gaps and trace identification into model.
- Especially important with addition of subcategorization.

Results and conclusions

- Model 2 outperforms Model 1.
- Model 3: Similar performance, but identifies traces too.
- Model 2 performs best overall:
- LP = 89.6, LR = 89.9 [sentences ≤ 100 words].
- LP = 90.1, LR = 90.4 [sentences ≤ 40 words].
- Rich information improves parsing performance.

Results and conclusions

Strengths:

- Incorporation of lexical and other linguistic information.
- Competitive results.
- Weaknesses:
- Supervised training.
- Performance tightly linked to particular type of corpus used.

Results and conclusions

Importance to CL:

- High-performance parser showing benefits of lexicalization and linguistic information.
- Publicly available, widely used in research.
- There was some initial hope that it would make language models better, but that didn't pan out.
- But it was fairly successful at giving us some access to semantics, i.e. language modelling makes parsing better.

