CSC 485/2501
Fall 2023

/. Statistical parsing

Reading: Jurafsky & Martin: 5.2-5.5.2, 5.6, 12.4, 14.0-1,
14.3-4, 14.6—7. Bird et al: 8.6.

Copyright © 2017 Suzanne
Stevenson, Graeme Hirst
and Gerald Penn. All rights
reserved.

Statistical parsing

« General 1dea:

» Assign probabilities to rules in a context-free
grammar.

* Use a likelihood model.

» Combine probabilities of rules in a tree.
* Yields likelihood of a parse.

* The best parse Is the most likely one.

Statistical parsing

* Motivations:
Uniform process for attachment decisions.
Use lexical preferences in all decisions.

Three general approaches

1. Assign a probabillity to each rule of grammar, including
lexical productions.

—Parse string of input words with probabilistic rules.
The can will rust.

2. Assign probabilities only to non-lexical productions.

—Probabillistically tag input words with syntactic
categories using a part-of-speech tagger.

—Consider the pre-terminal syntactic categories to be
terminals, parse that string with probabilistic rules.
Det N Modal Verb.

3. “Supertagging” — parsing as tagging with tree
fragments.

Part-of-speech tagging

- Part-of-speech (PoS) tagging:
Given a sequence of words wi ... wn (from
well-formed text), determine the syntactic
category (PoS) Ci of each word.

* |.e, the best category sequence Ci ... Cn to

assign to the word sequence wi ... wh.

o~

Most likely

Part-of-speech tagging

» Example:
The can wll rust
det modal verb modal ventd noun
noun noun verb

verb verb

Example from Charniak 1997

Part-of-speech tagging

. P(C]--.Cﬂ/\W]_...wH)
P(wq...wy)

P(Cl--.Cﬂ‘Wl...wn)

* We cannot get this probability directly.
» Have to estimate it (through counts).

» Perhaps after first approximating it (by
modifying the formula).

» Counts: Need representative corpus.

PoS tagging: Unigram MLE

» Look at individual words (unigrams):
P(C Aw)

P(w)
» Maximum likelihood estimator (MLE):

P(Clw) = u(i’(;)@

\
C

P(C|w) =

ount in corpus

PoS tagging: Unigram MLE

* Problems of MLE:

» Sparse data.

* Extreme cases:
a. Undefined if w is not in the corpus.
b. O if wdoes not appear in a particular category.

PoS tagging: Unigram MLE

» Smoothing of formula, e.qg.,:

c(wisC) + €
c(w) + eN

» Glve small (non-zero) probability value to
unseen events, taken from seen events by

discounting them.

* Various methods to ensure we still have valid
probabillity distribution.

P(Clw) =

10

PoS tagging: Unigram MLE

» Just choosing the most frequent PoS for each
word yields 90% accuracy in PoS tagging.

 But:

Not uniform across words.

» Accuracy is low (0.9") when multiplied over n
words.

No context: The fly vs. | will fly.
* Need better approximations for

P(Cl...Cn‘w:l...ZUn)

11

PoS tagging: Bayesian method

- Use Bayes's rule to rewrite:

q)(Cl X P(w1 . .
P(w1 ... Wy

* For a given word string, we want to maximize
this, find most likely C1 ... Cn:

argmax P(Cy...Cy|wq ... wp)
Cy..Cy

* S0 Just need to maximize the numerator.

12

Approximating probabillities

- Approximate @P(C: ... Gp) by predicting
each category from previous(N - 1 categories:
an N—gram model. I\/\/arning: Not

- Bigram (2-gram) model: the same n!!
n
P(Cy...Cy) = [| P(Ci|Ci—1)
=1
* Posit pseudo-categories START at Co, and
END as Cn. Example:

P(ANV N) & P(A|START) - P(N|A) - P(V|N) - P(N|V) - P(END|N)

13

Approximating probabilities

- Approximate @P(wz ... wn|C1 ... Cn) by
assuming that the probabillity of a word

appearing in a category Is independent of the
words surrounding It.

P(wy... wy|Cq... HP(wI\C

LeX|cal generation
probabllities

15

Approximating probabilities

* Why is P(w|C) better than P(C|w)?

P(Cl|w) Is clearly not independent of surrounding
categories.

Lexical generation probability iIs somewhat more
iIndependent.

Complete formula for PoS includes bigrams, and
SO It does capture some context.

16

Putting It all together

P(Cl...Cn‘ﬂJl...ﬂ)n)
P(Cy...ChAwy...wn)

P(w, ... wy)
_ P(C1...Cp) X P(wq...wy | Cqp...Cp)
P(w; ... wy)

X P(C]Cn) xP(wl...wn\C1...Cn)

I
[[P(Ci|Ci_q) x P(w; | C;) 3
i—1

0

B Tc(Ci1C) |e(w;is C;)
- E C(Cf_l) 8 C(CI’)

Really should use smoothed MLE; MLE for categories not the same as for words;
cf slide 10 cf slide 8 17

- Want to find the argmax (most probable)
Ci1 ... Cn

» Brute force method: Find all possible
seguences of categories and compute P.

» Unnecessary:. Our approximation assumes
iIndependence:

» Category bigrams: Cjdepends only on Ci_1.
Lexical generation: wi depends only on Ci.

« Hence we do not need to enumerate all
seguences independently.

18

* Bigrams:
Markov model.

- States are categories and transitions are bigrams.

» Lexical generation probabillities:
Hidden Markov model.

» Words are outputs (with given probability) of states.
» A word could be the output of more than one state.
» Current state is unknown (“hidden”).

19

» Artificial corpus of PoS-tagged 300 sentences
using only Det, N, V, P.

 The flower flowers like a bird.
Some birds like a flower with fruit beetles.
Like flies like flies.

» Some lexical generation probabillities:

P(the|Det) = .54 P(like|N) =.012 P(flower|N) = .063 P(birds|N) = .076

P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076

P(a|N) = .001 P(like|P) =.068 P(flowers|N) =.050 P(flies|N) =.025
: : P(flowers|V) = .053 :

20

Markov model: Bigram table

Bigram Count Ci.1 Count Ci-1,Ci P(G|Ci_;) Estimate
Ci-1, Ci
STDAGFET’ 300 213 P(Det| START) 0.710
START, N 300 87 P(N| START) 0.290
Det, N 558 558 P(N|Det) 1.000
N, V 883 300 P(V|N) 0.340
N, N 883 51 P(NIN) 0.058
N, P 883 307 P(P|N) 0.348
N, END 883 225 P(END|N) 0.255
V, N 300 106 P(N|V) 0.353
V, Det 300 119 P(Det|N) 0.397
V, END 300 75 P(END|V) 0.250
P, Det 307 226 P(Det|P) 0.740

P, N 307 81 P(N|P) 0.260

21

Markov model: Transition probabilities

397

Det V
.25
71
2
.058
N N :;4 o

255

22

HMM: Lexical generation probabilities

397 _.05....r flower
the <....'.§%.‘.‘.‘._.‘._:: Det V ‘i;;:.'.'-'.'.','_'_' : 07, flies
3R N 1
a s ike
71 25
' .34
1.0 353
058
A € N 34
001 g
................... : 076
«7012 063 el
like T Thovar 1022 “birds
flies 225
P(the|Det) = .54 P(like|[N) =.012 P(flower|N) = .063 P(birds|N) = .076
P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076

P(a|N) =.001 P(like|P) =.068 P(flowers|N) =.050 P(flies|N) =.025

P(flowers|V) = .053 23

Hidden Markov models

» Given the observed output, we want to find
the most likely path through the model.

The can will rust

det modal verb modal verb noun
noun noun verb
verb verb

24

Hidden Markov models 2

» At any state in an HMM, how you got there is
Irrelevant to computing the next transition.

* S0, Just need to remember the best path and
probability up to that point.

« Define ¢(ci-1) as the probability of the best
seguence up to state Ci-1.

 Then find Ci that maximizes
p(Ci-1) x|P(Ci|Ci—1) x P(w|Ci) € from slide 17

25

Viterbl Algorithm

- Given an HMM and an observation O of Its
output, finds the most probable sequence S
of states that produced O.

* O = words of sentence, S = PoS tags of sentence

- Parameters of HMM based on large training
COrpus.

 Then find Ci that maximizes
©(Ci-1) x P(Ci|Ci-1) x P(w|Ci)

Bi = Ci-1 [backtrace]

26

Baum-Welch Algorithm

» Given an HMM M and an observation O,
adjust the parameters of M to improve the
probabillity P(O).

« O = words of sentence, M = <m,A,B>

* This Is an instance of Expectation-
Maximization (EM).

27

Statistical chart parsing 1

- Consider tags as terminals (i.e., use a PoS

tagger to pre-process input texts).
Det N Modal Verb.

* For probability of each grammar rule, use
MLE.

* Probabilities derived from hand-parsed
corpora (treebanks).

- Count frequency of use c of each rule C — « | for
each non-terminal C and each different RHS «.

What are some problems with this approach?

28

Statistical chart parsing

* MLE probabillity of rules:

* Foreachrule C — «a :

P(C — &|C) = c(C — a) :C(C—>ﬂi)

Y.pc(C — B) c(C) 4
 Takes no account of the context of use of a
rule: Independence assumption.

» Source-normalized: assumes a top-down
generative process.

* NLTK's pchart demo doesn’t POS-tag first
(words are generated top-down), and It
shows P(t) rather than P(t|s). wny>

2

29

>>> import nltk
>>> nltk.parse.pchart.demo()

1: I saw John with my telescope
<Grammar with 17 productions>

2: the boy saw Jack with Bob under the table with a telescope
<Grammar with 23 productions>

Which demo (1-2)7 1

s: I saw John with my telescope
parser: <nltk.parse.pchart.InsideChartParser object at 0x7f61288f3290>
grammar: Grammar with 17 productions (start state = S)

S -> NP VP [1.0]

NP -> Det N [0.5]

NP -> NP PP [0.25]

NP -> "John' [0.1]

NP -> '"I" [0.15]

Det -> "the' [0.8]

Det -> "'my' [0.2]

N - "man' [0.5]

N -> "telescope' [0.5]

VP -> VP PP [0.1]

VP -> V NP [0.7]

VP -> V [0.2]

V -> 'ate' [0.35]

V -> 'saw' [0.65]

PP -> P NP [1.0]

P -> "with' [0.61]

P -> "under' [0.39] 30

-1
-1 . . .
|« - [-1 - . .
.. [-1 ..
-1 .
----- [-]
A
A
.. [-1 .
N 5
-1 ..
-1
. [-]
} iiiii
2 4 s e s
(-1 . .
> ...
[-> . .
= .
A
..... > .
. [->
2 4 s s s s
. . [-]
>
=

[O:

[1

[3

[3
[1
[1
[1
[1
[3

[3

[1
[1

[4
[4

1]

12]
[2:
4]
[4:
[5:
[5:
[4:
4]
[2:
22]
[O:

3]
5]
6]
6]
5]
3]

1]

127
2]
2 1]
4]
[3:
4]
[3:
[5:
[5:
2]
21
[4:
4]
4]

3]
3]

6]
5]

5]

T
'saw’

'John'

'with'

‘my’

"telescope’
'telescope’

‘Imyi

'with'

'John'

'saw’

‘lI'l

V -> "saw' *

VP -> * V NP

V ->* "saw'

P -> "with' *

PP -> * P NP

PP -> P * NP

P ->* "with'

N -> 'telescope' *
N ->* "telescope’
VP -> V * NP

VP -> * V

Det -> 'my' *

NP -> * Det N

Det -> * "'my’

[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1

[1

[0

.0]
.0]
.0]
.0]
.0]
.0]
.0]
.0]
.0]
.0]
.0]
.0]
[0.
[0.
[0.
[0.
.0]
[0.
[0.
[0.
[0.
.455]
[0.
[0.
[0.
[0.

65]
7]

65]
61]

61]
61]
5]
5]

2]
2]
5]
2]

31

[---]
-= . .
—
. . -=
[---]
-> .
L [--->
—
[---=
R]
[------- >
R]
[------- >
R]
[:::::::::::]
[--=-=-=-=-==-- >
[:::::::::::]
[----=-=---- >

[4
[4

[1

[1

[1

[1
[1
[1

4]
4]
[4:
1 3]
[O:
[3:
[2:
[0:
1 2]
[4:
[O:
1 3]
[2:
[2:
16]
[2:
6]
[0:
6]
[O:
[17z

6]
1]
6]
3]
2]

6]
3]

6]
6]

6]
6]

6]
6]

NP

VP
NP
PP
NP

VP
NP

VP
NP

VP
NP
VP
VP

VP

* NP VP
* NP PP
NP * VP
V NP *
NP * PP
P NP *
NP * PP
NP VP *
VP * PP
NP * PP
NP VP *
VP * PP
NP PP *
NP * VP
V NP *
NP * PP
VP PP *
NP VP *
VP * PP
NP VP *
VP * PP

[1

[3

[1

.0]
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[5.
.469375e-05]
[2.
.38775e-05]

25]

05]

0455]

0375]

0305]

025]

0195]

013]

0125]
006825]
00455]
0007625]
0007625]
0003469375]
000190625]
000138775]
2040625e-05]

081625e-05]

1

1

32

Draw parses (y/n)? vy
please wait...

33

Print parses (y/n)? vy
(S
(NP I)
(VP
(VP (V saw) (NP John))
(PP (P with) (NP (Det my) (N telescope))))) [2.081625e-05]
(S
(NP I)
(VP
(V saw)
(NP
(NP John)
(PP (P with) (NP (Det my) (N telescope)))))) [5.2040625e-05]

34

Statistical chart parsing =

* In this view of chart parsing, probability of chart
entries Is relatively simple to calculate. For
completed constituents, maximize over
C,,...,C, (like Viterbi):

P(B{]) = P(Cg—>C1...Cn\C0)xP(el)x---xP(en)
(!
= P(Cyp—Ci...Cu|Co) x[[Ple;) ©
i=1

eo IS the entry for current constituent, of category Co;
€1 ... en are chart entries for C1 ... Cn In the RHS of
the rule.

NB: Unlike for PoS tagging above, the Cj are not necessarily lexical categories.
40

Statistical chart parsing 4

» Consider a complete parse tree, t, with root
label S.

- Recasting @), t has the probability:

P(t) = P(S) = I1,,P(rule(n)|cat(n)) @
where n ranges over all nodes Iin the tree t;
rule(n) Is the rule used for n;

cat(n) Is the category of n.
+ P(S) =1
» "Bottoms out” at lexical categories.

* Note that we're parsing bottom-up, but the
generative model “thinks” top-down
regardless.

41

Inside-Outside Algorithm

 EM for PCFGs: maximum likelihood estimates
on an annotated corpus can be improved to
iIncrease the likelihood of a different,
unannotated corpus

» Step 1: parse the unannotated corpus using
the MLE parameters.

» Step 2: adjust the parameters according to the
expected relative frequencies of different rules
INn the parse trees obtained In Step 1;

P(A—-B C)=u(A—B C)/ Z
p(A—w) = y(A—w) / Z

42

Inside-Outside Algorithm

o u(A > w) =3, u(A,)5 (w)

where we now count having seenan Afromitoj, aB
fromito k, and a C from k to |,

...or an A at location I, where there appears the word w.

43

Inside-Outside Algorithm

» We can define these position-specific y’'s in

terms of:

* outside probability

* Inside probabillity

A W, 4 W, W, Wiiq Wi 44

Inside-Outside Algorithm

« u(A - BC,ik,j) =
p(A— BC) B(A,i,j) a(B,i,k) a(C,k + 1,))

o u(A4,i) =u(4,i,i

o u(4,i,j) =a(a,i,j) (A L))
e Z=0a(S,1,n)

There are also very terse, recursive

formulations of a and 3that are amenable to
dynamic programming.

45

Statistical chart parsing

- But just like non-statistical chart parsers, this
one only answers ‘yes’ or ‘no’ (with a
probabillity) in polynomial time:

* It's not supposed to matter how we got each

constituent. Just the non-terminal label and the
span are all that should matter.

* There might be exponentially many trees In
this formulation.

* And we're not calculating the probability that
the input Is a sentence — this is only the
probabllity of one interpretation (tree).

5

46

Evaluation 1

Evaluation method:

* Train on part of a parsed corpus.
(l.e., gather rules and statistics.)

» Test on a different part of the corpus.

Development test: early stopping, metaparameters
Evaluation test: evaluate (and then done)

In one sense, the best evaluation of a method
like this would be data likelihood, but since
we're scoring trees instead of strings, it's
difficult to defend any sort of intuition about
the numbers assigned to them.

48

Evaluation

» Evaluation: PARSEVAL measures compare
parser output to known correct parse:

» Labelled precision, labelled recall.

[/
Fraction of constituents ir)/ output that are correct.
/[
Fraction of correct constituents in output.

* F-measure = harmonic mean of precision and
recall = 2PR / (P + R)

49

Evaluation 3

* Evaluation: PARSEVAL measures compare
parser output to known correct parse:

* Penalize for cross-brackets per sentence:
Constituents in output that overlap two (or more)
correct ones; e.g., [[A B] C] for [A [B C]].

[[Nadia] [[smelled] [the eggplant]]]
[[[Nadia] [smelled]] [the eggplant]]

The labels on the subtrees aren’'t necessary
for this one.

50

Evaluation

* PARSEVAL IS a classifier accuracy score —
much more extensional. All that matters is
the right answer at the end.

- But that still means that we can look at parts
of the right answer.

» Can get ~75% labelled precision, recall, and
F with above methods.

51

Improving statistical parsing

* Problem: Probabilities are based only on
structures and categories:

- c(C—a) c(C—a)

» But actual words strongly condition which rule
IS used (cf Ratnaparkhi).

* Improve results by conditioning on more
factors, including words. Think semantics —

the words themselves give us a little bit of
access to this.

52

Lexicalized grammars 1

Head of a phrase: Its central or key word.
* The noun of an NP, the preposition of a PP, etc.

Lexicalized grammar: Refine the grammar
so that rules take heads of phrases into
account — the actual words.

« BEFORE: Rule for NP.
AFTER: Rules for NP-whose-head-is-aardvark,
NP-whose-head-is-abacus, ..., NP-whose-head-is-

zymurgy.
» And similarly for VP, PP, etc.

53

Lexicalized grammars

* Notation: cat(head,tag) for constituent
category cat headed by head with part-of-
Speech tag.

* e.g., NP(aardvark,NN), PP(without,IN)

/ /
NP—Whose—head-is-t}’]e-N N-aardvark

/

PP-whose-head-is-the-IN-without

54

A lexicalized grammar

TOP

|
S(bought,VBD)

NP (week,NN) NP(IBM,NNP) VP(bought,VBD)
I
NNP(IBM,NNP)
JJ(LaiEt’”) NN(W&FR’NN) M VBD(bought,VBD) NP(Lotus,NNP)
| |
Last week bought NNP(Lotus,NNP)
|
Lotus
TOP — S(bought,VBD) NP(Lotus,NNP) — NNP(Lotus,NNP)
S(bought,VBD) — NP(week,NN) NP(IBM,NNP) Lexical Rules:
VP(bought,VBD) JJ(Last,JJ) — Last
NP(week,NN) — JJ(Last,JJ) NN(week,NN) NN(week,NN) — week
NP(IBM,NNP) — NNP(IBM,NNP) NNP(IBM,NNP) — IBM
VP(bought,VBD) — VBD(bought,VBD) VBD(bought,VBD) — bought
NP(Lotus,NNP) NNP(Lotus,NNP) — Lotus

Michael Collins. Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4), 2003, 589— 55
637.

Lexicalized grammars 2

* Number of rules and categories explodes, but

no theoretical change In parsing process
(whether statistical or not).

- But far too specific for practical use; each is
too rarely used to determine its probability.

* Need something more than regular (unlexicalized)
rules and less than complete lexicalization ...

* ... perhaps we should change the process
after all.

57

Lexicalized parsing 1

Starting from unlexicalized rules:
1. Lexicalization: Consider the head word of

each node, not just its category:
Replaces (@
» P(t) = P(S) * II,P(rule(n)|head(n)) from siide 41

where head(n) Is the PoS-tagged head word of node n.

* Needs finer-grained probabillities:

* e.g., probability that rule r is used, given we have an
NP whose head is the noun deficit.

58

Lexicalized parsing

» 2. Head and parent: Condition on the head
and the head of the parent node In the tree:

P(Sentence, Tree)
1_[P(rule(n) | head(n)) x P(head(n) | head(parent(n)))

neTree / /

e.g., probability of rule r given that/head is the noun deficit.

/
.g., probability that head is the noun deficit,
iven that parent phrase’s head is the verb report.

59

Effects on parsing

* Lexical iInformation introduces context into
CFG.

- Grammar Is larger.

» Potential problems of sparse data.

* Possible solutions: Smoothing; back-off
estimates. /

If you don’t have data for a fine-grained
situation, use data from a coarser-grained
situation that it's contained in.

61

Bikel's 2004 intepretation

Can condition on any information available In
generating the tree.

Basic idea: Avoid sparseness of
lexicalization by decomposing rules.

- Make plausible independence assumptions.

» Break rules down into small steps (small number
of parameters).

» Each rule still parameterized with word/PoS pair:
S(bought,vBD) — NP(week,NN) NP(IBM,NNP) VP (bought,vBD)

Michael Collins. Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4), 2003, 589— 63
637.

Collins’s “model 17 1

» Lexical Rules, with probabillity 1:
tag(word, tag) — word

* Internal Rules, with treebank-based
probabilities. Separate terminals to the left
and right of the head; generate one at a time:

X—L,L,-1...L{HRy ...Ryy;_1 Ry (n,m > 0)

X, Li, H, and R all have the form cat(head,tag).
Notation: Italic lowercase symbol for (head,tag):

X(x) = Lu(ln)Lp—1(lp—1) ... L1(l1) H(R) Re(r1) - - Ru—-1("m—1) Rm(rm)

64

Collins’s “model 17 2

* Assume there are additional Lh+1 and Rm+1
representing phrase boundaries ("STOP”).

» Example:
S(bought,vBD) — NP(week,NN) NP(IBM,NNP) VP(bought,vBD)
n =2, m = 0 (two constituents on the left of the head, zero on the right).
X=5,H=VP, L1 =NP, L, = NP, L3 = sTopr, R1 = STOP.
h = (bought,vBD), |1 = (IBM,NNP), I> = (week,NN).

» Distinguish probabilities of heads P, of left
constituents P, and of right constituents P:.

65

Probabilities of internal rules

P(X(h))

= P(Lnt1(lnt1)La(ln) --.L1(l) H(h) Ry(r1) .. Re(rm) Ryp1(tmi1) [X, 1)
— Ph(H|X,h)

‘Generate head constituent

‘Generate left modifiers (stop at sToP) | |Generate right modifiers
(stop at STOP)

By iIndependence assumption

66

Probabilities of internal rules

Example:

P(S(bought,vBD)
— NP(week,NN) NP(IBM,NNP) VP (bought,vBD))

~ Pn(VP | S, bought,VBD)/‘Ge”erate head constituent
x PI(NP(IBM,NNP) | S, bought,vBD, VP)
x P (NP(week,NN) | S, bought,vBD, VP)
x Pi(sTopP | S, bought,vBD, VP)
X Pi(sTOP | S, bought,vBD, VP)

\Generate right modifiers

Generate left
modifiers

67

Adding other dependencies

» (Badly-named) “distance measure” to capture
properties of attachment relevant to current

modifier.
. P(Li(l;;

Py (L;(1;)

X,h,H) becomes
X, h,H,distance;(i — 1))

and analogously on the right.

» The value of distancex Is actually a pair of Boolean
random variables:
* Isstring 1..(I — 1) of length 07
l.e., IS attachment of modifier | to the head?

* Does string 1..(1— 1) contain a verb?
l.e., IS attachment of modifier | crossing a verb?

68

Collins’s “model 1~

 Backs off ...

* to tag probability when no data for specific word,;
* to complete non-lexicalization when necessary.

69

Collins’s Models 2 and 3

* Model 2. Add verb subcategorization and
argument/adjunct distinction.

- Model 3: Integrate gaps and trace
identification into model.

Especially important with addition of
subcategorization.

70

Results and conclusions

* Model 2 outperforms Model 1.

* Model 3: Similar performance, but identifies
traces too.

* Model 2 performs best overall:
- LP=89.6, LR =89.9 [sentences < 100 words].
LP =90.1, LR =90.4 [sentences < 40 words].

* Rich information improves parsing
performance.

73

Results and conclusions

» Strengths:

* Incorporation of lexical and other linguistic
Information.

« Competitive results.
» Weaknesses:
» Supervised training.

» Performance tightly linked to particular type of
COrpus used.

74

Results and conclusions =

 Importance to CL.:

High-performance parser showing benefits of
lexicalization and linguistic information.

Publicly available, widely used In research.

There was some Initial hope that it would make
language models better, but that didn’t pan out.

But it was fairly successful at giving us some
access to semantics, I.e. language modelling
makes parsing better.

75

