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• General idea:

• Assign probabilities to rules in a context-free 
grammar.

• Use a likelihood model.

• Combine probabilities of rules in a tree.

• Yields likelihood of a parse.

• The best parse is the most likely one.

Statistical parsing  1
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• Motivations:

• Uniform process for attachment decisions.

• Use lexical preferences in all decisions.

Statistical parsing  2
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1. Assign a probability to each rule of grammar, including 
lexical productions.  

–Parse string of input words with probabilistic rules.
The can will rust.

2. Assign probabilities only to non-lexical productions.  

–Probabilistically tag input words with syntactic 
categories using a part-of-speech tagger.  

–Consider the pre-terminal syntactic categories to be 
terminals, parse that string with probabilistic rules.

Det N Modal Verb.

3. “Supertagging” – parsing as tagging with tree 
fragments.

Three general approaches
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• Part-of-speech (PoS) tagging:
Given a sequence of words w1 … wn (from 
well-formed text), determine the syntactic 
category (PoS) Ci of each word.

• I.e, the best category sequence C1 … Cn to 
assign to the word sequence w1 … wn. 

Part-of-speech tagging  1

Most likely



The can will rust

det modal verb modal verb noun

noun noun verb

verb verb

Part-of-speech tagging  2
• Example:

6
Example from Charniak 1997

The can will rust

det modal verb modal verb noun

noun noun verb

verb verb
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• We cannot get this probability directly. 

• Have to estimate it (through counts).

• Perhaps after first approximating it (by 
modifying the formula).

• Counts: Need representative corpus.

Part-of-speech tagging  3
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• Look at individual words (unigrams):

• Maximum likelihood estimator (MLE):

PoS tagging: Unigram MLE  1

Count in corpus



• Problems of MLE:

• Sparse data.

• Extreme cases:
a.  Undefined if w is not in the corpus.
b.  0 if w does not appear in a particular category.

9

PoS tagging: Unigram MLE  2



• Smoothing of formula, e.g.,:

𝑃 𝐶 𝑤 ≈
𝑐 𝑤 𝑖𝑠 𝐶 + 𝜖

𝑐 𝑤 + 𝜖𝑁

• Give small (non-zero) probability value to 
unseen events, taken from seen events by 
discounting them.  

• Various methods to ensure we still have valid 
probability distribution. 
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PoS tagging: Unigram MLE  3
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• Just choosing the most frequent PoS for each 
word yields 90% accuracy in PoS tagging.

• But:

• Not uniform across words.

• Accuracy is low (0.9n) when multiplied over n
words.

• No context: The fly vs. I will fly.

• Need better approximations for

PoS tagging: Unigram MLE  4
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• Use Bayes’s rule to rewrite:

• For a given word string, we want to maximize 
this, find most likely C1 … Cn:

• So just need to maximize the numerator.

PoS tagging: Bayesian method

❶ ❷



13

• Approximate ❶P(C1 … Cn) by predicting 
each category from previous N - 1 categories: 
an N-gram model.

• Bigram (2-gram) model:

• Posit pseudo-categories START at C0, and 
END as Cn.  Example:

Approximating probabilities  1

Warning: Not 

the same n!!



• Approximate ❷P(w1 … wn|C1 … Cn) by 
assuming that the probability of a word 
appearing in a category is independent of the 
words surrounding it.

15

Lexical generation

probabilities

Approximating probabilities  2



• Why is P(w|C) better than P(C|w)?

• P(C|w) is clearly not independent of surrounding 
categories.

• Lexical generation probability is somewhat more 
independent.

• Complete formula for PoS includes bigrams, and 
so it does capture some context.

16

Approximating probabilities  3



Putting it all together

Really should use smoothed MLE;

cf slide 10

MLE for categories not the same as for words; 

cf slide 8 17

❸
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• Want to find the argmax (most probable)
C1 … Cn.

• Brute force method: Find all possible 
sequences of categories and compute P.

• Unnecessary:  Our approximation assumes 
independence:

• Category bigrams:  Ci depends only on Ci – 1.
Lexical generation: wi depends only on Ci.

• Hence we do not need to enumerate all 
sequences independently.

Finding max  1
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• Bigrams: 
Markov model.

• States are categories and transitions are bigrams.

• Lexical generation probabilities:  
Hidden Markov model.

• Words are outputs (with given probability) of states.

• A word could be the output of more than one state.

• Current state is unknown (“hidden”).

Finding max  2



Example
• Artificial corpus of PoS-tagged 300 sentences 

using only Det, N, V, P.

• The flower flowers like a bird.
Some birds like a flower with fruit beetles.
Like flies like flies.

…

• Some lexical generation probabilities:

20

P(the|Det) = .54 P(like|N) = .012 P(flower|N) = .063 P(birds|N) = .076

P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076

P(a|N) = .001 P(like|P) = .068 P(flowers|N) = .050 P(flies|N) = .025

⋮ ⋮ P(flowers|V) = .053 ⋮

⋮

Based on an example in section 7.3 of: Allen, James.  Natural 

Language Understanding (2nd ed), 1995, Benjamin Cummings.
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Bigram

Ci–1, Ci
Count Ci-1 Count Ci–1,Ci P(Ci|Ci–1) Estimate

START, 

Det
300 213 P(Det| START) 0.710

START, N 300 87 P(N| START) 0.290

Det, N 558 558 P(N|Det) 1.000

N, V 883 300 P(V|N) 0.340

N, N 883 51 P(N|N) 0.058

N, P 883 307 P(P|N) 0.348

N, END 883 225 P(END|N) 0.255

V, N 300 106 P(N|V) 0.353

V, Det 300 119 P(Det|N) 0.397

V, END 300 75 P(END|V) 0.250

P, Det 307 226 P(Det|P) 0.740

P, N 307 81 P(N|P) 0.260

Markov model: Bigram table



22

Markov model: Transition probabilities

START

Det

N

V

P

END

.71

.397

.25

.255

.34

8

.26

.353

.34

.74

1.0

.29

.058
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P(the|Det) = .54 P(like|N) = .012 P(flower|N) = .063 P(birds|N) = .076

P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076

P(a|N) = .001 P(like|P) = .068 P(flowers|N) = .050 P(flies|N) = .025

⋮ ⋮ P(flowers|V) = .053 ⋮

HMM: Lexical generation probabilities

like
.068

like
flower

flies
birds

a

.076
.025

.063.012

.001

the

a

.54

.36
like

flower

flies

.05
.076

.1
Det

N

V

P

END

.71

.397

.25

.225

.34

8

.26

.353

.34

.74

1.0

.29

START

.058
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• Given the observed output, we want to find 
the most likely path through the model.

Hidden Markov models  1

The can will rust

det modal verb modal verb noun

noun noun verb

verb verb
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• At any state in an HMM, how you got there is 
irrelevant to computing the next transition.

• So, just need to remember the best path and 
probability up to that point.  

• Define φ(Ci–1) as the probability of the best 
sequence up to state Ci–1.

• Then find Ci that maximizes
φ(Ci–1) × P(Ci|Ci–1) × P(w|Ci)       ❸ from slide 17

Hidden Markov models  2



26

• Given an HMM and an observation O of its 
output, finds the most probable sequence S 
of states that produced O.

• O = words of sentence, S = PoS tags of sentence 

• Parameters of HMM based on large training 
corpus.

• Then find Ci that maximizes
φ(Ci–1) × P(Ci|Ci–1) × P(w|Ci)

βi = Ci–1 [backtrace]

Viterbi Algorithm
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• Given an HMM M and an observation O, 
adjust the parameters of M to improve the 
probability P(O).

• O = words of sentence, M = <π,A,B> 

• This is an instance of Expectation-
Maximization (EM).

Baum-Welch Algorithm
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• Consider tags as terminals (i.e., use a PoS 
tagger to pre-process input texts).

Det N Modal Verb.

• For probability of each grammar rule, use 
MLE.

• Probabilities derived from hand-parsed 
corpora (treebanks).

• Count frequency of use c of each rule             , for 
each non-terminal C and each different RHS    . 

What are some problems with this approach?

Statistical chart parsing  1
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• MLE probability of rules:

• For each rule             : 

• Takes no account of the context of use of a 
rule:  independence assumption.

• Source-normalized: assumes a top-down 
generative process.

• NLTK’s pchart demo doesn’t POS-tag first 
(words are generated top-down), and it 
shows P(t) rather than P(t|s)’.  Why?

Statistical chart parsing  2

❹
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:

:
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⬅

⬅

:

:
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• In this view of chart parsing, probability of chart 
entries is relatively simple to calculate.  For 
completed constituents, maximize over 
C1,…,Cn (like Viterbi):

e0 is the entry for current constituent, of category C0; 

e1 … en are chart entries for C1 … Cn in the RHS of

the rule.

NB: Unlike for PoS tagging above, the Ci are not necessarily lexical categories.

40

Statistical chart parsing  3

❺



• Consider a complete parse tree, t, with root 
label S.

• Recasting ❺, t has the probability:
𝑃 𝑡 = 𝑃 𝑆 ∗ Π𝑛𝑃 𝑟𝑢𝑙𝑒 𝑛 𝑐𝑎𝑡 𝑛

where n ranges over all nodes in the tree t;
rule(n) is the rule used for n;
cat(n) is the category of n.

• P(S) = 1!

• “Bottoms out” at lexical categories.

• Note that we’re parsing bottom-up, but the 
generative model “thinks” top-down 
regardless.

41

Statistical chart parsing  4

❻



• EM for PCFGs: maximum likelihood estimates 
on an annotated corpus can be improved to 
increase the likelihood of a different, 
unannotated corpus

• Step 1: parse the unannotated corpus using 
the MLE parameters.

• Step 2: adjust the parameters according to the 
expected relative frequencies of different rules 
in the parse trees obtained in Step 1:

• ṗ(A→B C) = μ(A→B C) / Z

• ṗ(A→w) = μ(A→w) / Z

42

Inside-Outside Algorithm



• 𝜇 𝐴 → 𝐵𝐶 = σ 𝑖,𝑘,𝑗 𝜇(𝐴 → 𝐵𝐶, 𝑖, 𝑘, 𝑗)

• 𝜇 𝐴 → 𝑤 = σ𝑖 𝜇 𝐴, 𝑖 𝛿𝑖 𝑤

where we now count having seen an A from i to j, a B 
from i to k, and a C from k to j,

…or an A at location i, where there appears the word w.

43

Inside-Outside Algorithm 2



• We can define these position-specific μ’s in 
terms of:

• outside probability

• inside probability

44

Inside-Outside Algorithm 3

wp
wmwp-1w1 wq

Wq+1

N

𝜷(𝑵, 𝒑, 𝒒)

𝜶(𝑵, 𝒑, 𝒒)



• 𝜇 𝐴 → 𝐵𝐶, 𝑖, 𝑘, 𝑗 =
𝑝 𝐴 → 𝐵𝐶 𝛽 𝐴, 𝑖, 𝑗 𝛼 𝐵, 𝑖, 𝑘 𝛼(𝐶, 𝑘 + 1, 𝑗)

• 𝜇 𝐴, 𝑖 = 𝜇(𝐴, 𝑖, 𝑖)

• 𝜇 𝐴, 𝑖, 𝑗 = 𝛼 𝐴, 𝑖, 𝑗 𝛽(𝐴, 𝑖, 𝑗)

• 𝑍 = 𝛼 𝑆, 1, 𝑛

There are also very terse, recursive 
formulations of α and β that are amenable to 
dynamic programming.

45

Inside-Outside Algorithm 4



• But just like non-statistical chart parsers, this 
one only answers ‘yes’ or ‘no’ (with a 
probability) in polynomial time:

• It’s not supposed to matter how we got each 
constituent. Just the non-terminal label and the 
span are all that should matter.

• There might be exponentially many trees in 
this formulation.

• And we’re not calculating the probability that 
the input is a sentence – this is only the 
probability of one interpretation (tree).

46

Statistical chart parsing  5
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• Evaluation method:

• Train on part of a parsed corpus.
(I.e., gather rules and statistics.)

• Test on a different part of the corpus.

• Development test: early stopping, metaparameters

• Evaluation test: evaluate (and then done)

• In one sense, the best evaluation of a method 
like this would be data likelihood, but since 
we’re scoring trees instead of strings, it’s 
difficult to defend any sort of intuition about 
the numbers assigned to them.

Evaluation  1



Fraction of correct constituents in output.
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• Evaluation: PARSEVAL measures compare 
parser output to known correct parse:

• Labelled precision, labelled recall.

• F-measure = harmonic mean of precision and 
recall = 2PR / (P + R)

Evaluation  2

Fraction of constituents in output that are correct.
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• Evaluation: PARSEVAL measures compare 
parser output to known correct parse:

• Penalize for cross-brackets per sentence:
Constituents in output that overlap two (or more) 
correct ones; e.g., [[A B] C] for [A [B C]].

• [[Nadia] [[smelled] [the eggplant]]]  

[[[Nadia] [smelled]] [the eggplant]]

• The labels on the subtrees aren’t necessary 

for this one.

Evaluation  3
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• PARSEVAL is a classifier accuracy score –
much more extensional.  All that matters is 
the right answer at the end.

• But that still means that we can look at parts 
of the right answer.

• Can get ~75% labelled precision, recall, and 
F with above methods.

Evaluation  4



Improving statistical parsing

• Problem:  Probabilities are based only on 
structures and categories:

• But actual words strongly condition which rule 
is used (cf Ratnaparkhi).

• Improve results by conditioning on more 
factors, including words. Think semantics –
the words themselves give us a little bit of 
access to this.

52

❹



• Head of a phrase: its central or key word.

• The noun of an NP, the preposition of a PP, etc.

• Lexicalized grammar:   Refine the grammar 
so that rules take heads of phrases into 
account — the actual words.

• BEFORE: Rule for NP.
AFTER: Rules for NP-whose-head-is-aardvark, 
NP-whose-head-is-abacus, …, NP-whose-head-is-
zymurgy.

• And similarly for VP, PP, etc.

53

Lexicalized grammars  1



• Notation:  cat(head,tag) for constituent 
category cat headed by head with part-of-
speech tag.

• e.g., NP(aardvark,NN), PP(without,IN)

54

Lexicalized grammars  2

NP-whose-head-is-the-NN-aardvark

PP-whose-head-is-the-IN-without



A lexicalized grammar
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TOP → S(bought,VBD) 

S(bought,VBD) → NP(week,NN) NP(IBM,NNP) 

VP(bought,VBD) 

NP(week,NN) → JJ(Last,JJ) NN(week,NN) 

NP(IBM,NNP) → NNP(IBM,NNP) 

VP(bought,VBD) → VBD(bought,VBD) 

NP(Lotus,NNP) 

NP(Lotus,NNP) → NNP(Lotus,NNP) 

Lexical Rules:

JJ(Last,JJ) → Last

NN(week,NN) → week

NNP(IBM,NNP) → IBM

VBD(bought,VBD) → bought

NNP(Lotus,NNP) → Lotus

Michael Collins.  Head-driven statistical models for natural language parsing.  Computational Linguistics, 29(4), 2003, 589–

637.



• Number of rules and categories explodes, but 
no theoretical change in parsing process 
(whether statistical or not).

• But far too specific for practical use; each is 
too rarely used to determine its probability.

• Need something more than regular (unlexicalized) 

rules and less than complete lexicalization …

• … perhaps we should change the process 
after all.

57

Lexicalized grammars  3



Starting from unlexicalized rules:

• 1. Lexicalization: Consider the head word of 
each node, not just its category:

• 𝑃 𝑡 = 𝑃 𝑆 ∗ Π𝑛𝑃(𝑟𝑢𝑙𝑒(𝑛)|ℎ𝑒𝑎𝑑 𝑛 )

where head(n) is the PoS-tagged head word of node n.

• Needs finer-grained probabilities:  

• e.g., probability that rule r is used, given we have an 
NP whose head is the noun deficit.

58

Lexicalized parsing  1

Replaces ❻
from slide 41
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• 2. Head and parent: Condition on the head 
and the head of the parent node in the tree:

Lexicalized parsing  2

e.g., probability of rule r given that head is the noun deficit.

e.g., probability that head is the noun deficit, 

given that parent phrase’s head is the verb report.
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• Lexical information introduces context into 
CFG.

• Grammar is larger. 

• Potential problems of sparse data.

• Possible solutions:  Smoothing; back-off 
estimates.

Effects on parsing

If you don’t have data for a fine-grained 

situation, use data from a coarser-grained 

situation that it’s contained in.
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Bikel’s 2004 intepretation
• Can condition on any information available in 

generating the tree.

• Basic idea: Avoid sparseness of 
lexicalization by decomposing rules.

• Make plausible independence assumptions.

• Break rules down into small steps (small number 
of parameters).

• Each rule still parameterized with word/PoS pair:

S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)

Michael Collins.  Head-driven statistical models for natural language parsing.  Computational Linguistics, 29(4), 2003, 589–

637.
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Collins’s “model 1”  1
• Lexical Rules, with probability 1:

tag(word, tag) → word

• Internal Rules, with treebank-based 
probabilities.  Separate terminals to the left 
and right of the head; generate one at a time:

X, Li, H, and Ri all have the form cat(head,tag).   
Notation: Italic lowercase symbol for (head,tag):
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Collins’s “model 1”  2
• Assume there are additional Ln+1 and Rm+1

representing phrase boundaries (“STOP”).

• Example:
S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
n = 2, m = 0 (two constituents on the left of the head, zero on the right).

X = S, H = VP, L1 = NP, L2 = NP, L3 = STOP, R1 = STOP.
h = (bought,VBD), l1 = (IBM,NNP), l2 = (week,NN).

• Distinguish probabilities of heads Ph, of left 
constituents Pl, and of right constituents Pr.
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Probabilities of internal rules  1

Generate head constituent

Generate left modifiers (stop at STOP) Generate right modifiers

(stop at STOP)
By independence assumption



Probabilities of internal rules  2

P( S(bought,VBD) 
→ NP(week,NN) NP(IBM,NNP) VP(bought,VBD) )

≈  Ph(VP | S, bought,VBD) 
× Pl(NP(IBM,NNP) | S, bought,VBD, VP) 

× Pl(NP(week,NN) | S, bought,VBD, VP) 
× Pl(STOP | S, bought,VBD, VP) 

× Pr(STOP | S, bought,VBD, VP)

Example:

67

Generate head constituent

Generate left 

modifiers

Generate right modifiers
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• (Badly-named) “distance measure” to capture 
properties of attachment relevant to current 
modifier.

• becomes

and analogously on the right.

• The value of distancex is actually a pair of Boolean
random variables:
• Is string 1..(i – 1) of length 0?

i.e., is attachment of modifier i to the head?

• Does string 1..(i – 1) contain a verb?
i.e., is attachment of modifier i crossing a verb?

Adding other dependencies



Collins’s “model 1”  4
• Backs off …

• to tag probability when no data for specific word;

• to complete non-lexicalization when necessary.

69
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Collins’s Models 2 and 3
• Model 2:  Add verb subcategorization and 

argument/adjunct distinction. 

• Model 3:  Integrate gaps and trace 
identification into model.

• Especially important with addition of 
subcategorization.
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Results and conclusions  1

• Model 2 outperforms Model 1.

• Model 3:  Similar performance, but identifies 
traces too.

• Model 2 performs best overall:

• LP = 89.6, LR = 89.9  [sentences ≤ 100 words].

• LP = 90.1, LR = 90.4  [sentences ≤ 40 words].

• Rich information improves parsing 
performance.
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Results and conclusions  2

• Strengths:

• Incorporation of lexical and other linguistic 
information.

• Competitive results.

• Weaknesses:

• Supervised training.

• Performance tightly linked to particular type of 
corpus used.
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Results and conclusions  3

• Importance to CL:

• High-performance parser showing benefits of 
lexicalization and linguistic information.

• Publicly available, widely used in research.

• There was some initial hope that it would make  
language models better, but that didn’t pan out.

• But it was fairly successful at giving us some 
access to semantics, i.e. language modelling 
makes parsing better.


