Computational Linguistics

5a. Extending grammars with features

Gerald Penn
Department of Computer Science, University of Toronto

Reading: Jurafsky \& Martin: 12.3.4-6, 15.0-3; [Allen: 4.1-5]; Bird et al: 9.

Agreement and inflection

- Problem: Agreement phenomena.

Nadia \{washes/* wash\} the dog.
The boys \{*washes/wash\} the dog.
You \{* washes/wash\} the dog.
Morphological inflection of verb must match subject noun in person and number.

Subject-verb agreement

Present tense

Singular

Plural

1	I	wash	we
2	you		
$\mathbf{2}$	wash	you wash	
3	he/she/it washes they wash		

1	l am	we are
2	you are	you are
$\mathbf{3}$ he, she, it is	they are	

Subject-verb agreement

Past tense

Singular

Plural

1 I washed we washed
2 you washed you washed
3 he, she, it washed they washed

1	I	was	we
2	wou	were	you were
3	he, she, it was	they were	

Agreement features

English agreement rules are fairly simple.

- Subject : verb w.r.t. person and number.
- No agreement required between verb and object.
- Many languages have other agreements.
- E.g., German: Article and adjective ending depends on noun gender and case:

Agreement features

Nominative Case (Subject Case)

Masculine	Feminine	Neuter	Plural
der	die	das	die
der neue Wagen			
the new car	die schöne Stadt the beautiful city	das alte Auto the old car	die neuen Bücher the new books
Masculine	Feminine	Neuter	Plural
ein	eine	ein	keine
ein neuer Wagen	eine schöne Stadt		
a new car	a beautiful city	ein altes Auto	an old car

Agreement features 2

Accusative Case (Direct Object)

Masculine den	Feminine die	Neuter das	Plural die
den neuen Wagen the new car	die schöne Stadt the beautiful city	das alte Auto the old car	die neuen Bücher the new books
Masculine einen	Feminine eine	Neuter ein	Plural keine
einen neuen Wagen a new car	eine schöne Stadt a beautiful city	ein altes Auto an old car	keine neuen Bücher no new books

Agreement features

E．g．，Chinese：Numeral classifiers，often based on shape，aggregation，．．．：

两条鱼 liang tiao yu＇two CLASSIF－LONG－ROPELIKE fish＇两条河 liang tiao he＇two CLASSIF－LONG－ROPELIKE rivers＇两条腿 liang tiao tui＇two CLASSIF－LONG－ROPELIKE legs＇两条裤子 liang tiao kuzi＇two CLASSIF－LONG－ROPELIKE pants＇两只胳膊 liang zhi gebo＇two CLASSIF－GENERAL arms＇
两件上衣 liang jian shangyi＇two CLASSIF－CLOTHES－ABOVE－WAIST tops＇
两套西装 liang tao xizhuang＇two CLASSIF－SET suits＇

Zhang，Hong（2007）．Numeral classifiers in Mandarin Chinese．Journal of East Asian Linguistics， 16（1），43－59．Thanks also to Tong Wang，Vanessa Wei Feng，and Helena Hong Gao．

Agreement features

- English agreement rules are fairly simple.
- Many languages have other agreements.
- Some languages have multiple grammatical genders.
- E.g. Chichewa has genders for men, women, bridges, houses, diminuitives, men inside houses, etc. Between 12-18 in total.
- Some languages overtly realize many of these distinctions.
- E.g. some Hungarian verbs have as many as 4096 inflected forms.
- Word may be inflected ...
- ... to indicate paradigmatic properties, e.g. singular / plural, past / present, ...
- ... to indicate some (other) semantic properties
- ... to agree with inflection of other words.
- Each (open-class) word-type has a base form / stem / lemma.
- Each occurrence of a word includes inflection by a (possibly null) morphological change.

Rule proliferation

- Problem: How to account for this in grammar.
- Possible solution: Replace all NPs, Vs, and VPs throughout the grammar.
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$N P \rightarrow$ you, dog, dogs, bear, bears,
$\mathrm{VP} \rightarrow \mathrm{V}$ NP
$\mathrm{V} \rightarrow$ washes, wash, washed, is, was, ...
$S \rightarrow N P_{3 s} V_{3 s}$
$S \rightarrow N_{3}$ V VP3p
$\mathrm{S} \rightarrow \mathrm{NP} 2 \mathrm{VP} 2$
$S \rightarrow N P_{1 s}$ VP1s
$S \rightarrow \mathrm{NP}_{1 p} \mathrm{VP}_{1 p}$
NP3s \rightarrow dog, bear, ... $\mathrm{NP}_{3 p} \rightarrow$ dogs, bears

$$
\begin{gathered}
\text { NP2 } \rightarrow \text { you } \\
\vdots \\
\text { VP3s } \rightarrow \text { V3s NP } \\
\vdots \\
\text { V3s } \rightarrow \text { is, was, } \\
\text { washes, washed, ... }
\end{gathered}
$$

$$
\mathrm{V} 3 \mathrm{p} \rightarrow \text { are, were }
$$

wash, washed, ... washed, ...

Rule proliferation

- Drawback 1: the result is big ... really big.
- Drawback 2: Losing the generalization:
- All these Ss, NPs, VPs have the same structure.
- Doesn't depend on particular verb, noun, and number.
- CF rules collapse together structural and featural information.
- All information must be completely and directly specified.
- E.g., can't just say that values must be equal for some feature without saying exactly what values.

Feature structures

- Solution: Separate feature information from syntactic, structural, and lexical information.
- A feature structure is a list of pairs: [feature-name feature-value]
- Feature-values may be atoms or feature structures.
- Can consider syntactic category or word to be bundle of features too.
- Can represent syntactic structure.

Feature structures

Drawback: many equivalent notations.

$\mathrm{N}\left[\begin{array}{lc}\text { Num } & \mathrm{s} \\ \text { Pers } & 3 \\ \text { Lex } & \text { dog }\end{array}\right] \quad \operatorname{dog}\left[\begin{array}{ll}\text { Cat } & \mathrm{N} \\ \text { Num } & \mathrm{s} \\ \text { Pers } & 3\end{array}\right] \quad \mathrm{N} / \mathrm{dog}\left[\begin{array}{ll}\text { Num } & \mathrm{s} \\ \text { Pers } & 3\end{array}\right]$
\(\left[$$
\begin{array}{ll}\text { Cat } & \mathrm{N} \\
\text { Num } & \mathrm{s} \\
\text { Pers } & 3 \\
\text { Lex } & \operatorname{dog}\end{array}
$$\right] \quad\left[$$
\begin{array}{lll}\text { Cat } & \mathrm{N} \\
\text { Agr } & {\left[\begin{array}{ll}\text { Num s } \\
\text { Pers } & 3\end{array}
$$\right]}

Lex \& d o g\end{array}\right] \quad\)| Feature paths: |
| :--- |
| features of |
| features; e.g., |
| (Agr Pers 3) |

Feature structures

NP formed from Det and N.
Feature values in components become feature names in new constituent.

Components of feature use

- 1. Lexical specification:

Description of properties of a word: morphological, syntactic, semantic, ...
dog:
sleeps: $\left[\begin{array}{ll}\text { Cat } & \mathrm{V} \\ \text { Agr } & 3 \mathrm{~s}\end{array}\right]$
dogs: [Cat N] sleep: [Cat V
Agr 3p
Agr $\{1 \mathrm{~s}, 2 \mathrm{~s}, 1 \mathrm{p}, 2 \mathrm{p}, 3 \mathrm{p}\}$]
Or: $\quad \mathrm{N} \rightarrow$ dog
$\mathrm{V} \rightarrow$ sleeps
(N Agr) $=3 \mathrm{~s}$
$\mathrm{N} \rightarrow$ dogs
$(\mathrm{V}$ Agr) $=3 \mathrm{~s}$
$(\mathrm{N}$ Agr) $)=3 p$
$\mathrm{V} \rightarrow$ sleep
$(\mathrm{V}$ Agr) $=\{1 \mathrm{~s}, 2 \mathrm{~s}, 1 \mathrm{p}, 2 \mathrm{p}, 3 \mathrm{p}\}$

Components of feature use

- 2. Agreement:
- Constraints on co-occurrence in a rule - within or across phrases.
- Typically are equational constraints.

$$
\begin{aligned}
& \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{~N} \\
&(\text { Det Num })=(\mathrm{N} \mathrm{Num}) \\
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \quad(\mathrm{NP} \text { Agr })=(\text { VP Agr })
\end{aligned}
$$

Components of feature use

- 3. Projection:

- Sharing of features between the head of a phrase and the phrase itself.

$$
\begin{aligned}
V P \rightarrow V & \ldots \\
& (V P \text { Agr) }=(V A g r)
\end{aligned}
$$

- Head features:
- Agr is typical, but so is the head-word itself as a feature.
(Common enough that there's usually a mechanism for "declaring" head features and omitting them from rules.)

Constraints on feature values

- What does it mean for two features to be "equal"?
- A copy of the value or feature structure, or a pointer to the same value or feature structure (re-entrancy, shared feature paths).

Constraints on feature values

But: It may be sufficient that two features are not equal, just compatible - that they can be unified.

- E.g., $\left[\begin{array}{ll}\text { Cat } & N \\ \text { Pers } & 3 \\ \text { Num } & 3\end{array}\right]$ and $\left[\begin{array}{ll}\text { Cat } & N \\ \text { Pers } & 3 \\ \text { Gndr } & \text { F }\end{array}\right]$

Subsumption of feature structures

- Feature structure X subsumes feature structure Y if Y is consistent with, and at least as specific as X.
- Also say that Y extends X.

Y can add (non-contradictory) features to those in X .

- Definition: X subsumes $Y(X \subseteq Y)$ iff there is a simulation of X inside Y , i.e., a function s.t.:
- $\operatorname{sim}(X)=Y$
- If X is atomic, so is Y and $X=Y$
- Otherwise, for all feature values X.f: Y.f is defined, and sim simulates X.f inside Y.f.

Subsumption of feature structures

Examples:

$\left[\begin{array}{ll}\text { Cat } & \bar{N} \\ \text { Pers } & 3\end{array} \sqsubseteq\left[\begin{array}{ll}\text { Cat } & \bar{N} \\ \text { Pers } & 3 \\ \text { Gndr } & F\end{array}\right] \quad\right.$ but $\quad\left[\begin{array}{ll}\text { Cat } & \bar{N} \\ \text { Pers } & 3 \\ \text { Num } & \mathrm{s}\end{array}\right] \nsubseteq\left[\begin{array}{ll}\text { Cat } & \bar{N} \\ \text { Pers } & 3 \\ \text { Gndr } & F\end{array}\right]$

Unification

- The unification of X and $Y(X \sqcup Y)$ is the most general feature structure Z that is subsumed by both X and Y .
- Z is the smallest feature structure that extends both X and Y.
- Unification is a constructive operation.
- If any feature values in X and Y are incompatible, it fails.
- Else it produces a feature structure that includes all the features in X and all the features in Y .

Unification

$\left[\begin{array}{ll}\text { Cat } & \mathbf{N} \\ \text { Pers } & 3 \\ \text { Num s }\end{array}\right] \sqcup\left[\begin{array}{ll}\text { Cat } & \mathbf{N} \\ \text { Pers } & 3 \\ \text { Gndrl } & \text { F }\end{array}\right]=\left[\begin{array}{ll}\text { Cat } & \mathbf{N} \\ \text { Pers } & 3 \\ \text { Num } & \text { S } \\ \text { Gndr } & F\end{array}\right]$

Features in chart parsing

- Each constituent has an associated feature structure.
- Constituents with children have a feature structure for each child.
- Arc addition:
- The feature structure of the new arc is initialized with all known constraints.
- Arc extension:
- The feature structure of the predicted constituent must unify with that of the completed constituent extending the arc.

Sample grammar fragment

$S \rightarrow N P$ VP
(NP Agr) $=(\mathrm{VP}$ Agr)
$N P \rightarrow$ Det N
(NP Agr) $=(\mathrm{N}$ Agr $)$
$($ Det Agr) $=(\mathrm{N}$ Agr $)$
VP \rightarrow V
$(\mathrm{VP} \mathrm{Agr})=(\mathrm{V}$ Agr $)$
Det $\rightarrow a \quad$ Det \rightarrow all
[Agr 3s]
$\mathrm{N} \rightarrow \operatorname{dog} \quad \mathrm{N} \rightarrow$ dogs
[Agr 3s] [Agr 3p]
$\mathrm{V} \rightarrow$ sleep $\quad \mathrm{V} \rightarrow$ sleeps
[Agr ^3s]
[Agr 3s]

Mismatched features fail

Unifiable features succeed

Advantages of this approach

- Distinguishes structure from "functional" info.
- Allows for economy of specification:
- Equations in rules:

$$
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}
$$

$$
(\mathrm{NP} \text { Agr) }=(\mathrm{VP} \mathrm{Agr})
$$

- Sets of values in lexicon:

$$
\mathrm{N} \rightarrow \text { fish }
$$

(N Agr \{3s, 3p\})

- Allows for indirect specification and transfer of information, e.g., head features.

Features and the lexicon

- Lexicon may contain each inflected form.
- Feature values and base form listed.
- Lexicon may contain only base forms.
- Process of morphological analysis maps inflected form to base form plus feature values.
- Time-space trade-off, varies by language.
- Lexicon may contain semantics for each form.

Morphological analysis

- Morphological analysis is simple in English.
- Reverse the rules for inflections, including spelling changes.
dogs \rightarrow dog [Agr 3p] \quad eats \rightarrow eat [Agr 3s, Tns pres] $d o g \rightarrow d o g[A g r ~ 3 s] \quad$ ripped \rightarrow rip [Tns past] berries \rightarrow berry [Agr 3p] tarried \rightarrow tarry [Tns past] buses \rightarrow bus [Agr 3p] running \rightarrow run [Tns pp]
- Irregular forms will always have to be explicitly listed in lexicon.
children \rightarrow child [Agr 3p] sang \rightarrow sing [Tns past]

Morphology in other languages

- Rules may be more complex in other (even European) languages.
- Languages with compounding (e.g., German) or agglutination (e.g., Finnish) require moresophisticated methods.
- E.g., Verdauungsspaziergang, a stroll that one takes after a meal to assist in digestion.

Semantics as a lexical feature

- Add a Sem feature:

- The meaning of dog is dog. The meaning of chien and Hund are both dog.
The meaning of dog is G52790.
Not uncommon, but pretty unimpressive...

Verb subcategorization

Problem: Constraints on verbs and their complements.

Nadia told / instructed / *said / *informed Ross to sit down. Nadia *told / *instructed / said / *informed to sit down. Nadia told / *instructed / *said / informed Ross of the requirement to sit down.
Nadia gave / donated her painting to the museum. Nadia gave / *donated the museum her painting.
Nadia put / ate the cake in the kitchen. Nadia *put / ate the cake.

Verb subcategorization

- VPs are much more complex than just V with optional NP and/or PP.
- Can include more than one NP.
- Can include clauses of various types: that Ross fed the marmoset to pay him the money
- Subcat: A feature on a verb indicating the kinds of verb phrase it allows:
_np, _np_np, _inf, _np_inf, ... Write this way to distinguish from constituents.

Verb tense and aspect

- Tense and aspect markings on verb:
- Locate the event in time (relative to another time).
- Mark the event as complete/finished or in progress.

Nadia rides the horse. - In progress now.
Nadia rode the horse. - Completed before now.
Nadia had ridden the horse. - Completed before before now.
Nadia was riding the horse. - In progress before now.

Verb tense and aspect 2

- Tense: past or present
- Aspect: simple, progressive, or perfect

Verb tense and aspect

Tense: past or present

- Aspect: simple, progressive, or perfect

Nadia ... Auxiliary verbs
 Simple

Present rides
has been riding
Past rode
had been riding
... the horse

Modal verbs: Auxiliary verbs that express degrees of certainty, obligation, possibility, prediction, etc.
Nadia
\{could, should, must, ought to, might, will, ...\}
\{ride, be riding, have ridden, have been riding\} the horse.

English auxiliary system

- Structure (so far):
[MODAL] [HAVE] [BE] MAIN-VERB
General pattern:
VP \rightarrow AUX VP
AUX \rightarrow MODAL | HAVE | BE
- Use features to capture necessary agreements.

Voice

The goalie kicked the ball.

ACTIVE

Event: kicked

Role: Agent (doer)

Role: Theme
 (thing affected)

Thing: the goalie Thing: the ball
kick (agent=goalie, theme=ball)

The ball was kicked.

Event: kicked

Role: Theme
(thing affected)

kick (agent=?, theme=ball)

The ball was kicked by the goalie. PASSIVE

Event: kicked

Role: Theme (thing affected)

Thing: the ball Thing: the goalie
kick (agent=goalie, theme=ball)

Passive as Diathetic alternation

the goalie kicked the ball

From object position in VP to subject position in S

the ball waskicked by the goalie

From subject position in S to $P P$ in VP

But the semantic representation doesn't change

Voice

- Voice: System of assigning thematic roles to syntactic positions.
- English has active and passive voices.
- Passive expressed with be+past participle. Other auxiliaries may also apply, including progressive be.
- Nadia was kissed. Nadia had been kissed. Nadia could be kissed. kissed.
Structure:
[Modal] [Have] [BE E_{1}] [BE E_{2}] Main-Verb

Some useful features

- VForm: The tense/aspect form of a verb: passive, pastprt, ...
CompForm: The tense/aspect form of the complement of an auxiliary.

Augmenting rules for passive voice

- For all rules of the form:

$$
\begin{aligned}
& \mathrm{VP} \rightarrow \mathrm{~V} \text { NP } X \quad \text { ADD } \mathrm{VP} \rightarrow \mathrm{~V} X \\
& (\mathrm{~V} \text { Subcat })=_\quad \text { (V Subcat) }=_y \\
& \text { (V VForm) = passive } \\
& \text { (VP VForm) }=\text { passive }
\end{aligned}
$$

- Augment Aux+VP rules:
$\mathrm{VP} \rightarrow \mathrm{AUX}$ VP
(AUX Root) $=\mathrm{Be} 2$
(AUX CompForm) $=\left(\mathrm{VP}_{2}\right.$ VForm $)$
$\left(\mathrm{VP}_{2} \mathrm{VForm}\right)=$ passive

The GAP feature for passive voice

```
S -> NP VP
    1 (NP Agr) = (VP Agr)
    2(VP VForm) = passive
    3(VP Gap Cat) = NP
    4(VP Gap Agr) = (NP Agr)
    5(VP Gap Sem) = (NP Sem)
VP -> AUX VP
    1(VP }\mp@subsup{\mp@code{1}}{1}{\prime
    2(VP
    3(VP
    4(AUX Lex) = be2
    5(VP 2 VForm) = passive
V }->\mathrm{ kicked
    1}(\textrm{V}\mathrm{ VForm) = {pastprt, passive}
    2}(V Subcat) = _np
    3}(\textrm{V}\mathrm{ Lex) = kick
    4}(\textrm{V}\mathrm{ Sem) = kick
```

```
VP -> V NP
```

VP -> V NP
1 (VP VForm) = (V VForm)
1 (VP VForm) = (V VForm)
2 (VP Gap) = (NP Gap)
2 (VP Gap) = (NP Gap)
3 (V Subcat) = _np
3 (V Subcat) = _np
Empty string
Empty string
NP }->
NP }->
1 (NP Gap Cat) = NP
1 (NP Gap Cat) = NP
2 (NP Gap Agr) = (NP Agr)
2 (NP Gap Agr) = (NP Agr)
3 (NP Gap Sem) = (NP Sem)
3 (NP Gap Sem) = (NP Sem)
NP }->\mathrm{ cans
NP }->\mathrm{ cans
1 (NP Agr) = 3p
1 (NP Agr) = 3p
2 (NP Lex) = can
2 (NP Lex) = can
3 (NP Sem) = cans
3 (NP Sem) = cans
AUX }->\mathrm{ were
AUX }->\mathrm{ were
1 (AUX Agr) = 3p
1 (AUX Agr) = 3p
2 (AUX Lex) = be2

```
2 (AUX Lex) = be2
```


Other cases of gap percolation

Other constructions involve NPs in syntactic configurations where they would not get the right thematic roles using linear order alone.
Nadia seems to like Ross.
Nadia seems to be liked.
Nadia is easy to like.
Who did Nadia like?
I fed the dog that Nadia likes to walk.

- Can use grammar rules with gap features to ensure correct structure/interpretation of these as well.

Summary

- Features help capture syntactic constructions in a general and elegant grammar.
Features can encode the compositional semantics of a sentence as you parse it. Features can accomplish mapping functions between syntax and semantics that simplify the interpretation process.

