Computational Linguistics CSC 485/2501 Fall 2023

4C

4c. Language Modelling and Grammar

Gerald Penn Department of Computer Science, University of Toronto

Copyright © 2022 Gerald Penn. All rights reserved.

Language Modelling (Shannon, 1951; Jelinek, 1976)

$$\hat{w} = \underset{W_n}{\operatorname{argmax}} P(w_n \mid w_1 \dots w_{n-1})$$

Examples:

- SkipGram (word2vec)
- BERT
- GPT

Language Modelling (Shannon, 1951; Jelinek, 1976)

$$\hat{w} = \operatorname{argmax}_{n} P(w_n \mid w_1 \dots w_{n-1})$$

 w_n

Example sentences: Athens is the capital ____ Athens is the capital of ____

What do you need to know to predict the first? What do you need to know to predict the second?

"BERT Rediscovers the Classical NLP Pipeline"

Tenney et al. (2019)

BERT recapitulates the "NLP pipeline?"

"Surface information at the bottom, syntactic information in the middle, semantic information at the top."

Jawahar et al. (2019)

"It appears that basic syntactic information appears earlier in the network, while high-level semantic information appears at higher layers."

Tenney et al. (2019)

Kendall's τ

τ

τ

Layer	SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
1 2 3	93.9 (2.0) 95.9 (3.4) 96.2 (3.9)	24.9 (24.8) 65.0 (64.8) 66.5 (66.0)	35.9 (6.1) 40.6 (11.3) 39.7 (10.4)	63.6 (9.0) 71.3 (16.1) 71.5 (18.5)	50.3 (0.3) 55.8 (5.8) 64.9 (14.9)	82.2 (18.4) 85.9 (23.5) 86.6 (23.8)	77.6 (10.2) 82.5 (15.3) 82.0 (14.6)	76.7 (26.3) 80.6 (17.1) 80.3 (16.6)	49.9 (-0.1) 53.8 (4.4) 55.8 (5.9)	53.9 (3.9) 58.5 (8.5) 59.3 (9.3)
4 5	94.2 (2.3) 92.0 (0.5)	69.8 (69.6) 69.2 (69.0)	39.4 (10.8) 40.6 (11.8)	71.3 (18.3) 81.3 (30.8)	74.4 (24.5) 81.4 (31.4)	87.6 (25.2) 89.5 (26.7)	81.9 (15.0) 85.8 (19.4)	81.4 (19.1) 81.2 (18.6)	59.0 (8.5) 60.2 (10.3)	58.1 (8.1) 64.1 (14.1)
6 7 8	88.4 (-3.0) 83.7 (-7.7) 82.9 (-8.1)	63.5 (63.4) 56.9 (56.7) 51.1 (51.0)	41.3 (13.0) 40.1 (12.0) 39.2 (10.3)	83 3 (36.6) 84.1 (39.5) 84.0 (22.2)	82.9 (32.9) 83.0 (32.9) 83.9 (33.9)	89.8 (27.6) 89.9 (27.5) 89.9 (27.6)	88.1 (21.9) 87.4 (22.2) 87.5 (22.2)	82.0 (20.1) 82.2 (21.1) 81.2 (19.7)	60.7 (10.2) 61.6 (11.7) 62.1 (12.2)	71.1 (21.2) 74.8 (24.9) 76.4 (26.4)
9 10	80.1 (-11.1) 77.0 (-14.0) 73.9 (-17.0)	47.9 (47.8) 43.4 (43.2) 42.8 (42.7)	38.5 (10.8) 38.1 (9.9) 36.3 (7.9)	83.1 (39.8) 81.7 (39.8) 80.3 (39.1)	87.0 (37.1) 80.7 (30.7) 86.8 (36.8)	90.0 (28.0) 89.7 (27.0) 89.9 (27.8)	87.6 (22.9) 87.1 (22.6) 85.7 (21.9)	81.8 (20.5) 80.5 (19.9) 78.9 (18.6)	63.4 (13.4) 63.3 (12.7) 64.4 (14.5)	78.7 (28.9) 78.4 (28.1) 77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

) = 0.596

Table 2: Probing task perfermance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Layer	SentLen	WC	TreeDepth	TopConst	BShift	Tense	SubjNum	ObjNum	SOMO	CoordInv
	(Surface)	(Surface)	(Syntactic)	(Syntactic)	(Syntactic)	(Semantic)	(Semantic)	(Semantic)	(Semantic)	(Semantic)
1 2 3 4 5 6 7 8 9 10	03.9 (2.0) 9 (3.4) (3.9) 9 88.4 83.7 (82.9 86 (1) 86 (1) 4.0)	24.9 (* 8) 65 (* 6) (69.0) 55 (63.4) 56.9 (56.7) (.1 (51.0) (47.8) (3.2)	35.9 (6.1) 40.6 (11.3) 39.7 (10.4) 39.4 (10.8) 40.6 (11.8) 40.6 (11.8) 40.1 (12.0) 39.2 (10.3) 38.5 (10.8) 38.1 (9.9)	63.6 (9.0) 71.3 (16.1) 71.5 (18.5) 71.3 (18.3) 81.3 (30.8) 83.3 (36.6) 84.1 (39.5) 83.1 (39.8) 81.7 (39.8)	50.3 (0.3) 55.8 (5.8) 64.9 (14.9) 74.4 (24.5) 81.4 (31.4) 82.9 (32.9) 83.0 (32.9) 83.9 (33.9) 87.0 (37.1) 80.7 (30.7)	82.2 (18.4) 85.9 (23.5) 86.6 (23.8) 87.6 (25.2) 89.5 (26.7) 89.8 (27.6) 89.9 (27.6) 89.9 (27.6) 90.0 (28.0) 89.7 (27.6)	77.6 (10.2) 82.5 (15.3) 82.0 (14.6) 81.9 (15.0) 85.8 (19.4) 87.4 (22.2) 87.5 (22.2) 87.6 (22.9) 87.1 (22.6)	76.7 (26.3) 80.6 (17.1) 80.3 (16.6) 81.4 (19.1) 81.2 (18.6) 82.0 (20.1) 81.2 (19.7) 81.8 (20.5) 80.5 (19.9)	$\begin{array}{c} 49.9 \ (-0.1) \\ 53.8 \ (4.4) \\ 55.8 \ (5.9) \\ 59.0 \ (8.5) \\ 60.2 \ (10.3) \\ 60.7 \ (10.2) \\ 61.6 \ (11.7) \\ 62.1 \ (12.2) \\ 63.4 \ (13.4) \\ 63.3 \ (12.7) \end{array}$	53.9 (3.9) 58.5 (8.5) 59.3 (9.3) 58.1 (8.1) 64.1 (14.1) 71.1 (21.2) 74.8 (24.9) 76.4 (26.4) 78.7 (28.9) 78.4 (28.1)
11	(-17.0)	4. 7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
12	.5 (-21.4)	49.1	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

) = 0.269

Table 2: Probing task perfermance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Surface

Syntactic

Semantic

Kendall's τ (non-parametric)

Determines the strength of association between two random variables based upon the number of pairs of paired samples that are "concordant":

Jawahar et al. (2019) Probing Result

	SL	WC	TD	TC	BS	Tense	SN	ON	SOMO	CI	20.0
	2.3	44.9	5.4	20.5	36.7	7.8	10.5	5.5	15.3	24.8	- 20.0
- 2	0.3	4.8	0.7	12.8	31.2	4.1	5.6	1.6	11.4	20.2	- 17.5
m -	96.2	3.3	1.6	12.6	22.1	3.4	6.1	1.9	9.4	19.4	15.0
4 -	2.0	69.8	1.9	12.8	12.6	2.4	6.2	0.8	6.2	20.6	- 15.0
<u>ہ</u>	4.2	0.6	0.7	2.8	5.6	0.5	2.3	1.0	5.0	14.6	- 12.5
ers -	7.8	6.3	41.3	0.8	4.1	0.2	88.1	0.2	4.5	7.6	10.0
Lay	12.5	12.9	1.2	84.1	4.0	0.1	0.7	82.2	3.6	3.9	- 10.0
- 00	13.3	18.7	2.1	0.1	3.1	0.1	0.6	1.0	3.1	2.3	- 7.5
ი -	16.1	21.9	2.8	1.0	87.0	90.0	0.5	0.4	1.8	78.7	- 5 0
10	19.2	26.4	3.2	2.4	0.3	0.3	1.0	1.7	1.9	0.3	- 5.0
11 -	22.3	27.0	5.0	3.8	0.2	0.1	2.4	3.3	0.8	1.1	- 2.5
- 12	26.7	20.7	6.6	7.6	0.6	0.5	4.1	3.5	65.2	3.8	- 0.0
	Surf	ace	S	yntact	ic		Se	emant	ic		0.0

Pearson r = 0.319, p = 0.44 Weak correlation between layer and COG

Limitation of Tenney et al.'s (2019) Architecture

- Tenney et al. used the same set of scalar attention weights for every input sentence: cannot capture variance of attention patterns across sentences.
- The probe examines one (or two) span representations: cannot observe task knowledge across token positions.

SOLUTION

Self-attention Pooling (Lee et al., 2017):

$$\alpha_{t} = \boldsymbol{w}_{\alpha} \cdot \text{FFNN}_{\alpha}(\boldsymbol{x}_{t}^{*})$$

$$a_{i,t} = \frac{\exp(\alpha_{t})}{\sum_{\text{END}(i)} \exp(\alpha_{k})}$$

$$\hat{\boldsymbol{x}}_{i} = \sum_{t=\text{START}(i)}^{\text{END}(i)} a_{i,t} \cdot \boldsymbol{x}_{t}$$

GridLoc Probe

- Token Position
- Layer
- Randomness & Training

= 0.134

Layers Alone do Not Rediscover the CNLP

syntactic + semantic

Layer Variance across Sentences

First 3 sentences of the Bigram Shift task test split.

Same GridLoc probe model at the same epoch.

Very different layer attention weights.

Layer Variance across Random Seeds

Probe results are not immune to random initialization effects!

Distribution of the best-performing layer over the Bigram Shift test set sentences for two probing runs with different random seeds.

8 9 10 11

Layer Variance through Training Time

Average layer attention weight distribution change through training iteration.

(SOMO, seed:0, best epoch: 3)

Consistently Idiosyncratic Token Positions

For most sentences, the token position attention at every layer attends to the same token, hence the bright vertical line.

The choice of that token position is not arbitrary — there are linguistic reasons for them.

				token pos	ition attenti	on: sentence	e 109992							token positio	n attention: sent	ence 110004							token pos	sition attent	ion: sentence	e 110010			
а	42.599	8.692	4.759	6.948	5.575	3.342	10.249	3.502	12.658	1.676	5 - F2					96.260			я -										
я ·			2.856							0.930	# -		0.000			93.777			# ·	0.840					68.875	0.588	0.666		0.910
g.										0.306	g -				0.459	98.819			01 -	0.091		0.500			80.518			0.697	0.314
a -								2.946	0.868	0.629	a -	0.000	0.000			99.870	0.005	0.000	6-						86.658			0.486	
α-										0.292	α -	0.000	0.000		0.000	99.997		0.000	8 -						90.806		0.082		
<u>,</u>	84.173									0.219	ادر ۲	0.000	0.000	0.000	0.000	99.998		0.000	rer 7			0.080			88.189		0.080		0.06
9 .	75.629	0.904		3.346						0.370	el a.	0.000	0.000	0.000	0.000	100.000	0.000	0.000	ور 1. م	0.045					89.833		0.098		
vî -	96.158						0.687		0.883	0.122	vn -	0.000	0.000	0.000	0.000	100.000	0.000	0.000	η.						87.803				0.09
4.	96.803	0.490	0.288				0.588			0.107	4 -	0.000		0.000	0.000	99.999	0.000	0.000	4.	0.064			0.084		92.238				0.06
m -	96.127	1.648								0.117	m -	0.000	0.000	0.000	0.000	100.000	0.000	0.000	m -		0.585				88.719				0.25
<u>م</u> .	91.571				0.665	0.385				1.471	~ -	0.000		0.000	0.000	99.999	0.000	0.000	~ -			0.659			81.943				0.34
	84.402		1.648		0.967					1.423	<i>.</i>	0.000		0.000	0.000	99.998	0.000	0.000	<i>.</i>						82.072				0.26
1	[CLS] v	whispered	liİy	with	a	voice	that	trembled		[SEP]		[CLS]	ů.	no	;	clay		[SEP]		[CLS]	his	hard	smile	bel	##ied	his	anger		[SĖ

Token Position?

Sentence Length (sent id: 109992)

Word Content (sent id: 110004)

Tense (sent id: 110010)

				token po	sition attent	tion: senten	ce 109992							token positi	on attention: ser	tence 110004							token po:	sition attent	ion: sentenc	e 110010			
12											1	0.009		1.340					ц.	4.668									
я. -					43.732	6.171			27.586	11.913	1 -			0.638					я ·	7.388					17.979	8.278		16.248	12.344
g.		5.702	1.695		9.033	2.671			10.840	5.244	я.							0.298	07 ·	19.980	12.278				14.636	17.219	19.526	25.606	12.326
a .			7.863	2.896		4.846								0.481	0.891		2.666		σ	16.908	20.906	7.666				7.386	17.359	6.433	7.839
											- 00	3.990							ω.	10.889	14.284	5.252					10.977	7.239	
<u>ب</u>	1.948							0.885			۰. د				0.269					7.646		11.559							
6 Laye		0.862		2.842	0.880			0.696			6 6		75.704	25.479		38.340			é Lay	10.922									
۰n -											so -	8.685	0.008	0.118		0.290	0.353	0.006	s.	8.715			16.092				2.805		
4 -			17.798	18.094	7.709	32.951	6.445		3.408		4.			41.632	11.143			0.980	4.	5.044									
<i>m</i> -				28.420	4.069	18.446	8.492			20.062	m -			17.918	42.915	31.465			m -	3.965							3.289		
~ ·	27.580	3.313	20.281	17.813	2.281	12.039	22.169	29.067	14.383	21.301	~ -				4.382	0.101	0.001		. 2	1.879		12.850			3.846				
<i>.</i>	5.306	2.277	13.768	5.041		4.985	6.198	5.228	7.777			0.995		5.898						1.996	1.969			1.546	2.649				
	[CLS]	whispered	d liİy	with	a	voice	that	trembled	1	[SEP]		[CLS]	i	no	;	clay		[SEP]	-	[CLS]	his	hard	smile	bel	##ied	his	anger		[SEP]

19

Conclusion

- Did BERT rediscover a CNLP? Not in a naïve, architectural sense.
- Probing results regarding BERT layers are unstable; the distribution along token positions is relatively more stable.
- No evidence that pseudo-cognitive appeals to layer depth are to be preferred as the mode of explanation for BERT's inner workings.

Grammaticality

"well formed; in accordance with the productive rules of the grammar of a language"

- lexico.com (Oxford)

From grammatical, "of or pertaining to grammar"

- 16th century: ≈ *literal*
- 18th century: a state of linguistic purity
- 19th century: relating to mere arrangement of words, as

opposed to logical form or structure

Grammaticality vs. Probability

"I think we are forced to conclude that ... probabilistic models give **NO** *particular insight into some of the basic problems of syntactic structure."* - Chomsky (1957)

Grammaticality vs. Probability (Chomsky, 1955)

colorless green ideas sleep furiously

furiously sleep ideas green colorless

Grammaticality vs. Probability (Saul & Pereira, 1997)

colorless green ideas sleep furiously (-40.44514457)

furiously sleep ideas green colorless (-51.41419769)

This is not only a probabilistic model, but a probabilistic language model (*Agglomerative Markov Process*).

(-39.5588693)

colorless sleep green ideas furiously colorless ideas furiously green sleep colorless sleep furiously green ideas

 colorless green ideas sleep furiously (-40.44514457)
 furiously sleep ideas green colorless (-51.41419769)

green furiously colorless ideas sleep green ideas sleep colorless furiously (-51.69151925) Our ACL 2019 submission: What Chomsky (1957) originally claimed still essentially holds: current language models do not have the ability to produce grammaticality judgements.

ACL 2019 reviewer: The treatment of the research literature ... comes across as inflammatory.

CGISF too small? CoLA (Warstadt et al., 2019)

10,657 (English) examples taken from linguistics papers.

LSTM LM + threshold:

- 65.2% in-domain accuracy
- 71.1% Out-of-domain Accuracy Not bad?

CGISF too small! CoLA (Warstadt et al., 2019)

10,657 (English) examples taken from linguistics papers.

LSTM LM + threshold:

- 65.2% in-domain accuracy
- 71.1% Out-of-domain Accuracy Not bad?

But, roughly 71% of their test set are labelled positively.

Grammaticality vs. Probability: Accuracy isn't the most suitable PBC is a better way to go

Point-Biserial Correlations

- Grammaticality taken to be a binary variable (yes/no).
- The probability produced by a language model for a string of words is continuous.
- Point-biserial correlations:

$$r_{pb}=rac{M_1-M_0}{s_n}\sqrt{pq}$$

- M₁ = mean of the continuous values assigned to samples that received the positive binary value.
- M₀ = mean of the continuous values assigned to the samples that received the negative binary value.
- S_n = standard dev. of all samples' continuous values.
- p = Proportion of samples with negative binary value.
- q = Proportion of samples with positive binary value.

What about GPT-2?

OpenAl's GPT-2 has been promoted as "an Al" that exemplifies an emergent understanding of language after mere unsupervised training on about 40GB of webpage text. It sounds really convincing in interviews:

- Q: Which technologies are worth watching in 2020? A: I would say it is hard to narrow down the list. The world is full of disruptive technologies with real and potentially huge global impacts. The most important is artificial intelligence, which is becoming exponentially more powerful. There is also the development of self-driving cars. There is a lot that we can do with artificial intelligence to improve the world....
- Q: Are you worried that ai [sic] technology can be misused?
 A: Yes, of course. But this is a global problem and we want to tackle it with global solutions....
- ---- "AI can do that", The World in 2020 The Economist

Surely something this sophisticated can predict grammaticality, right?

Wrong

Model	Norm	GP	T-2	GPT-	-2 XL
Middel		LOG	EXP	LOG	EXP
	Raw	0.1839	0.0117	0.1476	0.0123
Modela	Norm	0.2498	0.1643	0.2241	0.1592
Models	SLOR	0.2489	0.092	0.2729	0.0872

- Should conclusions about grammaticality be based upon scientific experimentation or self-congratulatory PR stunts?
- People are very good at attributing interpretations to natural phenomena that defy interpretation.

Legitimate Points of Concern

- Is grammaticality really a discrete variable?
 - Several have argued that a presumed correlation between neural language models and grammaticality suggests that grammaticality should be viewed as gradient (Lau et al., 2017; Sprouse et al., 2018).
- Eliciting grammaticality \neq blindly probing the elephant.
 - Numerous papers on individual features of grammaticality (Linzen et al., 2016; Bernardy & Lappin, 2017; Gulordava et al., 2018).
- How do you sample grammaticality judgements?
 - Acceptability judgements (Sprouse & Almeida 2012; Sprouse et al., 2013) are not quite the same thing experimental subjects can easily be misled by interpretability.
 - Round-trip machine translation of grammatical sentences for generating ungrammatical strings (Lau et al., 2014;2015).

The Deep Learning Advantage?

- There is now a robust thread of research that uses language models for tasks other than predicting the next word, not because they are the best approach, but because the people using them are scientifically illiterate:
 - What language consists of and how it works,
 - How to evaluate performance and progress in the task.
- When these models work well at all, they often get credit just for placing.
- Grammaticality prediction is one of these tasks.

The Deep Learning Retort

- In the case of grammaticality, the reply by this community has been:
 - To blame linguists for coining a task (they didn't) that is ill posed (it isn't),
 - To shift to a different, easier task, relative grammaticality, which is also known to be more stable across samples of human annotations.
- Pedestrian attempts at promoting deep learning will often represent fields such as CL as blindly hunting for "hand-crafted" features in order to improve the performance of their classifiers.
- In fact, several discriminative pattern-recognition methods were already in widespread use before the start of the "deep learning revolution" that had made this approach very unattractive.

The Deep Learning Advantage

• Nevertheless, deep learning is adding value, but more in terms of:

- Modularity of the different network layers that allows for separation and recombination,
- Novelty of the approaches, even if performance isn't state of the art, and
- the "liberated practitioner," who can now produce a baseline system with very little expertise that has a higher accuracy than earlier naïve baselines.

Encoder "LMs"- thinking outside the box

PromptBert (Jiang et al., 2022)