Computational Linguistics CSC 485/2501 Fall 2023

4B

4b. BERT

Gerald Penn Department of Computer Science, University of Toronto

Copyright © 2021 Gerald Penn. All rights reserved.

BERT

Training task 1: Masking

Training task 2: Next Sent.

Transformers

Self-attention

Multiheaded Self attention

1) This is our input sentence*

2) We embed * each word* 3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^O to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding.
We start directly with the output of the encoder right below this one

Positional encodings

Huh?

- Encodings of any two distinct positions are distinct
- Each position maps to only one encoding
- Test sentences may be longer than training
- Distance between two positions should be constant across sentences (of varying lengths).

Training task 1: Masking

The truth about masking

- Real easy to do well on MASKed position and nothing else
- Real easy to learn to copy the contextindependent embedding
- So...
 - 80% of the time: MASK
 - 10% of the time: correct word
 - 10% of the time: another random word

Grammatical fn. in BERT

Head 8-10

- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Grammatical fn. in BERT

Relation	Head	Accuracy	Baseline
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7 (1)
nn	4-10	70.4	70.2 (1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3 (1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2 (1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5 (1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Coreference in BERT

Model	All	Pronoun	Proper	Nominal
Nearest	27	29	29	19
Head match	52	47	67	40
Rule-based	69	70	77	60
Neural coref	83*	—	—	_
Head 5-4	65	64	73	58

*Only roughly comparable because on non-truncated documents and with different mention detection.

Still room for natural logic...

Model	P	R	acc.					
ML/DL-based systems								
BERT (base, uncased)	86.8	85.4	86.7					
Yin and Schütze (2017)	_	_	87.1					
Beltagy et al. (2016)	_	_	85.1					
Logic-based systems								
Abzianidze (2017)	98.0	58.1	81.4					
Martínez-Gómez et al. (2017)	97.0	63.6	83.1					
Yanaka et al. (2018)	84.2	77.3	84.3					
Hu et al. (2020)	83.8	70.7	77.2					
Abzianidze (2020)	94.3	67.9	84.4					
Hybrid System								
Hu et al. (2020)+BERT	83.2	85.5	85.4					
Kalouli et al. (2020)	_	_	86.5					
Our System								
NeuralLog (full system)	88.0	87.6	90.3					
- ALBERT-SV	68.9	79.3	71.4					
 Monotonicity 	74.5	75.1	74.7					

Table 3: Performance on the SICK test set

NeuralLog

Figure 2: Overview system diagram of NeuralLog.