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Training task 1: Masking
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Training task 2: Next Sent.
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Transformers
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Self-attention
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Multiheaded Self attention
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Positional encodings
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» Encodings of any two distinct positions are
distinct

» Each position maps to only one encoding
» Test sentences may be longer than training

» Distance between two positions should be
constant across sentences (of varying
lengths).



Training task 1: Masking
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The truth about masking

* Real easy to do well on MASKed position and
nothing else

» Real easy to learn to copy the context-
iIndependent embedding

* So...
* 80% of the time: MASK
* 10% of the time: correct word
* 10% of the time: another random word
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Grammatical fn. iIn BERT

Head 8-10

- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation
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[SEP]
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[SEP]

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation
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Grammatical fn. iIn BERT

Clark et al. 2019

Relation Head Accuracy Baseline
All 7-6 34.5 26.3 (1)
prep 7-4 66.7 61.8 (-1)
pob ] 9-6 76.3 34.6 (-2)
det 8-11 94.3 51.7 (1)
nn 4-10 70.4 70.2 (1)
nsub j 8-2 58.5 45.5 (1)
amod 4-10 75.6 68.3 (1)
dob ] 8-10 86.8 40.0 (-2)
advmod 7-6 48.8 40.2 (1)
aux 4-10 81.1 71.5 (1)
POSS 7-6 80.5 47.7 (1)
auxpass  4-10 82.5 40.5 (1)
ccomp 8-1 48.8 12.4 (-2)
mark 8-2 50.7 14.5 (2)
prt 6-7 99.1 91.4 (-1)
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Coreference iIn BERT

Model All Pronoun Proper Nominal
Nearest 27 29 29 19
Head match 52 47 67 40

Rule-based 69 70 77 60
Neural coref 83* — — _

Head 5-4 65 64 73 58

*Only roughly comparable because on non-truncated docu-
ments and with different mention detection.
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Still room for natural logic...

Model P R acc.
ML/DL-based systems
BERT (base, uncased) 86.8 854 86.7
Yin and Schiitze (2017) — — 87.1
Beltagy et al. (2016) - - 85.1
Logic-based systems
Abzianidze (2017) 08.0 58.1 814
Martinez-Gomez et al. (2017) | 97.0 63.6 83.1
Yanaka et al. (2018) 842 773 84.3
Hu et al. (2020) 83.8 70.7 T7.2
Abzianidze (2020) 943 679 844
Hybrid System
Hu et al. (2020)+BERT 83.2 855 854
Kalouli et al. (2020) — — 86.5
Our System
NeuralLog (full system) 88.0 87.6 90.3
— ALBERT-SV 689 793 714
— Monotonicity 74.5 75.1 747

Table 3: Performance on the SICK test set
Chen et al. 2021 15
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Figure 2: Overview system diagram of NeuralLog.
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