

4B

4b. BERT

Gerald Penn
Department of Computer Science, University of Toronto

BERT

Training task 1: Masking

Training task 2: Next Sent.

Transformers

jalammar.github.io 5

Self-attention

Thinking Machines

jalammar.github.io 6

Multiheaded Self attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Mo

Thinking Machines

 W_0Q

W₁Q

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

7 ialammar.github.io

Positional encodings

$$\overrightarrow{p_t} = egin{bmatrix} \sin(\omega_1.t) \ \cos(\omega_1.t) \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ \end{bmatrix}_{d imes 1} \qquad \overrightarrow{p_t}^{(i)} = egin{bmatrix} \sin(\omega_2.t) \ \cos(\omega_2.t) \ \end{bmatrix}_{d imes 1}$$
 where

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

$$\omega_k = rac{1}{10000^{2k/d}}$$

Huh?

- Encodings of any two distinct positions are distinct
- Each position maps to only one encoding
- Test sentences may be longer than training
- Distance between two positions should be constant across sentences (of varying lengths).

Training task 1: Masking

The truth about masking

- Real easy to do well on MASKed position and nothing else
- Real easy to learn to copy the contextindependent embedding
- So...
 - 80% of the time: MASK
 - 10% of the time: correct word
 - 10% of the time: another random word

Grammatical fn. in BERT

Head 8-10

- **Direct objects** attend to their verbs
- 86.8% accuracy at the dobj relation

Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Clark et al. 2019 12

Grammatical fn. in BERT

Relation	Head	Accuracy	Baseline
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7 (1)
nn	4-10	70.4	70.2(1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3 (1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2 (1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5 (1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Clark et al. 2019 13

Coreference in BERT

Model	All	Pronoun	Proper	Nominal	
Nearest	27	29	29	19	
Head match	52	47	67	40	
Rule-based	69	70	77	60	
Neural coref	83*	_	_		
Head 5-4	65	64	73	58	

^{*}Only roughly comparable because on non-truncated documents and with different mention detection.

Still room for natural logic...

Model	P	R	acc.				
ML/DL-based systems							
BERT (base, uncased)	86.8	85.4	86.7				
Yin and Schütze (2017)	_	_	87.1				
Beltagy et al. (2016)	_	_	85.1				
Logic-based systems							
Abzianidze (2017)	98.0	58.1	81.4				
Martínez-Gómez et al. (2017)	97.0	63.6	83.1				
Yanaka et al. (2018)	84.2	77.3	84.3				
Hu et al. (2020)	83.8	70.7	77.2				
Abzianidze (2020)	94.3	67.9	84.4				
Hybrid System							
Hu et al. (2020)+BERT	83.2	85.5	85.4				
Kalouli et al. (2020)	_	_	86.5				
Our System							
NeuralLog (full system)	88.0	87.6	90.3				
ALBERT-SV	68.9	79.3	71.4				
— Monotonicity	74.5	75.1	74.7				

Table 3: Performance on the SICK test set

NeuralLog

Figure 2: Overview system diagram of NeuralLog.

Chen et al. 2021 16