Computational Linguistics
 CSC 485/2501 Fall 2023

3. Lexical semantics

Gerald Penn

Department of Computer Science, University of Toronto

Reading: Jurafsky \& Martin: 19.1-4, 20.8; Bird et al: 2.5

Lexical semantics

- Word meanings and their internal structure.
- The structure of the relations among words and meanings.

Current CL research

- Current focus in CL on lexical semantics:
- word senses;
- detailed lexical representations/vectors;
- organization of senses, or lexical entries more generally (like a dictionary entry? Probably not).

Knowledge about words

Lexicon with entry for each word (or fixed phrase).

- Senses (meanings). For each:
- Surface form:
- Orthography, phonology, ...
- Syntax:
- Part-of-speech, morphology, subcategorization,
- Behaviour, usage, ...:
- Collocations, register and genre, ...

Word senses

- How are word senses defined?
- Grounded in world knowledge?
- Are they defined and fixed at all?
- Or wholly context-dependent? (See also slide 9)
- Constructional versus differential approaches.

Sense is built from elements of a set of universal primitives of meaning.

Sense is distinguished from others by a set of (ad hoc) differentia.

Relations between words and senses

- Synonymy: Two (or more) words (synonyms) having the same meaning.

What does this mean?

- Homonymy, polysemy: Two (or more) meanings having the same word (homonym, polyseme).
- Lexical ambiguity

Lexical ambiguity: Homonymy

- Homonymy: meanings are unrelated.
[Etymology or history of word is not a deciding factor.]
- Due to same spelling (homography):
- bank for money, bank of river, bank of switches, ...bank \rightarrow banque or bord or rangée or ...?
bass: "bȧss" fish, "bāss" guitar; bow: "bau" to the audience, tie a "bō".
- Due to same sound (homophony):
- wood, would; weather, whether; you, ewe, yew; bough, bow.

Lexical ambiguity: Polysemy

1

Polysemy: meanings are related.

- run: of humans, rivers, buses, bus routes, ... line: of people, of type, drawn on paper, transit route, ...
Often, no clear line between polysemy and homonymy.

Lexical ambiguity: Polysemy

- Sense modulation by context:
- fast train, fast typist, fast road.
- Systematic polysemy or sense extension:
- bank as financial institution and as building; window as hole in wall or what fits in hole; bottle, book, DVD, Toyota, lamb, ...
- Applies to most or all senses of certain semantic classes.

Relations between senses

- Hyponymy, hyperonymy: subtype, supertype:
- sedan is a hyponym of car; car is a hyperonym of sedan.
[hypo- = under; hyper- = over]
- The fundamental relation for creating a taxonomy: a tree-like structure that expresses classes and inheritance of properties.
[Terminology:
- is-a relation in ontologies of (language-independent) concepts;
- hyponymy relation in taxonomies of (language-dependent) senses.]

Relations between senses

Meronymy, holonymy: part/whole, or

 membership:- leg is a meronym of chair; chair is a holonym of leg and a meronym of dining-set.
- Many subtypes of meronym relations. Component-of: kitchen-apartment Member-of: soldier-army
Portion-of: slice-pie

Relations between senses 3

Entailment, implicature: various kinds:

- snore entails sleep; manage implies try.

Lexical acquisition 1

- Problem: Need a complete lexicon for each natural language.
- Dictionary as starting point? Limitations?
- Learner's dictionary? Limitations?
- Text (corpus) as starting point? Limitations?
- Build by hand (lexicographers) or automatically? Limitations?

Lexical acquisition 2

- Corpus-based pattern recognition methods.
- Accurate, representative information.
- Includes statistical information.
- Extraction from online dictionary.
- More knowledge-based.
- Can treat dictionary as highly specialized corpus.

WordNet 1

WordNet: A hierarchical (taxonomic) lexicon and thesaurus of English.

- Developed by lexicographers at Princeton, 1990s to present.
- Graph structure:
- Nodes are synsets ("synonym sets") (\approx word senses).
http://wordnetweb.princeton.edu/perl/webwn

faux pas\#1, gaffe\#1, solecism\#1, slip\#1, gaucherie\#2 a sociatly awkward or tactless act)
p\#2, slip-up\#1, miscue\#2, parapraxis\#1 (a minor inadvertent mistake usually observed in speech or writing or in small accidents or memory lapses etc.)
- slip\#3 (potter's clay that is thinned and used for coating or decorating ceramics)
- cutting\#2, slip\#4 (a part (sometimes a root or leaf or bud) removed from a plant to propagate a new plant through rooting or qraftinq) Example
- slip\#5 (a young and slender person) "he's a mere slip of a lad"
- mooring\#1, moorage\#2, berth\#2, slip\#6 (a place where a craft can be made fast)
- slip\#7, trip\#3 (an accidental misstep threatening (or causing) a fall) "he blamed his slip on the ice"; "the jolt caused many slips and a few spills"
- slickness\#3, slick\#1, slipperiness\#1, slip\#8 (a slippery smoothness) "he could feel the slickness of the tiller"
- strip\#2, slip\#9 (artifact consisting of a narrow flat piece of material)
- slip\#10, slip of paper\#1 (a small sheet of paper) "a receipt slip"
- chemise\#1, shimmy\#2, shift\#2, slip\#11, teddy\#2 (a woman's sleeveless undergarment)

Noun slip: Hyperonyms

- slip\#10, slip of paper\#1 (a small sheet of paper)
- sheet\#2, piece of paper\#1, sheet of paper\#1 (paper used for writing or printin!
- paper\#1 (a material made of cellulose pulp derived mainly from wood or ro
- material\#1, stuff\#1 (the tangible substance that goes into the makeup of a
- substance\#1 (the real physical matter of which a person or thing consis
- matter\#3 (that which has mass and occupies space)
- physical entity\#1 (an entity that has physical existence)
- entity\#1 (that which is perceived or known or inferred to have it - part\#1, portion\#1, component part\#1, component\#2, constituent\#3 (sol
- relation\#1 (an abstraction belonging to or characteristic of two entit
- abstraction\#6, abstract entity\#1 (a general concept formed by extr
- entity\#1 (that which is perceived or known or inferred to have it

Noun slip: Sister terms

- sheet\#2, piece of paper\#1, sheet of paper\#1 (paper used for writing or printin,
- slip\#10, slip of paper\#1 (a small sheet of paper)
- signature\#5 (a sheet with several pages printed on it; it folds to page size and is
- leaf\#2, folio\#2 (a sheet of any written or printed material (especially in a manus
- tear sheet\#1 (a sheet that can be easily torn out of a publication)
- foolscap\#1 (a size of paper used especially in Britain)
- style sheet\#1 (a sheet summarizing the editorial conventions to be followed in pr
- worksheet\#1 (a sheet of paper with multiple columns; used by an accountant to
- revenue stamp\#1, stamp\#6 (a small piece of adhesive paper that is put on an ob

- Sister terms belong to synsets

WordNet

- Graph structure (cont.):
- Edges from hyponymy relations: near-tree.
- Edges from meronymy relations: network.
- Index maps each word to all of its synsets.
- Separate trees for nouns, verbs, adjectives, adverbs (with derivational cross-connections).
- Differential approach to meaning:
- The hyponyms of a node are differentiations of its meaning.

WordNet

- WordNets now available or under construction for many languages.

Afrikaans, Albanian, Arabic, Bantu, Basque, Bengali, Bulgarian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English, Estonian, Farsi (Persian), Finnish, French, German, Greek, Hebrew, Hindi, Hungarian, Icelandic, Indonesian, Italian, Irish, Japanese, Kannada, Korean, Latin, Latvian, Macedonian, Maltese, Marathi, Moldavian, Mongolian, Myanmar, Nepali, Norwegian, Oriya, Polish, Portuguese, Romanian, Russian, Sanskrit, Serbian, Slovenian, Spanish, Swedish, Tamil, Thai, Turkish, Vietnamese
www.globalwordnet.org, July 2013

Building and updating WordNets

- Problem: Need a complete lexicon and lexical relations for each natural language.
- Dictionary as starting point? Limitations?
- Another WordNet as starting point? Limitations?
- Build by hand (lexicographers) or automatically? Limitations?
- Text (corpus) as starting point? Limitations?

Hearst Discovering lexical relations

- Corpus-based method.

Makes "suggestions" for lexicographers.
Scan partially-parsed text looking for instances of patterns:
"such NP_{1} as $\left\{\mathrm{NP}_{\mathrm{i}}\right\}^{*}$ \{or/and\} NP^{2} " $\rightarrow N P_{1}$ is a hyperonym of the $N P_{i}$

Web Video

AUE: FAQ excerpt: "like" vs "such as"

The Little, Brown Handbook (6th ed., HarperCollins, 1995) says: "Strictly, such as precedes an example that represents a larger subject, whereas like ...
alt-usage-english.org/excerpts/fxlike00.html - 8k - Cached - Similar pages

How can I insert special characters, such as dingbats and accented ...

Word has also made it very easy for you to insert many of these characters without recourse to the dialog - in particular special characters such as © and ...
word.mvps.org/FAQs/General/InsertSpecChars.htm - 2k - Cached - Similar pages
Finding and replacing non-printing characters (such as paragraph ... For other symbols, such as Upper Unicode characters, and symbols from decorative fonts such as Symbol and Wingdings, things get a little more complicated, ...
word.mvps.org/FAQs/General/FindingSpecialCharacters.htm - 2 k - Cached - Similar pages

mime encapsulation of agaregate documents such as html

Also with other protocols such as HTTP or FTP, there may sometimes be a need to retrieve aggregate documents. Receiving agents also have several differing ...
www.rfc-editor.org/rfc/rfc2557.txt - 61k - Cached - Similar pages

Certain Foie Gras Linked To Diseases Such As Alzheimer's And ...

Experimental data shows a potential link between foie gras consumption and amyloid-related diseases such as Alzheimer's, rheumatoid arthritis and adult ...
www.sciencedaily.com/releases/2007/06/070618174658.htm - 45k - Cached - Similar pages

Hearst Discovering lexical relations 2

Develop patterns

- "by hand", or
- by scanning for sentences containing known related pairs.

Hearst Results (good)

1. Some relations already in WordNet:

- fabric-silk, grain-barley, disorders-epilepsy, ...

2. Some relations not already in WordNet (but the words were):

- crops-milo, perishables-fruit, conditions-epilespy,

3. Some relations with words not yet in WordNet:

- companies-Shell, institutions-Tufts, ...

Hearst
 good)

4. Some too-general relations:

- things-exercise, topics-nutrition, areasSacremento

5. Some too-context-specific relations:

- others-Meadowbrook, classics-Gaslight, categories-drama, ...

6. Some really bad relations (usually due to parsing errors, not detecting full NP):

- children-Headstart, jobs-computer, companiessports

Hearst Limitations

- Problems:
- Which word is the hyperonym?

A bearing is a structure that supports a rotating part of a machine, such as à shaft, axle, spindle, or wheel.

- Can't find good patterns for meronyms.
- How to evaluate method quantitatively?

Since Hearst's paper 1

- Methods that use syntactic (not just lexical) patterns, and which derive the patterns from corpora.
- Methods that use senses, not words.
- Methods for finding coordinate (sister) terms by distributional similarity in text.
- Methods that combine the evidence from all of these to identify additional hyponym relations.
- $\operatorname{SISTER}(X, Y) \wedge$ HYPONYM $(Y, Z) \Rightarrow$ HYPONYM (X, Z)

Since Hearst's paper 2

- Methods for meronymous relations.
- Each subtype tends to have its own indicators.
- These tend to have much more ambiguous patterns than hyponymy.
- Complex methods for learning additional semantic constraints on the patterns.
- Methods for causal relations.
- Look esp. for verbs such as give rise to, induce, generate, cause, ...

Since Hearst's paper 3

- "Learning ontologies from text" as important research topic.
- "Learning commonsense knowledge from text" as new research topic.
- "Learning temporal information" (e.g., learning a timeline of events described in a news story) as a new research topic.
- Learning vector-space embeddings from unannotated text, from which some combination of these relations emerges (more on this later).

Properties of verbs Revision

- Subcategorization of verbs:
- VPs can include more than one NP, can include clauses of various types.
- Can classify verbs by kinds of VPs they permit.
- Thematic roles of a verb - some common mappings:
Subject \approx Agent / Experiencer
Object \approx Theme
Object of preposition \approx Goal / Location/
Recipient / Instrument

Lexical semantics of verbs 1

Verbs are more complex than nouns.

- They are predicates that encode relations between their arguments.
- They place selectional restrictions on their arguments.
- E.g., agent of eat must be animate; theme must be physical, edible.
- Different senses of verb may impose different selectional restrictions.
- So argument types may disambiguate verb-sense.
- There are numerous subregularities in how senses cluster together, in fact.

Lexical semantics of verbs

Their taxonomy is more difficult to determine.

- Grouping is not as intuitively clear.
- Differentiating sister nodes is more complex.

Lexical semantics of verbs

WordNet for verbs is not very useful.

- Only shallow hierarchy of troponymy and hyperonymy.
- e.g., to saunter is to walk in a certain manner.
- Insufficient information about thematic roles, selectional restrictions, and subcategorization.
- No information about regularity in behaviour of classes of verbs.

Verb

- S: (v) spray (be discharged in sprays of liquid) "Water sprayed all over the floor"
 "spray paint on the wall"
- $\underline{\text { : }}$ (v) spray (cover by spraying with a liquid) "spray the wall with paint"

Verb

- S: (v) spray (be discharged in sprays of liquid) "Water sprayed all over the floor"
- direct hyperonym / inherited hyperonym / sister term
- $\underline{S:}$ (v) scatter, sprinkle, dot, dust, disperse (distribute loosely) "He scattered gun powder under the wagon"
- \underline{S} : (v) discharge (pour forth or release) "discharge liquids"
- $\underline{\mathrm{S}}$: (v) spread, distribute (distribute or disperse widely) "The invaders spread their language all over the country"
- derivationally related form
- sentence frame
- Something ----s
- Something is ----ing PP

Levin's verb classification 1

- Groups (English) verbs by diathesis alternations
- syntactic patterns of argument structure.
- May be subtle semantic differences between alternations.
- Shows mapping between semantics of verbs and their syntactic behaviour / subcategorization.

Examples of verb class behaviour

[Verb class 45.1]
break, crack, rip,... Jay broke Bill's finger. *Jay broke Bill on the finger.
Jay broke the vase.
Vases break easily.
[Verb class 20]

Kay touched Bill's neck. Kay touched Bill on the neck.
Kay touched the cat.
*Cats touch easily.

- Motion/contact required for body-part alternation.
- Change of state required for middle construction.

touch, stroke, tickle,

Example of diathesis alternation

[Alternation 2.3.1]

The spray-load alternation

Nadia sprayed paint onto the wall.
Nadia sprayed the wall with paint. Greater suggestion of Paint sprayed onto the wall. 'completeness' of action
*The wall sprayed with paint.

* Walls spray easily.

Other verbs that undergo this alternation: brush, cram, crowd, dust, jam, load, scatter, splash, ...

Levin's verb classification 2

- ~80 alternations, ~190 verb classes, ~3000 English verbs classified.
Subsequently extended by other researchers (Korhonen and Briscoe 2004).
- Different senses of a verb may fall into different classes.
- Used extensively in CL; basis for VerbNet.
- Embeds Levin's classes in a computational lexicon.
- Adds thematic roles and semantics.
- Uses WordNet senses.

Class Spray-9.7

CLASS HIERARCHY
SPRAY-9.7
SPRAY-9.7-1
SPRAY-9.7-1-1
SPRAY-9.7-2

Roles

- Agent [+animate]
- Theme
- Destination [+location \& -region]

Thematic roles and restrictions on them

Semantic form for the kind of event E the frame represents
http://verbs.colorado.edu/verb-index/vn/spray-9.7.php

Frames
REF KEY
NP V NP PP.destination
example "Jessica loaded boxes into the wagon."
syntax Agent V Theme $\{\{+$ loc $\mid+$ dest_conf $\}\}$ Destination
semantics motion(during(E), Theme)
not(Prep(Start(E), Theme, Destination))
Prep(end(E), Theme, Destination) cause(Agent, E)
NP V NP.destination PP.theme
example "Jessica loaded the wagon with boxes."
syntax Agent V Destination \{with\} Theme
semantics motion(during(E), Theme)
not(location(start(E), Theme, Destination))
location(end(E), Theme, Destination)
cause(Agent, E)
NP V NP.tHEME
example "Jessica squirted water."
syntax Agent V Theme
semantics motion(during(E), Theme)
not(location(start(E), Theme, ?Destination))
location(end(E), Theme, ?Destination)
cause(Agent, E)
NP V NP.destination
example "Jessica sprayed the wall."
syntax Agent V Destination
semantics motion(during(E), ?Theme)
not(location(Start(E), ?Theme, Destination))
location(end(E), ?Theme, Destination)
cause(Agent, E)

```
Class Hierarchy
SPRAY-9.7
    SPRAY-9.7-1
        SPRAY-9.7-1-1
    SPRAY-9.7-2
```


Roles

- Agent [+animate]
- Theme
- Destination [+location \& -region]

Thematic roles and restrictions on them

Semantic form for the kind of event E the frame represents
http://verbs.colorado.edu/verb-index/vn/spray-9.7.php
NP V NP PP.destination
example "Jessica loaded boxes into the wagon."
syntax Agent V Theme $\{\{+$ loc | +dest_conf $\}\}$ Destinationsemantics motion(during(E), Theme)not(Prep(start(E), Theme, Destinatioǹ)Prep(end(E), Theme, Destif Restriction on
NP V NP.destination PP.theme preposition Prep
example "Jessica loaded the wagosyntax Agent V Destination \{with\} Themesemantics motion(during(E), Theme)
not(location(start(E), Theme, Destination))
location(end(E), Theme, Destination)
cause(Agent, E)
NP V NP.THEME
example "Jessica squirted water."
syntax Agent V Theme
semantics motion(during(E), Theme)
not(location(start(E), Theme, ?Destination))
location(end(E), Theme, ?Destination)
cause(Agent, E)
NP V NP.DESTINATION
example "Jessica sprayed the wall."
syntax Agent V Destination
semantics motion(during(E), ?Theme)
not(location(Start(E), ?Theme, Destination))
location(end(E), ?Theme, Destination)
cause(Agent, E)

Class Spray-9.7-1

WordNet and FrameNet sense numbers

Members			KEY
$\begin{aligned} & \text { ?WASH (WN 8) } \\ & \text { BRUSH (FN 1, 2; WN 6; G 2) } \\ & \text { DRIZZLE (FN 1, 2; WN 2) } \\ & \text { HANG (FN 1, 2; WN 2, 12, } 14 \text {; } \\ & \text { G 1) } \\ & \text { PLASTER (FN 1; WN 2, 3, 4, } \\ & \text { 1, 5, } 6 \text {) } \\ & \text { PUMP (FN 1; WN 2, 4, 5; G 2) } \\ & \text { RUB (FN 1; WN 1; G 1) } \end{aligned}$	SCATTER (FN 1; WN 3, 4, 6; G 1) SEED (FN 1; WN 4) SEW (FN 1; WN 1; G 1) SHOWER (FN 1, 2, 3; WN 1, $2,5 ; G 1,2)$ SMEAR (FN 1, 2; WN 3, 2; G 1) SMudge (WN 1) Sow (FN 1; WN 1, 3; G 1)	SPATTER (FN 1; WN 1, 3) SPLASH (FN 1; WN 3, 6; G 1) SPLATTER (FN 1; WN 1, 2) SPRAY (FN 1; WN 1, 2, 3; G 1) SPREAD (FN 1; WN 3, 9, 10; G 2, 3) SPRINKLE (FN 1; WN 1, 4; G 1) spritz (WN 1, 2)	SPURT (FN 1; WN 1) SQUIRT (FN 1; WN 1, 2; G 1) STICK (FN 1; WN 1, 12, 13; G 1, 2) STREW (FN 1; WN 1, 2) STRING (WN 1; G 1) SWAB (WN 1, 2) WRAP (FN 1, 2; WN 1, 2, 3; G 1, 2)

Roles
- Theme [+Substance \| [+concrete \& + Plural $]$]

Frames		REF KEY	
NP V PP.destination			
example	"Paint sprayed onto the wall."		
syntax	Theme V $\{$ ¢ + loc \| +dir	+dest_conf $\}$ \} Destination	
semantics	motion(during(E), Theme) not(Prep(start(E), Theme, Destination))		
NP V NP PP.destination-Conative			
example	"Jessica squirted water at me."		
symtax	Agent V Theme (at) Destination		
semantics	motion(during(E), Theme) not(location(start(E), Theme, Destination))	nt, E)	

Class Spray-9.7-1-1

```
Members
CRAM (FN 1, 2; WN 1, 2; G 1)
CROWD (FN 1; WN 1, 2; G 1, 2)
JAM (FN 1, 2; WN 1, 6, 7; G 1)
PACK (FN 1, 2; WN 1, 2, 3, 7; G 1, 2)
PILE (FN 1, 2; WN 1; G 1)
```


Class Spray-9.7-2

```
Members
DAB (FN 1, 2; WN 1) LOAD (FN 1, 2; WN 1, 4; G 1) STOCK (FN 1; WN 6; G 1)
```

```
DAUB (FN 1, 2; WN 1, 2, 3) MOUND (WN 1) STUFF (WN 1, 2, 6, 7; G 1)
```

DAUB (FN 1, 2; WN 1, 2, 3) MOUND (WN 1) STUFF (WN 1, 2, 6, 7; G 1)
DRAPE (FN 1, 2; WN 1, 2, 4) PLANT (WN 1, 2; G 1, 2)
DRAPE (FN 1, 2; WN 1, 2, 4) PLANT (WN 1, 2; G 1, 2)
DUST (FN 1, 2; WN 3) SLATHER (WN 1)
DUST (FN 1, 2; WN 3) SLATHER (WN 1)
HEAP (FN 1, 2; WN 2, 3) STACK (WN 1, 2; G 1)

```
HEAP (FN 1, 2; WN 2, 3) STACK (WN 1, 2; G 1)
```

- Theme [+concrete]

FrameNet

- Semantics-first classification of verbs (and nouns).
- Frame: "A conceptual structure that describes a particular type of situation, object, or event along with its participants and props."*
- Groups of predicates in same semantic class share case frames.
- Includes both a lexicon and a corpus of annotated sentences to illustrate predicate usage.

Example

Frame APPLY-HEAT:
bake, barbecue, blanch, boil, braise, broil, ..., poach, roast, saute, scald, simmer, singe, steam, stew, toast

Nadia fried the sliced onions in a skillet. Cook Food Heating instrument

Frame elements of Apply_heat

Core elements

Semantic Type Container
Semantic Type Sentient
Semantic Type -
Semantic Type Physical_entity
Semantic Type Temperature

Non-core elements

Semantic Type -
Semantic Type Degree Duration

Semantic Type Duration
Semantic Type Manner
Semantic Type State_of_affairs
Semantic Type -
Semantic Type Locative_relation
Semantic Type State_of_affairs
Semantic Type Time

Apply_heat

A Cook applies heat to Food, where the Temperature setting of the heat and Duration of application may be specified. A Heating instrument, generally indicated by a locative phrase, may also be expressed. Some cooking methods involve the use of a Medium (e.g. milk or water) by which heat is transferred to the Food. A less semantically prominent Food or Cook is marked Co participant.

Sally FRIED an egg in butter.

Sally FRIED an eqg in a tefion pan. Ellen FRIED the eggs with chopped tomatoes and parlic.
This frame differs from Cooking_creation in focusing on the process of handling the ingredients, rather than the edible entity that results from the process.

Inherits From: Activity, Intentionally affect
Is Used By: Cooking creation
Is Causative of: Absorb heat

Lexical entry for an Apply_heat word: bake

Frame Element	Number Annotated	Realization(s)
Container	(2)	$\begin{array}{\|l} \hline \text { PP[in].Dep (1) } \\ \text { PP[on].Dep (1) } \end{array}$
Cook	CNI = Constructional null instantiation	CNI.-- (11)
Duration	(2)	PP[for].Dep (9)
Food	(11)	$\begin{array}{\|l\|} \hline \text { NP.Ext (1) } \\ \text { NP.Obj (7) } \\ \text { CNI.-- (3) } \\ \hline \end{array}$
Heating_instrument	$\mathrm{NI}=$ (9) null instantiation	$\begin{aligned} & \text { INI.-- (7) } \\ & \text { PP[in].Dep (2) } \end{aligned}$
Manner	(1)	AVP.Dep (1)
Temperature_setting	(3)	$\begin{aligned} & \text { PP[at].Dep (2) } \\ & \text { 2nd.-- (1) } \end{aligned}$

Lexical entry for an Apply_heat word: bake

Valence patterns

Number Annotated	Patterns				
1 TOTAL	Container	Cook	Duration	Food	
(1)	PP[in] Dep	CNI	$\begin{array}{\|l} \hline \text { PP[for] } \\ \text { Dep } \end{array}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{Ext} \end{aligned}$	
1 TOTAL	Container	Cook	Duration	Food	Temperature_setting
(1)	$\begin{aligned} & \text { PP[on] } \\ & \text { Dep } \end{aligned}$	$\overline{\mathrm{CNI}}$	PP[for] Dep	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{Obj} \end{aligned}$	PP[at] Dep
5 TOTAL	Cook	Duration	Food	Heating_instrument	
(2)	CNI	$\begin{aligned} & \text { PP[for] } \\ & \text { Dep } \\ & \hline \end{aligned}$	CNI	INI	
(3)	CNI	$\begin{aligned} & \text { PP[for] } \\ & \text { Dep } \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { Obj } \end{aligned}$	INI	
2 TOTAL	Cook	Duration	Food	Heating instrument	Temperature_setting
(1)	$\overline{\mathrm{CNI}}$	PP[for] Dep	$\overline{\mathrm{CNI}}$	INI	PP[at] Dep
(1)	CNI	$\begin{aligned} & \text { PP[for] } \\ & \text { Dep } \end{aligned}$	$\begin{array}{\|l} \mathrm{NP} \\ \mathrm{Obj} \\ \hline \end{array}$	$\begin{aligned} & \text { PP[in] } \\ & \text { Dep } \end{aligned}$	2nd
1 TOTAL	Cook	Food	Heating instrument		
(1)	CNI	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{Obj} \end{aligned}$	INI		
1 TOTAL	Cook	Food	Heating_instrument	Manner	
(1)	$\overline{\mathrm{CNI}}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{Obj} \end{aligned}$	$\begin{aligned} & \text { PP[in] } \\ & \text { Dep } \end{aligned}$	$\begin{aligned} & \text { AVP } \\ & \text { Dep } \end{aligned}$	

Text with FrameNet annotations

As capital of Europe's most explosive economy, Dublin seems to be changing before your very eyes.
2. As CAPITAL ${ }_{\text {Relational_political_locales }}$ of Europe 's most EXPLOSIVE $_{\text {Expansion }}$ ECONOMY $_{\text {Economy }}$, Dublin SEEMS $_{\text {Appearance }}$ to be CHANGING Undergo_change before your very $\mathrm{EYES}_{\text {Observable_bodyparts. }}$.

Text with FrameNet annotations

As capital of Europe's most explosive economy, Dublin seems to be changing before your very eyes.

As capital of Europe 's most EXPLOSIVE economy , Dublin seems to be changing before your very eyes.
As CAPITAL of Europe 's most explosive economy, Dublin seems to be changing before your very eyes .
As capital of Europe 's most explosive ECONOMY , Dublin seems to be changing before your very eyes .
As capital of Europe 's most explosive economy, Dublin SEEMS to be changing before your very eyes .
As capital of Europe 's most explosive economy, Dublin seems to be CHANGING before your very eyes. INI INI
As capital of Europe 's most explosive economy , Dublin seems to be changing before your very EYES.

FrameNet in other languages

- FrameNets now available or under construction for several other languages.
Brazilian Portuguese, Chinese, German, Japanese, Spanish, Swedish
https://framenet.icsi.berkeley.edu/fndrupal/framenets_in_other_languages, June 2014

FrameNet vs VerbNet

Complementary resources:

- VerbNet:
- Groups by syntactic behaviour (Levin classes).
- Any resultant grouping by meaning is side-effect.
- FrameNet:
- Groups by meaning class (frame).
- Not limited to verbs.
- Any resultant grouping by syntactic behaviour is side-effect.

FrameNet vs VerbNet 2

- Combine both with WordNet.

- Algorithmic methods to map VerbNet entries to FrameNet entries and vice versa.
- Semi-automatic methods to map VerbNet constraints into the WordNet hierarchy.

Lei Shi and Rada Mihalcea. "Putting pieces together: Combining FrameNet, VerbNet and WordNet for robust semantic parsing." 6th International Conference on Intelligent Text Processing and Computational Linguistics (Springer Lecture Notes in Computer Science 3406), 2005, 100-111.

