Computational Linguistics CSC 485/2501 Fall 2022 # **2B** # 2B. Graphical Dependency Parsing Gerald Penn Department of Computer Science, University of Toronto Based on slides by Yuji Matsumoto, Dragomir Radev, David Smith, Sam Thomson and Jason Eisner Copyright © 2020 Gerald Penn. All rights reserved. ### Predicting structured outputs - Log-linear models great for n-way classification - Also good for predicting sequences CVEs, or, to allow fast dynamic programming, only use n-gram features Also good for dependency parsing but to allow fast dynamic programming or MST parsing, only use single-edge features Is this a good edge? yes, lots of green ... Byl jasný studený dubnový den a hodiny odbíjely třináctou Is this a good edge? How about this competing edge? not as good, lots of red ... How about this competing edge? - Which edge is better? - "bright day" or "bright clocks"? our current weight vector - Which edge is better? - Score of an edge $e = \theta$ features(e) - Standard algos → valid parse with max total score Which edge is better? - our current weight vector - Score of an edge $e = \theta$ features(e) - Standard algos → valid parse with max total score Thus, an edge may lose (or win) because of a consensus of <u>other</u> edges. ### Non-Projective Parses subtree rooted at "talk" is a **discontiguous** noun phrase The "projectivity" restriction. Do we really want it? ### Non-Projective Parses ROOT I 'Il give a talk tomorrow on bootstrapping occasional non-projectivity in English That glory may-know my going-gray (i.e., it shall last till I go gray) frequent non-projectivity in Latin, etc. #### **Non-Projective Parsing Algorithms** - ► Complexity considerations: - Projective (Proj) - ► Non-projective (NonP) | Problem/Algorithm | Proj | NonP | |--|----------|----------------| | Complete grammar parsing
[Gaifman 1965, Neuhaus and Bröker 1997] | Р | <i>NP</i> hard | | Deterministic parsing
[Nivre 2003, Covington 2001] | O(n) | $O(n^2)$ | | First order spanning tree [McDonald et al. 2005b] | $O(n^3)$ | $O(n^2)$ | | $\it N$ th order spanning tree ($\it N>1$) [McDonald and Pereira 2006] | Р | <i>NP</i> hard | Dependency Parsing 65(103) ### McDonald's Approach (non-projective) - Consider the sentence "John saw Mary" (left). - The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) – may be non-projective. - Can be found in time O(n²). #### Chu-Liu-Edmonds - Contracting Stage - ► For each non-ROOT node *v*, set bestInEdge[*v*] to be its highest scoring incoming edge. - ▶ If a cycle *C* is formed: - ightharpoonup contract the nodes in C into a new node v_C - ightharpoonup edges outgoing from any node in C now get source v_C - \triangleright edges incoming to any node in C now get destination v_C - For each node u in C, and for each edge e incoming to u from outside of C: - ▶ add to e.kicksOut the edge bestInEdge[u], and - ▶ set e.score to be e.score e.kicksOut.score. - Repeat until every non-ROOT node has an incoming edge and no cycles are formed | | bestInEdge | |----|------------| | V1 | | | V2 | | | V3 | | | | kicksOut | |--------|----------| | а | | | b | | | c
d | | | d | | | е | | | f | | | g | | | h | | | i | | | | bestInEdge | |----|------------| | V1 | g | | V2 | | | V3 | | | | kicksOut | |--------|----------| | а | | | b | | | c
d | | | d | | | е | | | f | | | g | | | h | | | i | | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | | | | kicksOut | |--------|----------| | а | | | b | | | С | | | d | | | е | | | f | | | g
h | | | h | | | i | | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | | | | kicksOut | |--------|----------| | a | g | | b | d | | c
d | | | d | | | e | | | f | | | g
h | | | h | g | | i | d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | | | V4 | | | | | | | kicks0ut | |--------|----------| | а | g
d | | b | d | | c
d | | | d | | | е | | | f | | | g
h | | | h | g
d | | i | d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | | | | | | | kicksOut | |--------|----------| | а | g | | b | g
d | | c
d | | | d | | | е | | | f | | | g | | | h | g
d | | i | d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | h | | | | | | kicksOut | |--------|----------| | а | g | | b | g
d | | c
d | | | d | | | е | | | f | | | g | | | h | g | | i | g
d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | h | | V5 | | | | kicksOut | |--------|----------| | а | g, h | | b | d, h | | c
d | f | | d | | | е | | | e
f | | | g | | | ĥ | g | | i | g
d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | h | | V5 | | | | kicks0ut | |--------|----------| | а | g, h | | b | d, h | | c
d | f | | d | | | е | f | | e
f | | | g | | | g
h | g | | i | g
d | | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | h | | V5 | a | | | kicksOut | |--------|----------| | a | g, h | | b | d, h | | c
d | f | | d | | | e
f | f | | f | | | g
h | | | h | g | | i | g
d | #### Chu-Liu-Edmonds - Expanding Stage After the contracting stage, every contracted node will have exactly one <code>bestInEdge</code>. This edge will kick out one edge inside the contracted node, breaking the cycle. - ► Go through each bestInEdge e in the reverse order that we added them - lock down e, and remove every edge in kicksOut(e) from bestInEdge. | | bestInEdge | |----|------------| | V1 | g | | V2 | d | | V3 | f | | V4 | h | | V5 | а | | kicks0ut | |----------| | g, h | | d, h | | f | | | | f | | | | | | g | | g
d | | | | | bestInEdge | |----|------------| | V1 | a g | | V2 | ď | | V3 | f | | V4 | a k | | V5 | a | | | kicks0ut | |--------|----------| | а | g, h | | b | d, h | | c
d | f | | d | | | е | f | | e
f | | | g | | | h | g | | i | g
d | | | bestInEdge | |----|-----------------| | V1 | a g | | V2 | a g
d | | V3 | f | | V4 | a M | | V5 | a | | | kicksOut | |--------|----------| | а | g, h | | b | d, h | | c
d | f | | d | | | е | f | | f | | | g | | | g
h | g | | i | g
d | | | bestInEdge | |----|------------| | V1 | a g | | V2 | ď | | V3 | f | | V4 | a M | | V5 | a | | | _ | |--------|----------| | | kicksOut | | а | g, h | | b | d, h | | c
d | f | | d | | | е | f | | f | | | g | | | g
h | g | | i | g
d | | | bestInEdge | |----|------------| | V1 | a g | | V2 | d | | V3 | f | | V4 | a M | | V5 | a | | | kicksOut | |--------|----------| | a | g, h | | Ь | d, h | | c
d | f | | d | | | e
f | f | | f | | | g | | | g
h | g | | -i | g
d | | | hashTuEdaa | |----|------------| | | bestInEdge | | V1 | a g | | V2 | ď | | V3 | f | | V4 | a k | | V5 | a | | | kicksOut | |--------|----------| | а | g, h | | Ь | d, h | | c
d | f | | d | | | e
f | f | | f | | | g | | | g
h | g | | i | g
d | ## Summing over all non-projective trees Finding highest-scoring non-projective tree - Consider the sentence "John saw Mary (left)". - The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree – may be non-projective. - Can be found in time $O(n^2)$. - How about total weight Z of all trees? - Can be found in time O(n³) by matrix determinants and inverses (Smith & Smith, 2007). ### Graph Theory to the Rescue! $O(n^3)$ time! re's Matrix-Tree Theorem (1948) The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph *G* without row and column *r* is equal to the **sum of scores of all directed spanning trees** of *G* rooted at ode *r*. Exactly the Z we need! $$\begin{vmatrix} \sum_{j\neq 1}^{r} s(1,j) & -s(2,1) & \cdots & -s(n,1) \\ -s(1,2) & \sum_{j\neq 2}^{r} s(2,j) & \cdots & -s(n,2) \\ \vdots & \vdots & \ddots & \vdots \\ -s(1,n) & -s(2,n) & \cdots & \sum_{j\neq n}^{r} s(n,j) \end{vmatrix}$$ • Negate edge score • Sum columns (children) • Strike root row/col. • Take determinant - Negate edge scores - Take determinant N.B.: This allows multiple children of root, but see Koo et al. 2007. ### Graph Deletion & Contraction Important fact: $\kappa(G) = \kappa(G-\{e\}) + \kappa(G\setminus\{e\})$ ### Why Should This Work? Clear for 1x1 matrix; use induction $$\sum_{j \neq 1} s(1,j) -s(2,1) \cdots -s(n,1)$$ $$-s(1,2) \sum_{j \neq 2} s(2,j) \cdots -s(n,2)$$ $$\vdots \vdots \vdots \vdots \vdots$$ $$-s(1,n) -s(2,n) \cdots \sum_{j \neq n} s(n,j)$$ $K' \equiv K$ with contracted edge 1,2 $K'' \equiv K$ with deleted edge 1,2 |K| = s(1,2)|K'| + |K''| Chu-Liu-Edmonds analogy: Every node selects best parent If cycles, contract and recurse Undirected case; special root cases for directed