Computational Linguistics CSC 485/2501 Fall 2023

2A

2A. Dependency Grammar

Gerald Penn Department of Computer Science, University of Toronto

Based on slides by Roger Levy, Yuji Matsumoto, Dragomir Radev, Dan Roth, David Smith and Jason Eisner

Copyright © 2019 Gerald Penn. All rights reserved.

Word Dependency Parsing

Raw sentence

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

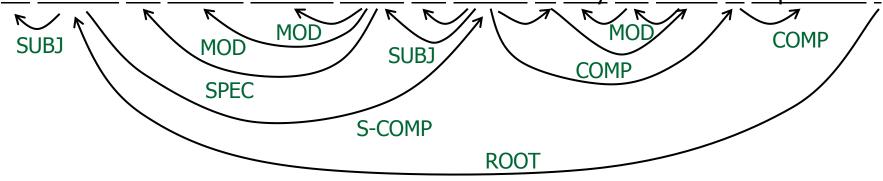
Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September. PRP VBZ DT JJ NN NN MD VB TO RB CD CD IN NNP .

Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .



slide adapted from Yuji Matsumoto

Dependency Graphs

 A dependency structure can be defined as a directed graph G, consisting of

- ▶ a set V of nodes,
- ▶ a set *E* of arcs (edges),
- ► a linear precedence order < on V.
- Labeled graphs:
 - ▶ Nodes in V are labeled with word forms (and annotation).
 - Arcs in E are labeled with dependency types.
- ▶ Notational conventions $(i, j \in V)$:

•
$$i \to j \equiv (i,j) \in E$$

$$\blacktriangleright i \rightarrow^* j \equiv i = j \lor \exists k : i \rightarrow k, \ k \rightarrow^* j$$

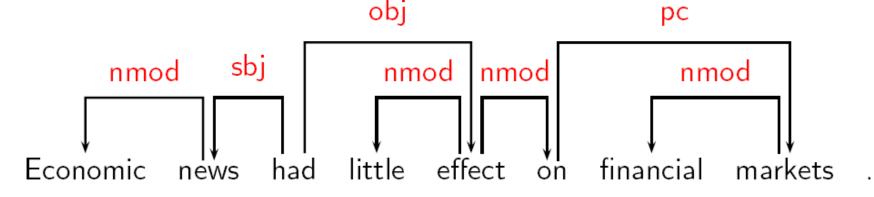
Formal Conditions on Dependency Graphs

- ► G is (weakly) connected:
 - For every node *i* there is a node *j* such that $i \rightarrow j$ or $j \rightarrow i$.
- ► G is acyclic:
 - If $i \to j$ then not $j \to^* i$.
- G obeys the single-head constraint:
 - If $i \to j$, then not $k \to j$, for any $k \neq i$.
- G is projective:
 - If $i \to j$ then $i \to k$, for any k such that i < k < j or j < k < i.

Connectedness, Acyclicity and Single-Head

- Intuitions:
 - Syntactic structure is complete (Connectedness).
 - Syntactic structure is hierarchical (Acyclicity).
 - Every word has at most one syntactic head (Single-Head).
- Connectedness can be enforced by adding a special root node.

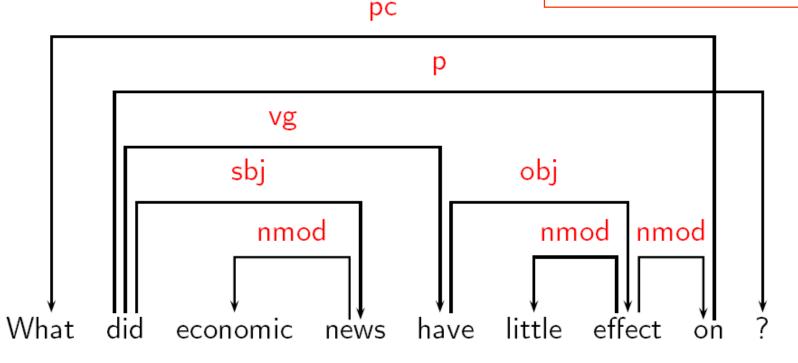
All these conditions will be violated for semantic dependency graphs we will consider later



Projectivity

- Most theoretical frameworks do not assume projectivity.
- Non-projective structures are needed to account for
 - long-distance dependencies,
 - free word order.

You can think of it as (related) planarity



Underspecifications of simple typed dependencies

- Flat bracketings
- Non-projective dependency

A woman arrived who was wearing a hat

- Complex word-word dependency constructions:
 - Predicative adjectives

I ate the fish naked/raw

Coordination

Pat and Terry sat and laughed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

More generally, semantic roles:

The door opened Erin opened the door The door opened a crack

Quantifier scoping, temporal interpretation and so forth

Shift-Reduce Type Algorithms

Data structures:

- Stack [..., w_i]_S of partially processed tokens
- Queue $[w_j, \ldots]_Q$ of remaining input tokens
- Parsing actions built from atomic actions:
 - Adding arcs $(w_i \rightarrow w_j, w_i \leftarrow w_j)$
 - Stack and queue operations
- Left-to-right parsing in O(n) time
- Restricted to projective dependency graphs

Yamada's Algorithm

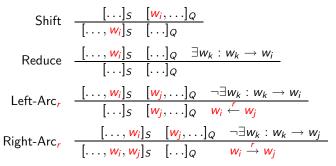
Three parsing actions:

Shift
$$\frac{[\dots]s \quad [w_i,\dots]_Q}{[\dots,w_i]s \quad [\dots]_Q}$$
Left
$$\frac{[\dots,w_i,w_j]s \quad [\dots]_Q}{[\dots,w_i]s \quad [\dots]_Q \quad w_i \to w_j}$$
Right
$$\frac{[\dots,w_i,w_j]s \quad [\dots]_Q}{[\dots,w_i]s \quad [\dots]_Q \quad w_i \leftarrow w_j}$$

- Algorithm variants:
 - Originally developed for Japanese (strictly head-final) with only the Shift and Right actions [Kudo and Matsumoto 2002]
 - Adapted for English (with mixed headedness) by adding the Left action [Yamada and Matsumoto 2003]
 - Multiple passes over the input give time complexity $O(n^2)$

Nivre's Algorithm

Four parsing actions:



Characteristics:

- Integrated labeled dependency parsing
- Arc-eager processing of right-dependents
- Two passes over the input gives time complexity O(n)

Example

 $[root]_S$ [Economic news had little effect on financial markets .]_Q

Example

[root Economic]_S [news had little effect on financial markets $.]_Q$

Shift

Example

$[root]_{S} \text{ Economic [news had little effect on financial markets .]}_{Q}$

Left-Arcnmod

Example

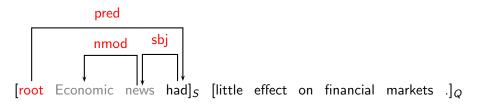
Shift

Example



Left-Arc_{sbj}

Example

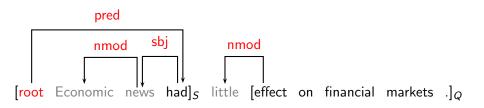


Right-Arc_{pred}

Example

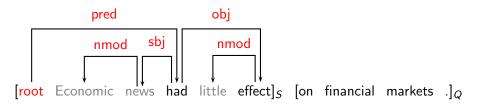
Shift

Example



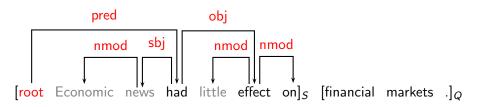
Left-Arcnmod

Example



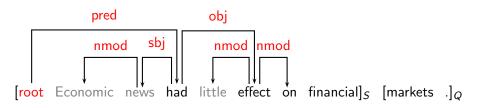
Right-Arcobj

Example

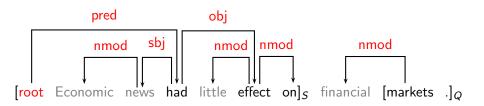


Right-Arcnmod

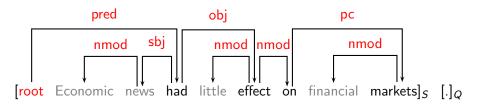
Example



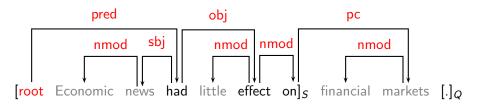
Shift

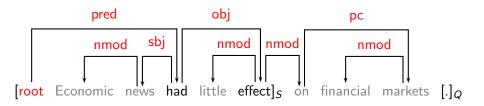


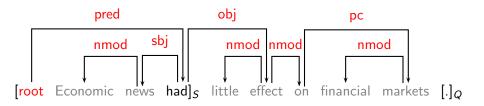
Left-Arcnmod

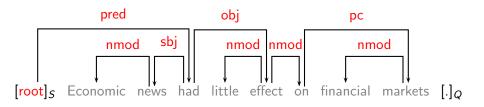


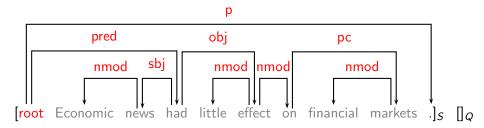
Right-Arc_{pc}











Right-Arc_p

Classifier-Based Parsing

Data-driven deterministic parsing:

- Deterministic parsing requires an oracle.
- An oracle can be approximated by a classifier.
- A classifier can be trained using treebank data.
- Learning methods:
 - Support vector machines (SVM) [Kudo and Matsumoto 2002, Yamada and Matsumoto 2003, Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]
 - Memory-based learning (MBL) [Nivre et al. 2004, Nivre and Scholz 2004]
 - Maximum entropy modeling (MaxEnt)
 - [Cheng et al. 2005]
 - Neural networks [you!]

Feature Models

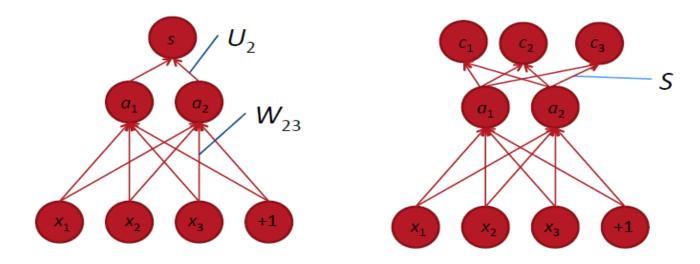
- Learning problem:
 - Approximate a function from parser states, represented by feature vectors to parser actions, given a training set of gold standard derivations.
- Typical features:
 - Tokens:
 - Target tokens
 - Linear context (neighbors in S and Q)
 - Structural context (parents, children, siblings in G)
 - Attributes:
 - Word form (and lemma)
 - Part-of-speech (and morpho-syntactic features)
 - Dependency type (if labeled)
 - Distance (between target tokens)

Neural Networks

Neural Networks can be built for different input, output types.

- Outputs can be:
 - Linear, single output (Linear)
 - Linear, multiple outputs (Linear)
 - Single output binary (Logistic)
 - Multi output binary (Logistic)
 - 1 of k Multinomial output (Softmax) categorical
- Inputs can be:
 - A scalar number
 - Vector of Real numbers
 - Vector of Binary

(Fig: courtesy R Socher)



Goal of training: Given the training data (inputs, targets) and the architecture, determine the model parameters. Model Parameters for a 3 layer network:

- Weight matrix from input layer to the hidden (W_{ik})
- Weight matrix from hidden layer to the output (W_{ki})
- Bias terms for hidden layer
- Bias terms for output layer

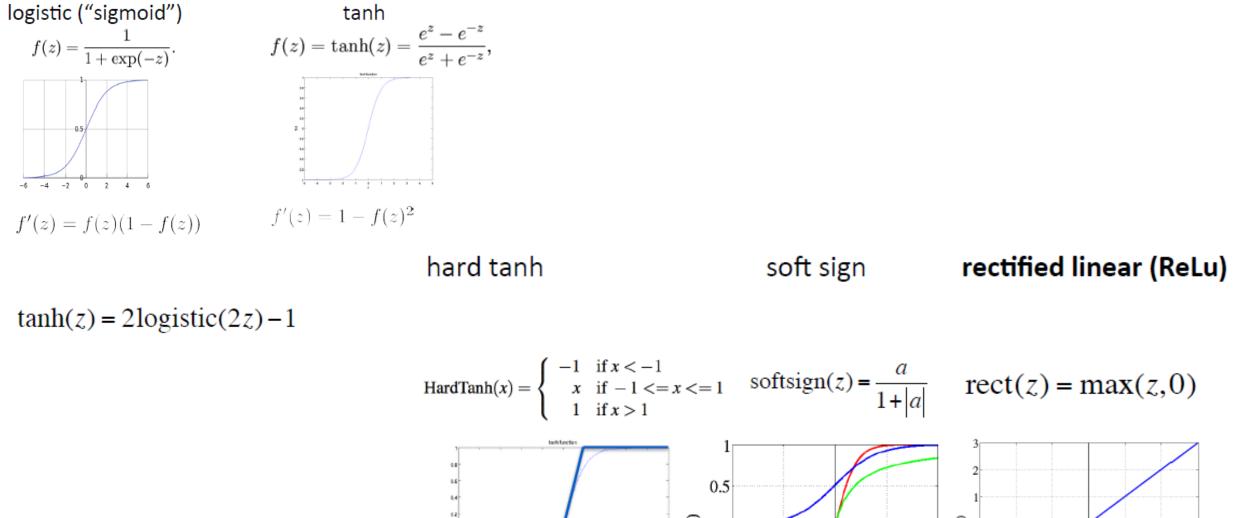
Our strategy will be:

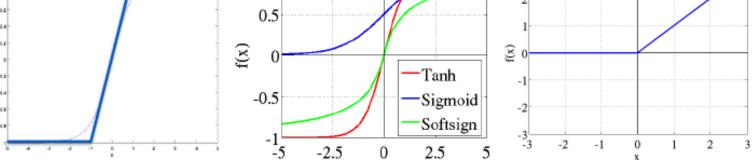
- Compute the error at the output
- Determine the contribution of each parameter to the error by taking the differential of error wrt the parameter
- Update the parameter commensurate with the error it contributed.

Design Choices

- When building a neural network, the designer would choose the following hyper parameters and non linearities based on the application characteristics:
 - Number of hidden layers
 - Number of hidden units in each layer
 - Learning rate
 - Regularization coefft
 - Number of outputs
 - Type of output (linear, logistic, softmax)
 - Choice of Non linearity at the output layer and hidden layer (See next slide)
 - Input representation and dimensionality

Commonly used non linearities (fig: courtesy Socher)





Objective Functions and gradients

• Linear – Mean squared error

•
$$E(w) = \frac{1}{2N} \sum_{n=1}^{N} (t_n - y_n)^2$$

- Logistic with binary classifications: Cross Entropy Error
- Logistic with k outputs: k > 2: Cross Entropy Error
- Softmax: 1 of K["]multinomial["] classification: Cross Entropy Error, minimize NLL
- In all the above cases we can show that the gradient is: (y_k t_k) where y_k is the predicted output for the output unit k and t_k is the corresponding target

High Level Backpropagation Algorithm

- Apply the input vector to the network and forward propagate. This will yield the activations for hidden layer(s) and the output layer
 - $net_j = \sum_i w_{ji} z_i$,
 - $z_j = h(net_j)$ where h is your choice of non linearity. Usually it is sigmoid or tanh. Rectified Linear Unit (ReIU) is also used.
- Evaluate the error δ_k for all the output units

 $\delta_k = o_k - t_k$ where o_k is the output produced by the model and t_k is the target provided in the training dataset

• Backpropagate the δ 's to obtain δ_j for each hidden unit j

 $\delta_j = h'(z_j) \sum_k w_{kj} \, \delta_k$

• Evaluate the required derivatives $\frac{\partial E}{\partial W_{ji}} = \delta_j z_i$