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Word Dependency Parsing 

He reckons the current account deficit will narrow to only 1.8 billion in September. 

Raw sentence 

Part-of-speech tagging 

 He reckons the current account deficit will narrow to only 1.8 billion in September. 
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      . 

POS-tagged sentence 

Word dependency parsing 

slide adapted from Yuji Matsumoto 

Word dependency parsed sentence 

He reckons the current account deficit will narrow to only 1.8 billion in September . 
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All these conditions will be violated for semantic 
dependency graphs we will consider later



You can think of it  as 
(related) planarity



Underspecifications of simple typed dependencies

I Flat bracketings
I Non-projective dependency

A woman arrived who was wearing a hat

I Complex word-word dependency constructions:
I Predicative adjectives

I ate the fish naked/raw

I Coordination
Pat and Terry sat and laughed

I More generally, semantic roles:

The door opened
Erin opened the door
The door opened a crack

I Quantifier scoping, temporal interpretation and so forth



Parsing Methods

Shift-Reduce Type Algorithms

◮ Data structures:
◮ Stack [. . . , wi ]S of partially processed tokens
◮ Queue [wj , . . .]Q of remaining input tokens

◮ Parsing actions built from atomic actions:
◮ Adding arcs (wi → wj , wi ← wj)
◮ Stack and queue operations

◮ Left-to-right parsing in O(n) time

◮ Restricted to projective dependency graphs
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Parsing Methods

Yamada’s Algorithm

◮ Three parsing actions:

Shift
[. . .]S [wi , . . .]Q

[. . . , wi ]S [. . .]Q

Left
[. . . , wi , wj ]S [. . .]Q

[. . . , wi ]S [. . .]Q wi → wj

Right
[. . . , wi , wj ]S [. . .]Q

[. . . , wj ]S [. . .]Q wi ← wj

◮ Algorithm variants:
◮ Originally developed for Japanese (strictly head-final) with only

the Shift and Right actions [Kudo and Matsumoto 2002]
◮ Adapted for English (with mixed headedness) by adding the

Left action [Yamada and Matsumoto 2003]
◮ Multiple passes over the input give time complexity O(n2)
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Parsing Methods

Nivre’s Algorithm

◮ Four parsing actions:

Shift
[. . .]S [wi , . . .]Q

[. . . , wi ]S [. . .]Q

Reduce
[. . . , wi ]S [. . .]Q ∃wk : wk → wi

[. . .]S [. . .]Q

Left-Arcr
[. . . , wi ]S [wj , . . .]Q ¬∃wk : wk → wi

[. . .]S [wj , . . .]Q wi
r
← wj

Right-Arcr
[. . . , wi ]S [wj , . . .]Q ¬∃wk : wk → wj

[. . . , wi , wj ]S [. . .]Q wi
r
→ wj
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◮   Two passes over the input gives time complexity O(n)

◮ Arc-eager processing of right-dependents

◮ Integrated labeled dependency parsing

◮ Characteristics:



Parsing Methods

Example

[root]S [Economic news had little effect on financial markets .]Q
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Parsing Methods

Example

[root Economic]S [news had little effect on financial markets .]Q

Shift
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Parsing Methods

Example

[root]S Economic [news had little effect on financial markets .]Q

nmod

Left-Arcnmod
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Parsing Methods

Example

[root Economic news]S [had little effect on financial markets .]Q

nmod

Shift
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Parsing Methods

Example

[root]S Economic news [had little effect on financial markets .]Q

sbjnmod

Left-Arcsbj
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Parsing Methods

Example

[root Economic news had]S [little effect on financial markets .]Q

pred

sbjnmod

Right-Arcpred
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Parsing Methods

Example

[root Economic news had little]S [effect on financial markets .]Q

pred

sbjnmod

Shift
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Parsing Methods

Example

[root Economic news had]S little [effect on financial markets .]Q

pred

sbjnmod nmod

Left-Arcnmod
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Parsing Methods

Example

[root Economic news had little effect]S [on financial markets .]Q

objpred

sbjnmod nmod

Right-Arcobj

Dependency Parsing 57(103)



Parsing Methods

Example

[root Economic news had little effect on]S [financial markets .]Q

objpred

sbjnmod nmod nmod

Right-Arcnmod
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Parsing Methods

Example

[root Economic news had little effect on financial]S [markets .]Q

objpred

sbjnmod nmod nmod

Shift
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Parsing Methods

Example

[root Economic news had little effect on]S financial [markets .]Q

objpred

sbjnmod nmod nmod nmod

Left-Arcnmod
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Parsing Methods

Example

[root Economic news had little effect on financial markets]S [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Right-Arcpc
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Parsing Methods

Example

[root Economic news had little effect on]S financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce
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Parsing Methods

Example

[root Economic news had little effect]S on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce
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Parsing Methods

Example

[root Economic news had]S little effect on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce
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Parsing Methods

Example

[root]S Economic news had little effect on financial markets [.]Q

objpred

sbjnmod nmod nmod

pc

nmod

Reduce

Dependency Parsing 57(103)



Parsing Methods

Example

[root Economic news had little effect on financial markets .]S []Q

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Right-Arcp
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Parsing Methods

Classifier-Based Parsing

◮ Data-driven deterministic parsing:
◮ Deterministic parsing requires an oracle.
◮ An oracle can be approximated by a classifier.
◮ A classifier can be trained using treebank data.

◮ Learning methods:
◮ Support vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003, 
Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]

◮ Memory-based learning (MBL)
[Nivre et al. 2004, Nivre and Scholz 2004]

◮ Maximum entropy modeling (MaxEnt)
[Cheng et al. 2005]
Neural networks
[you!]
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◮



Parsing Methods

Feature Models

◮ Learning problem:
◮ Approximate a function from parser states, represented by

feature vectors to parser actions, given a training set of gold
standard derivations.

◮ Typical features:
◮ Tokens:

◮ Target tokens
◮ Linear context (neighbors in S and Q)
◮ Structural context (parents, children, siblings in G)

◮ Attributes:
◮ Word form (and lemma)
◮ Part-of-speech (and morpho-syntactic features)
◮ Dependency type (if labeled)
◮ Distance (between target tokens)
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Neural Networks                                (Fig: courtesy R Socher)

Neural Networks can be built for different 
input, output types.

- Outputs can be: 
- Linear, single output (Linear)
- Linear, multiple outputs (Linear)
- Single output binary (Logistic)
- Multi output binary (Logistic)
- 1 of k Multinomial output (Softmax)

- Inputs can be:
- A scalar number
- Vector of Real numbers
- Vector of Binary

Goal of training: Given the training data (inputs, targets) and the 
architecture, determine the model parameters.
Model Parameters for a 3 layer network:
- Weight matrix from input layer to the hidden (Wjk)
- Weight matrix from hidden layer to the output (Wkj)
- Bias terms for hidden layer
- Bias terms for output layer
Our strategy will be:
- Compute the error at the output
- Determine the contribution of each parameter to the error by 

taking the differential of error wrt the parameter
- Update the parameter commensurate with the error it contributed.

categorical



Design Choices

• When building a neural network, the designer would choose the 
following hyper parameters and non linearities based on the 
application characteristics:
• Number of hidden layers

• Number of hidden units in each layer

• Learning rate

• Regularization coefft

• Number of outputs

• Type of output (linear, logistic, softmax)

• Choice of Non linearity at the output layer and hidden layer (See next slide)

• Input representation and dimensionality



Commonly used non linearities (fig: courtesy Socher)



Objective Functions and gradients

• Linear – Mean squared error

• 𝐸 𝑤 =
1

2𝑁
 1
𝑁(𝑡𝑛 − 𝑦𝑛)

2

  

  

 

 
    the predicted output for the output unit k and tk is the corresponding target

• In all the above cases we can show that the gradient is: (yk - tk) where yk is

• Softmax: 1 of K multinomial classification: Cross Entropy Error, minimize NLL

• Logistic with k outputs: k > 2: Cross Entropy Error

• Logistic with binary classifications: Cross Entropy Error

" "



High Level Backpropagation Algorithm

• Apply the input vector to the network and forward propagate. This 
will yield the activations for hidden layer(s) and the output layer
• 𝑛𝑒𝑡𝑗 =  𝑖𝑤𝑗𝑖 𝑧𝑖 ,

• 𝑧𝑗 = ℎ(𝑛𝑒𝑡𝑗) where h is your choice of non linearity. Usually it is sigmoid or 
tanh. Rectified Linear Unit (RelU) is also used.

• Evaluate the error 𝛿𝑘 for all the output units
𝛿𝑘 = 𝑜𝑘 − 𝑡𝑘 where 𝑜𝑘 is the output produced by the model and 𝑡𝑘 is the 
target provided in the training dataset

• Backpropagate the 𝛿’s to obtain 𝛿𝑗 for each hidden unit j

𝛿𝑗 = ℎ
′(𝑧𝑗)  𝑘𝑤𝑘𝑗 𝛿𝑘

• Evaluate the required derivatives
𝜕𝐸

𝜕𝑊𝑗𝑖
= 𝛿𝑗𝑧𝑖


