
Computational

Linguistics

Copyright © 2020 Gerald

Penn. All rights reserved.

10

10. Unsupervised Parsing

Gerald Penn

Department of Computer Science, University of Toronto

CSC 485/2501

Fall 2023

• Parsing without training on parse trees.
How could such a thing be learned?

• Well, unsupervised doesn’t always mean no
supervision…

• Parts of speech

• Binary-branch restrictions

• …and we often lower the bar in terms of what
we expect the system to learn:

• Unlabelled (binary) trees

• Hierarchical structure without explicit, recursive
rules.

Unsupervised parsing

2

• PRPN trains a sequence of components that
build a parse tree on the way to predicting the
next word in a string of words – a fancy
language model.

• But that means that supervising the whole
system in sequence means that we must only
provide words in sequence…

• for a parser, that counts as unsupervised!

• When we are done, we can break off the later
components and use the parser by itself.

PRPN: parse-read-predict

3

4

• “Corner-dominant”
• The highest ancestor for which a node is the left

corner, e.g.:

Some terminology

node

node’s parent

corner-dominant

corner-dominant’s parent

5

• “Corner-dominant”
• The highest ancestor for which a node is the left

corner, e.g.:

Some terminology

node

node’s parent

corner-dominant

corner-dominant’s parent

6

• “Left extent”
• lt = the left corner of a pre-terminal node’s corner-

dominant’s parent, for t > 0, e.g.:

Some terminology

x2: pre-terminal node

corner-dominant

corner-dominant’s parent

l2: left extent

7

• “Left extent”
• lt = the left corner of a pre-terminal node’s corner-

dominant’s parent, for t > 0, e.g.:

Some terminology

x4: pre-terminal node

corner-dominant

corner-dominant’s parent

l4: left extent

8

• “Dependency-range gate”

• 𝑔𝑖
𝑡= ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

, labels left extent of xt, e.g.:

Some terminology

x2

x2’s corner-dominant

x2’s corner-dominant’s parent

g2: 1 1 -- -- -- -- -- --

9

• “Dependency-range gate”

• 𝑔𝑖
𝑡= ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

, labels left extent of xt, e.g.:

Some terminology

x4

x4’s corner-dominant

x4’s corner-dominant’s parent

g4: 0 0 1 1 -- -- -- --

10

• “Height”
• h(w) = 1,

• h(n) = max
𝑚∈𝑇𝑛\𝑛

ℎ 𝑚 + 1.

Note: height is not depth, nor is it h(root)-depth. Count from
the bottom.

Some terminology

1 1 1 1 1 1 1 1

22 2 2 2 2 22

3 3 3

4 4

5

6

11

• “Roark-Hollingshead distance”

• d(i) = di =
ℎ 𝑤𝑖−1,𝑤𝑖 −2

ℎ 𝑟 −1
.

where h(w-1,w0) = h(wL-1,wL) = h(r)+1,

h(u,v) = h(u ⊔ v) everywhere else (trees are CNF).

Some terminology

0 1 2 3 4 5 6 7=L-1

h=4

h=5

h=6

d(0) =
6+1−2

6−1
= 1

d(2) =
5−2

6−1
=

3

5

d(4) =
4−2

6−1
=

2

5

12

Q: How much of

this does this preserve?

Roark-Hollingshead Conjecture

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo <end>

A: All of it (except labels)!

Very cool, because this
is a “local” statistic.

13

• “Dependency range”

• α𝑖
𝑡 =

𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡.

Some terminology

α6: 1 0 1
1

2
0

1

2
-- --

14

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

PRPN’s big idea

α6: 1 0 1
1

2
0

1

2
-- --

g6: 0 0 0 0 0 1 -- --

15

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

PRPN’s big idea

α6: 1 0 1
1

2
0

1

2
-- --

g6: 0 0 0 0 0 1 -- --

x2 ⊔ x3

x4 ⊔ x5

x5 ⊔ x6

16

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

PRPN’s big idea

α5: 1 1 1 1
1

2
-- -- --

g5: 1 1 1 1 1 -- -- --

x4 ⊔ x5

17

• But if 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ∏
𝑗=𝑖+1

𝑡−1

𝛼𝑗
𝑡 , then:

𝑃 𝑙𝑡 ≤ 𝑖 ≈ ∏
𝑗=𝑖+2

𝑡−1

𝛼𝑗
𝑡 ∙ 𝛼𝑖+1

𝑡 ≈ 𝑃 𝑙𝑡 ≤ 𝑖 + 1 ∙ 𝛼𝑖+1
𝑡 , so:

𝛼𝑖+1
𝑡 ≈ 𝑃 𝑙𝑡 ≠ 𝑖 + 1 𝑙𝑡 ≤ 𝑖 + 1)

1 − 𝛼𝑖
𝑡 ≈ 𝑃 𝑙𝑡 = 𝑖 𝑙𝑡 ≤ 𝑖), and:

𝑃 𝑙𝑡 = 𝑖 = 𝑃 𝑙𝑡 = 𝑖 𝑙𝑡 ≤ 𝑖) ∙ 𝑃(𝑙𝑡 ≤ 𝑖)

≈ 1 − 𝛼𝑖
𝑡 ∙ ∏

𝑗=𝑖+1

𝑡−1

𝛼𝑗
𝑡.

• This is an example of the well-known
stick-breaking process. When 𝛼𝑗 = 1 − 𝛽𝑗 , and
the 𝛽𝑗 are samples from beta distributions, this
process is an instance of a Dirichlet process.

PRPN’s big idea

18

• But if 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ∏
𝑗=𝑖+1

𝑡−1

𝛼𝑗
𝑡 , then:

𝑃 𝑙𝑡 ≤ 𝑖 ≈ ∏
𝑗=𝑖+2

𝑡−1

𝛼𝑗
𝑡 ∙ 𝛼𝑖+1

𝑡 ≈ 𝑃 𝑙𝑡 ≤ 𝑖 + 1 ∙ 𝛼𝑖+1
𝑡 , so:

𝛼𝑖+1
𝑡 ≈ 𝑃 𝑙𝑡 ≠ 𝑖 + 1 𝑙𝑡 ≤ 𝑖 + 1)

1 − 𝛼𝑖
𝑡 ≈ 𝑃 𝑙𝑡 = 𝑖 𝑙𝑡 ≤ 𝑖), and:

𝑃 𝑙𝑡 = 𝑖 = 𝑃 𝑙𝑡 = 𝑖 𝑙𝑡 ≤ 𝑖) ∙ 𝑃(𝑙𝑡 ≤ 𝑖)

≈ 1 − 𝛼𝑖
𝑡 ∙ ∏

𝑗=𝑖+1

𝑡−1

𝛼𝑗
𝑡.

• This is very well suited to modelling the
dependence of 𝑙𝑡 upon as many words/pre-
terminals as we want.

PRPN’s big idea

19

• Soften up “Dependency range:”

• α𝑖
𝑡 =

𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡, becomes:

• 𝛼𝑖
𝑡 =

ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ((𝑑𝑡−𝑑𝑖+1)∙𝜏)

2
, where τ is temperature,

• and ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ 𝑥 = max −1, min 1, 𝑥 .

• Then learn RH distance with a 2-layer convolution:

• 𝑞𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑞

𝑒𝑡−𝐿

𝑒𝑡−𝐿+1
⋯
𝑒𝑡

+ 𝑏𝑞 ,

• 𝑑𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑑𝑞𝑡 + 𝑏𝑑 .
• But we’re not going to supervise this with dt from

actual trees…

PRPN: parse

Word vectors for wi-L, wi-L+1, … wi

20

• Instead, we couple the input to memory states mi and
use RH distance to interpolate mixtures of previous
time steps into “summary vectors” that predict
subsequent memory states:

• 𝑘𝑡 = 𝑊𝑚𝑚𝑡−1 + 𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑠𝑖
𝑡 =

𝑔𝑖
𝑡

σ𝑗 𝑔𝑗
𝑡 ҧ𝑠𝑖

𝑡 ,

•
ഥ𝑚𝑡

ҧ𝑐𝑡
= σ

𝑖=1

𝑡−1

𝑠𝑖
𝑡 ∙

𝑚𝑖

𝑐𝑖
,

•
ҧ𝑐𝑡

ഥ𝑚𝑡

𝑒𝑡

𝑐𝑡

𝑚𝑡.

PRPN: read

Summary vector

Big idea: depends on di’s now

LSTM

21

• Instead, we now predict et+1, given m0,…,mt, which in
turn depend upon e0,…,et:

• 𝑘𝑡 = 𝑊𝑚𝑚𝑡−1 + 𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑟𝑖
𝑡 =

𝑔𝑖
𝑡+1

σ𝑗 𝑔𝑗
𝑡+1 ҧ𝑠𝑖

𝑡 ,

• ҧ𝑙𝑡 = σ
𝑖=𝑙𝑡+1

𝑡−1

𝑟𝑖
𝑡 ∙ 𝑚𝑖,

• Estimate 𝑑𝑡+1 ≈ 𝑅𝑒𝐿𝑈 ෩𝑊𝑑𝑚𝑡 + ෨𝑏𝑑 ,

• then estimate ǁ𝑒𝑡+1 = tanh(𝑊𝑓

ҧ𝑙𝑡

𝑚𝑡
+ 𝑏𝑓).

PRPN: predict

Stick-breaking process: also depends on dt+1

Depends on dt+1

22

• Predict syntax directly, but not with trees.

• Instead, use bracket matrices and “spans,” which
here consist also of yields and contexts:

CCM: brackets and spans

23

• Predict syntax directly, but not with trees.

• Instead, use bracket matrices and “spans,” which
here consist also of yields and contexts.

• 𝑃 𝑆, 𝐵 = 𝑃 𝐵 𝑃 𝑆 𝐵

• 𝑃 𝑆 𝐵 = ∏
𝑖,𝑗

𝑃 𝛼𝑖𝑗 𝐵𝑖𝑗 𝑃 𝑥𝑖𝑗 𝐵𝑖𝑗

• Then, use Expectation Maximization:
• E-step: calculate P(B|S,Θ)
• M-step: fixing those, calculate:

argmax
෡Θ

σ
𝐵

𝑃 𝐵 𝑆, Θ log 𝑃 𝑆, 𝐵 ෡Θ .

• P(B) is not recalculated – it is a uniform distribution
over tree-consistent bracketings.

CCM: brackets and spans

24

Performance on WSJ10

25

Performance on PTB30+

