Computational

 Linguistics
10. Unsupervised Parsing

Gerald Penn

Department of Computer Science, University of Toronto

Unsupervised parsing

- Parsing without training on parse trees. How could such a thing be learned?
- Well, unsupervised doesn't always mean no supervision...
- Parts of speech
- Binary-branch restrictions
...and we often lower the bar in terms of what we expect the system to learn:
- Unlabelled (binary) trees
- Hierarchical structure without explicit, recursive rules.

PRPN: parse-read-predict

- PRPN trains a sequence of components that build a parse tree on the way to predicting the next word in a string of words - a fancy language model.
- But that means that supervising the whole system in sequence means that we must only provide words in sequence...
- for a parser, that counts as unsupervised!
- When we are done, we can break off the later components and use the parser by itself.

Some terminology

"Corner-dominant"

- The highest ancestor for which a node is the left corner, e.g.:

Some terminology

"Corner-dominant"

- The highest ancestor for which a node is the left corner, e.g.:

Some terminology

- "Left extent"
- $I_{t}=$ the left corner of a pre-terminal node's cornerdominant's parent, for $t>0$, e.g.:

Some terminology

- "Left extent"
- $I_{t}=$ the left corner of a pre-terminal node's cornerdominant's parent, for $t>0$, e.g.:

Some terminology

"Dependency-range gate"

- $g_{i}^{t}=\left\{\begin{array}{ll}1, & l_{t} \leq i<t \\ 0, & 0 \leq i<l_{t}\end{array}\right.$, labels left extent of x_{t}, e.g.:

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

$$
\mathrm{g}^{2}: 1 \quad 1 \quad--
$$

Some terminology

"Dependency-range gate"

- $g_{i}^{t}=\left\{\begin{array}{ll}1, & l_{t} \leq i<t \\ 0, & 0 \leq i<l_{t}\end{array}\right.$, labels left extent of x_{t}, e.g.:

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

$$
\begin{array}{lllll}
g^{4}: & 0 & 0 & 1 & 1
\end{array}
$$

Some terminology

"Height"

- $h(w)=1$,
- $\mathrm{h}(\mathrm{n})=\max _{m \in T_{n} \backslash n} h(m)+1$.

Note: height is not depth, nor is it h (root)-depth. Count from the bottom.

Some terminology

"Roark-Hollingshead distance"

- $\mathrm{d}(\mathrm{i})=\mathrm{d}_{\mathrm{i}}=\frac{h\left(w_{i-1}, w_{i}\right)-2}{h(r)-1}$.

$$
d(0)=\frac{6+1-2}{6-1}=1
$$

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

$$
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7=L-1
\end{array}
$$

where $h\left(w_{-1}, w_{0}\right)=h\left(w_{L-1}, w_{L}\right)=h(r)+1$, $h(u, v)=h(u \sqcup v)$ everywhere else (trees are CNF).

Roark-Hollingshead Conjecture

A: All of it (except labels)! Very cool, because thisis a "local" statistic.

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo <end>

Some terminology

"Dependency range"

- $\alpha_{i}^{t}=\frac{\operatorname{sign}\left(d_{t}-d_{i+1}\right)+1}{2}$, where $i<t$.

PRPN's big idea

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

$\alpha^{6}:$	1	0	1	$\frac{1}{2}$	0	$\frac{1}{2}$	--	--
$g^{6}:$	0	0	0	0	0	1	--	--

PRPN's big idea

$$
g_{i}^{t}=P\left(l_{t} \leq i\right) \approx \prod_{j=i+1}^{t-1} \alpha_{j}^{t}
$$

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

$\alpha^{6}:$	1	0	1	$\frac{1}{2}$	0	$\frac{1}{2}$
$\mathrm{~g}^{6}:$	0	0	0	0	0	1

PRPN's big idea

$$
g_{i}^{t}=P\left(l_{t} \leq i\right) \approx \prod_{j=i+1}^{t-1} \alpha_{j}^{t}
$$

Buffalo buffalo									
$\alpha^{5}:$	1	1	1	1	$\frac{1}{2}$	--	--	--	
$\mathrm{g}^{5}:$	1	1	1	1	1	--	--	-	

PRPN's big idea

- But if $P\left(l_{t} \leq i\right) \approx \prod_{j=i+1}^{t-1} \alpha_{j}^{t}$, then:

$$
\begin{gathered}
P\left(l_{t} \leq i\right) \approx \prod_{j=i+2}^{t-1} \alpha_{j}^{t} \cdot \alpha_{i+1}^{t} \approx P\left(l_{t} \leq i+1\right) \cdot \alpha_{i+1}^{t}, \mathrm{so}: \\
\alpha_{i+1}^{t} \approx P\left(l_{t} \neq i+1 \mid l_{t} \leq i+1\right) \\
1-\alpha_{i}^{t} \approx P\left(l_{t}=i \mid l_{t} \leq i\right), \text { and: } \\
P\left(l_{t}=i\right)=P\left(l_{t}=i \mid l_{t} \leq i\right) \cdot P\left(l_{t} \leq i\right) \\
\approx\left(1-\alpha_{i}^{t}\right) \cdot \prod_{j=i+1} \alpha_{j}^{t}
\end{gathered}
$$

This is an example of the well-known stick-breaking process. When $\alpha_{j}=1-\beta_{j}$, and the β_{j} are samples from beta distributions, this process is an instance of a Dirichlet process.

PRPN's big idea

$$
\begin{aligned}
& \text { But if } P\left(l_{t} \leq i\right) \approx \prod_{j=i+1}^{t-1} \alpha_{j}^{t} \text {, then: } \\
& \begin{aligned}
& P\left(l_{t} \leq i\right) \approx \prod_{j=i+2}^{t-1} \alpha_{j}^{t} \cdot \alpha_{i+1}^{t} \approx P\left(l_{t} \leq i+1\right) \cdot \alpha_{i+1}^{t}, \text { so: } \\
& \alpha_{i+1}^{t} \approx P\left(l_{t} \neq i+1 \mid l_{t} \leq i+1\right) \\
& 1-\alpha_{i}^{t} \approx P\left(l_{t}=i \mid l_{t} \leq i\right), \text { and: } \\
& P\left(l_{t}=i\right)=P\left(l_{t}=i \mid l_{t} \leq i\right) \cdot P\left(l_{t} \leq i\right) \\
& \approx\left(1-\alpha_{i}^{t}\right) \cdot \prod_{j=i+1}^{t-1} \alpha_{j}^{t} .
\end{aligned}
\end{aligned}
$$

This is very well suited to modelling the dependence of l_{t} upon as many words/preterminals as we want.

PRPN: parse

Soften up "Dependency range:"

- $\alpha_{i}^{t}=\frac{\operatorname{sign}\left(d_{+}-d_{i+1}\right)+1}{2}$, where $i<t$, becomes:
- $\alpha_{i}^{t}=\frac{\operatorname{hardtanh}\left(\left(d_{t}-d_{i+1}\right) \cdot \tau\right)}{2}$, where τ is temperature,
- and $\operatorname{hardtanh}(x)=\max (-1, \min (1, x))$.

Then learn RH distance with a 2-layer convolution:

- $q_{t}=\operatorname{ReLU}\left(W_{q}\left[\begin{array}{c}e_{t-L} \\ e_{t-L+} \\ \cdots \\ e_{t}\end{array}\right]+b_{q}\right)$,
- $d_{t}=\operatorname{ReLU}\left(W_{d} q_{t}+b_{d}\right)$.

Word vectors for $w_{i-L}, w_{i-L+1}, \ldots w_{i}$

- But we're not going to supervise this with d_{t} from actual trees...

PRPN: read

Instead, we couple the input to memory states m_{i} and use RH distance to interpolate mixtures of previous time steps into "summary vectors" that predict subsequent memory states:

- $k_{t}=W_{m} m_{t-1}+W_{e} e_{t}$,
- $\bar{s}_{i}^{t}=\operatorname{softmax}\left(\frac{m_{i} k_{t}^{T}}{\sqrt{\operatorname{dim}(k)}}\right)$,
- $s_{i}^{t}=\frac{g_{i}^{t}}{\sum_{j} g_{j}^{t}} \bar{S}_{i}^{t}, \quad$ Big idea: depends on dis now
-

$\left[\begin{array}{c}\bar{m}_{t} \\ \bar{c}_{t}\end{array}\right]=\sum_{i=1}^{t-1} s_{i}^{t} \cdot\left[\begin{array}{c}m_{i} \\ c_{i}\end{array}\right], \quad$ Summary vector

PRPN: predict

Instead, we now predict e_{t+1}, given m_{0}, \ldots, m_{t}, which in turn depend upon $\mathrm{e}_{0}, \ldots, \mathrm{e}_{\mathrm{t}}$:

- $k_{t}=W_{m} m_{t-1}+W_{e} e_{t}$,
- $\bar{s}_{i}^{t}=\operatorname{softmax}\left(\frac{m_{i} k_{t}^{T}}{\sqrt{\operatorname{dim}(k)}}\right)$,
- $r_{i}^{t}=\frac{g_{i}^{t+1}}{\sum_{t-1} g_{j}^{t+1}} \bar{s}_{i}^{t}, \quad$ Depends on $\mathrm{d}_{\mathrm{t}+1}$
- $\bar{l}_{t}=\sum_{i=l_{t+1}^{+}} r_{i}^{t} \cdot m_{i}$, Stick-breaking process: also depends on $\mathrm{d}_{\mathrm{t}+1}$
- Estimate $d_{t+1} \approx \operatorname{ReLU}\left(\widetilde{W}_{d} m_{t}+\widetilde{b}_{d}\right)$,
- then estimate $\tilde{e}_{t+1}=\tanh \left(W_{f}\left[\begin{array}{l}\bar{l}_{t} \\ m_{t}\end{array}\right]+b_{f}\right)$.

CCM: brackets and spans

Predict syntax directly, but not with trees. Instead, use bracket matrices and "spans," which here consist also of yields and contexts:

(a)

(b)

Span	Label	Yield	Context
$\langle 0,5\rangle$	S	NN NNS VBD IN NN	$\diamond-\diamond$
$\langle 0,2\rangle$	NP	NN NNS	$\diamond-$ VBD
$\langle 2,5\rangle$	VP	VBD IN NN	NNS $-\diamond$
$\langle 3,5\rangle$	PP	IN NN	VBD -
$\langle 0,1\rangle$	NN	NN	$\diamond-$ NNS
$\langle 1,2\rangle$	NNS	NNS	NN - VBD
$\langle 2,3\rangle$	VBD	VBD	NNS - IN
$\langle 3,4\rangle$	IN	IN	VBD - NN
$\langle 4,5\rangle$	NN	NNS	IN $-\diamond$

(c)

CCM:

brackets and
Predict syntax directly, but not with trees. Instead, use bracket matrices and "spans," which here consist also of yields and contexts.

- $P(S, B)=P(B) P(S \mid B)$
- $P(S \mid B)=\prod_{\langle i, j\rangle} P\left(\alpha_{i j} \mid B_{i j}\right) P\left(x_{i j} \mid B_{i j}\right)$
- Then, use Expectation Maximization:
- E-step: calculate $\mathrm{P}(\mathrm{B} \mid \mathrm{S}, \Theta)$
- M-step: fixing those, calculate:

$$
\underset{\widehat{\Theta}}{\operatorname{argmax}} \sum_{B} P(B \mid S, \Theta) \log P(S, B \mid \widehat{\Theta}) .
$$

- $P(B)$ is not recalculated - it is a uniform distribution over tree-consistent bracketings.

Performance on WSJ10

Model	UF_{1}
LBRANCH	28.7
RANDOM	34.7
Carroll \& Charniak, 1992)	48.2
RBRANCH	61.7
lein \& Manning, 2002)	71.9
(Klein \& Manning, 2005)	77.6
-DOP (Bod, 2006)	$\mathbf{8 2 . 9}$
PRPN	70.02
PPER BOUND	88.1

Performance on PTB30+

	PTB		CTB						
Model	Mean	Max	Mean	Max					
PRPN (Shen et al., 2018)	37.4	38.1	-	-					
ON (Shen et al., 2019)	47.7	49.4	-	-					
URNNG † (Kim et al., 2019)	-	45.4	-	-					
DIORA † (Drozdov et al., 2019)	-	58.9	-	-					
Left Branching	8.7		9.7						
Right Branching	39.5	20.0							
Random Trees	19.2	19.5	15.7	16.0					
PRPN (tuned)	47.3	47.9	30.4	31.5					
ON (tuned)	48.1	50.0	25.4	25.7					
Scalar PCFG	<35.0	<15.0							
Neural PCFG	50.8	52.6	25.7	29.5					
Compound PCFG	55.2	60.1	36.0	39.8					
Oracle Trees	84.3							81.1	

