Computational Linguistics CSC 485/2501 Fall 2023

10

10. Unsupervised Parsing

Gerald Penn Department of Computer Science, University of Toronto

Copyright © 2020 Gerald Penn. All rights reserved.

Unsupervised parsing

- Parsing without training on parse trees.
 How could such a thing be learned?
- Well, unsupervised doesn't always mean no supervision...
 - Parts of speech
 - Binary-branch restrictions
- ...and we often lower the bar in terms of what we expect the system to learn:
 - Unlabelled (binary) trees
 - Hierarchical structure without explicit, recursive rules.

PRPN: parse-read-predict

- PRPN trains a sequence of components that build a parse tree on the way to predicting the next word in a string of words – a fancy language model.
- But that means that supervising the whole system in sequence means that we must only provide words in sequence...
 - for a parser, that counts as unsupervised!
- When we are done, we can break off the later components and use the parser by itself.

- "Corner-dominant"
 - The highest ancestor for which a node is the left corner, e.g.:

- "Corner-dominant"
 - The highest ancestor for which a node is the left corner, e.g.:

- "Left extent"
 - I_t = the left corner of a pre-terminal node's cornerdominant's parent, for t > 0, e.g.:

- "Left extent"
 - I_t = the left corner of a pre-terminal node's cornerdominant's parent, for t > 0, e.g.:

"Dependency-range gate"

• $g_i^t = \begin{cases} 1, & l_t \le i < t \\ 0, & 0 \le i < l_t \end{cases}$ labels left extent of x_t , e.g.:

"Dependency-range gate"

• $g_i^t = \begin{cases} 1, & l_t \le i < t \\ 0, & 0 \le i < l_t \end{cases}$ labels left extent of x_t , e.g.:

- "Height"
 - h(w) = 1,
 - $h(n) = \max_{m \in T_n \setminus n} h(m) + 1.$

Note: height is not depth, nor is it h(root)-depth. Count from the bottom.

"Roark-Hollingshead distance"

where $h(w_{1},w_{0}) = h(w_{L-1},w_{L}) = h(r)+1$, $h(u,v) = h(u \sqcup v)$ everywhere else (trees are CNF).

Roark-Hollingshead Conjecture

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo <end>

14

$$g_i^t = P(l_t \le i) \approx \prod_{j=i+1}^{t-1} \alpha_j^t.$$

$$g_i^t = P(l_t \le i) \approx \prod_{\substack{j=i+1}}^{t-1} \alpha_j^t.$$

- But if $P(l_t \le i) \approx \prod_{\substack{j=i+1 \ j=i+1}}^{t-1} \alpha_j^t$, then: $P(l_t \le i) \approx \prod_{\substack{j=i+2 \ j=i+2}}^{t-1} \alpha_j^t \cdot \alpha_{i+1}^t \approx P(l_t \le i+1) \cdot \alpha_{i+1}^t$, so: $\alpha_{i+1}^t \approx P(l_t \ne i+1 | l_t \le i+1)$ $1 - \alpha_i^t \approx P(l_t = i | l_t \le i)$, and: $P(l_t = i) = P(l_t = i | l_t \le i) \cdot P(l_t \le i)$ $\approx (1 - \alpha_i^t) \cdot \prod_{\substack{j=i+1 \ j=i+1}}^{t-1} \alpha_j^t$.
- This is an example of the well-known stick-breaking process. When $\alpha_j = 1 \beta_j$, and the β_j are samples from beta distributions, this process is an instance of a Dirichlet process.

- But if $P(l_t \le i) \approx \prod_{\substack{j=i+1 \ j=i+1}}^{t-1} \alpha_j^t$, then: $P(l_t \le i) \approx \prod_{\substack{j=i+2 \ j=i+2}}^{t-1} \alpha_j^t \cdot \alpha_{i+1}^t \approx P(l_t \le i+1) \cdot \alpha_{i+1}^t$, so: $\alpha_{i+1}^t \approx P(l_t \ne i+1 | l_t \le i+1)$ $1 - \alpha_i^t \approx P(l_t = i | l_t \le i)$, and: $P(l_t = i) = P(l_t = i | l_t \le i) \cdot P(l_t \le i)$ $\approx (1 - \alpha_i^t) \cdot \prod_{\substack{j=i+1 \ j=i+1}}^{t-1} \alpha_j^t$.
- This is very well suited to modelling the dependence of l_t upon as many words/preterminals as we want.

PRPN: parse

- Soften up "Dependency range:"
 - $\alpha_i^t = \frac{sign(d_t d_{i+1}) + 1}{2}$, where i < t, becomes:
 - $\alpha_i^t = \frac{hardtanh((d_t d_{i+1}) \cdot \tau)}{2}$, where τ is temperature,
 - and hardtanh(x) = max(-1, min(1, x)).
- Then learn RH distance with a 2-layer convolution:
 - $q_t = ReLU \left(W_q \begin{bmatrix} e_{t-L} \\ e_{t-L+1} \\ \cdots \\ e_{t-L} \end{bmatrix} + b_q \right),$
 - $d_t = ReLU(W_d q_t + b_d)$. Word vectors for $w_{i-L}, w_{i-L+1}, \dots, w_i$
 - But we're not going to supervise this with d_t from actual trees...

PRPN: read

 Instead, we couple the input to memory states m_i and use RH distance to interpolate mixtures of previous time steps into "summary vectors" that predict subsequent memory states:

PRPN: predict

- Instead, we now predict e_{t+1} , given m_0, \ldots, m_t , which in turn depend upon e_0, \ldots, e_t :
 - $k_t = W_m m_{t-1} + W_e e_t$, • $\bar{s}_i^t = softmax\left(\frac{m_i k_t^T}{\sqrt{\dim(k)}}\right)$, • $r_i^t = \frac{g_i^{t+1}}{\sum_i g_i^{t+1}} \overline{S}_i^t$, Depends on d_{t+1}
 - $\bar{l}_t = \sum_{i=l_{t+1}}^{t-1} r_i^t \cdot m_i$, Stick-breaking process: also depends on d_{t+1}
 - Estimate $d_{t+1} \approx ReLU(\widetilde{W}_d m_t + \widetilde{b}_d)$,
 - then estimate $\tilde{e}_{t+1} = \tanh(W_f \begin{bmatrix} \bar{l}_t \\ m_t \end{bmatrix} + b_f)$.

CCM: brackets and spans

- Predict syntax directly, but not with trees.
- Instead, use bracket matrices and "spans," which here consist also of yields and contexts:

CCM: brackets and spans

- Predict syntax directly, but not with trees.
- Instead, use bracket matrices and "spans," which here consist also of yields and contexts.
- P(S,B) = P(B)P(S|B)
- $P(S|B) = \prod_{\langle i,j \rangle} P(\alpha_{ij}|B_{ij}) P(x_{ij}|B_{ij})$
- Then, use Expectation Maximization:
 - E-step: calculate P(B|S,Θ)
 - M-step: fixing those, calculate: $\operatorname{argmax}_{\widehat{\Theta}} \sum_{B} P(B|S, \Theta) \log P(S, B|\widehat{\Theta}).$
- P(B) is not recalculated it is a uniform distribution over tree-consistent bracketings.

Performance on WSJ10

Model	UF_1
LBRANCH	28.7
RANDOM	34.7
DEP-PCFG (Carroll & Charniak, 1992)	48.2
RBRANCH	61.7
CCM (Klein & Manning, 2002)	71.9
DMV+CCM (Klein & Manning, 2005)	77.6
UML-DOP (Bod, 2006)	82.9
PRPN	70.02
UPPER BOUND	88.1

Performance on PTB30+

	PTB		CTB	
Model	Mean	Max	Mean	Max
→ PRPN (Shen et al., 2018)	37.4	38.1	_	_
ON (Shen et al., 2019)	47.7	49.4	—	—
URNNG [†] (Kim et al., 2019)	_	45.4	_	_
DIORA [†] (Drozdov et al., 201	9) –	58.9	—	—
Left Branching	8	.7	9.'	7
Right Branching	39	9.5	20.	.0
Random Trees	19.2	19.5	15.7	16.0
PRPN (tuned)	47.3	47.9	30.4	31.5
ON (tuned)	48.1	50.0	25.4	25.7
Scalar PCFG	< 3	35.0	< 1.	5.0
Neural PCFG	50.8	52.6	25.7	29.5
Compound PCFG	55.2	60.1	36.0	39.8
Oracle Trees	84	4.3	81.	.1