Perceptron Algorithm

Given:

- reference set $X = \{\vec{x}_1, \vec{x}_2, \dots \vec{x}_m\}$
- 1. Initialise $\vec{w} := 0$ and t := 0.
- 2. Repeat:
 - For all $\vec{x}_i \in X$:
 - (a) Classify \vec{x}_i by $\vec{w} \cdot \vec{x}_i \ge t$.
 - (b) if correct then continue, else:
 - if false negative, t := t 1, $\vec{w} := \vec{w} + \vec{x}_i$
 - if false positive, t := t + 1, $\vec{w} := \vec{w} \vec{x}_i$
 - \bullet until all X correctly classified.

Perceptron Algorithm

Advantages:

- guaranteed convergence when linearly separable
- very fast on test data

Disadvantages:

• thrashes when not linearly separable

The perceptron algorithm is a gradient descent method, but doesn't get stuck in local maxima — either converges to global optimum or never converges.