Digitization of Speech

Gerald Penn

CSC 401 University of Toronto

 $\verb|http://www.cs.toronto.edu/\sim gpenn/csc401|$

The physical speech signal (1)

She just had a baby (Switchboard Corpus). The x-axis is time; the y-axis is amplitude.

How to Digitize Speech

Speech is a longitudinal pressure wave (although we often represent it transversally).

Speech recognizers must first:

- 1. Sample this. Sampling rate is typically between 6 and 40kHz.
 - Often 16 kHz per channel
 - Telephone speech: 8 kHz
 - "CD-quality:": 44.1 kHz
 - The human ear can distinguish pressure waves between 20 Hz and 20 kHz as sound, but *Nyquist's Theorem* says that the sampling frequency must be twice that of the maximum frequency that we wish to faithfully preserve.

How to Digitize Speech

- 2. Quantize the samples. Place bins at intervals along the y-axis, and indicate in which bin the pressure is measured at each sample time step.
 - ullet This technique is called *pulse code modulation*
 - The number of bins determines the *sample* size often 16 bits.
 - But long-term characteristics of speech do not yield a uniform distribution across y-bins unless we distort them bigger bins near peaks of signal, smaller, better resolved bins near x-axis.

"Companding"

Distortion of y-bins to improve fidelity of signal relative to a fixed signal size.

Two companding methods are common in telephony: A-law (European digital), and μ -law (North America and Japan).

• A-law:
$$w(s) = \begin{cases} s & \text{if } |s| < \kappa A \\ \log s & \text{o.w.} \end{cases}$$

•
$$\mu$$
-law: $w(s) = sgn(s)A\frac{\log(1+\mu/A|s|)}{\log(1+\mu/A)}$

where:

- A is the maximum amplitude of the signal being quantized,
- κ is a compression parameter (in European telephony, 1/8756), and
- μ is determined by the sample size (in North America, $\mu = 255$ because the sample size is 8 bits).