
Computer Science 401 8 March, 2010
St. George Campus University of Toronto

Homework Assignment #3
Due: Thursday, 1 April, 2010 at 12 PM

Speech

TA: Frank Rudzicz

1 Introduction

This assignment introduces you to Matlab, Gaussian mixture modelling, continuous HMMs, and two basic
tasks in speech technology: speaker identification, in which we try to determine who is talking, and speech
recognition, in which we try to determine what was said.

The assignment is divided into two sections. In the first, you will experiment with speaker identification
by training mixtures of Gaussians to the acoustic characteristics of individual speakers, and then identify
unknown speakers based on these models. In the second section, you will experiment with speech recogni-
tion by transcribing data, training hidden Markov models, and analyzing your system’s performance with
word-error rates.

You will need access to both of the following data sets for each section:

1. Training: This contains 30 directories (e.g., FCJF0/, FDML0/,...), each representing a unique
speaker. Each speaker speaks 9 utterances.

2. Testing: This contains 1 directory of 30 utterances, each spoken by a unique but unknown speaker
from among the speakers in the training set.

Every utterance is represented by a set of 5 files (i.e., *.wav, *.mfcc, *.phn, *.txt, *.wrd); these
formats are described in Appendix A.

You will also need the CMU dictionary, which contains the phonetic expansions of some common words.
All of the data can be found on CDF in /u/cs401/speechdata.

2 Speaker Identification

Speaker identification is the task of correctly identifying speaker sc from among S possible speakers si=1..S

given an input speech sequence X, consisting of a succession of 42-dimensional real vectors. In the interests
of efficiency, we’ll be doing this over 14-dimensional vectors in this assignment. Each vector represents a
small 16ms unit of speech called a frame. Speakers are identified by training data that are ascribed to
them. This is a discrete classification task (choosing among several speakers) that uses continuous-valued
data (the vectors of real numbers) as input.

0Copyright c© 2009–10, Gerald Penn and Frank Rudzicz. All rights reserved.

1

2.1 Gaussian Mixture Models

The manner by which spectral features are measured from digitized speech makes independence assump-
tions about the energies of the different frequencies present in the source signal that are untrue. As a
result, the spectra represented by these feature vectors look very unlike the spectra of real speech signals.
A common method for dealing with this incongruity is to attempt to model the difference between the
measured vectors and those of the “true” signal as noise in a communication channel. This noise, like most
other noise in nature, is assumed to be normally distributed.

Gaussian mixture models represent data as the output of a generative process that knows about just
a few “true” signals, called components, communicated over a noisy channel. GMMs are often used to
smoothe over abrupt changes or gaps resulting from sparse data or unwarranted independence assumptions.
They can tightly constrain large-dimensional data by using a small number of components, but can, with
more components, model other density distributions than Gaussians. Sometimes, they are simply used
because the domain being modelled appears to have multiple modes. In the present case, we use them
because it is assumed that speakers can be identified by a small number of highly complex spectral patterns.
Each component in our GMMs will correspond to one of these patterns.

As mentioned in lecture, a mixture model is much like a game show. First, you pick a door, then you
have to play the game behind the chosen door to win. Given M components, GMMs are modelled by a
collection of parameters, θ = {ωm=1..M , µm=1..M ,Σm=1..M}, where ωm is the probability that component
m will be chosen. These are subject to the constraint that

∑
m ωm = 1. Once a component has been

chosen, the “game” is a multivariate Gaussian distribution, which is characterized by that component’s
mean, µm, and covariance matrix, Σm. For reasons of computational efficiency, we will reintroduce some
independence assumptions by assuming that every component’s covariance matrix is diagonal, i.e.:

Σm =


σ2

m[1] 0 · · · 0
0 σ2

m[2] · · · 0
...
0 0 · · · σ2

m[d]


for some vector ~σ2

m. So only d = 14 parameters are necessary to characterize a component’s (co)variance.
Given these parameters, the probability of generating a particular vector, ~v, is:

p (~v|θs) =
M∑

m=1

ωmbm(~v) (1)

where bm is defined in Appendix B.

2.2 Training Gaussian Mixture Models [10 marks]

Your first task will be to train oneM -component Gaussian mixture model (GMM) for each of the speakers in
the Training data set. Specifically, for each speaker s, train the parameters θs = {ωm=1..M , µm=1..M , σ

2
m=1..M}

according to the method described in Appendix B. In all cases, assume that covariance matrices σ2
m are

diagonal. Start with M = 8. You’ll be asked to experiment with that in Section 2.4.
Your Matlab code should include a function gmmTrain which implements Algorithm 1. gmmTrain

should use Algorithm 1 to train a GMM for every speaker in succession. Note that the parameter ε is
adjustable. See Appendix B for additional details.

2

Input: MFCC data X
begin

Initialize θ
i := 0
prev L = −∞
repeat

L = ComputeLikelihood (X, θ)
θ = UpdateParameters (θ,X,L)
improvement = L− prev L
prev L = L
i+ +

until i =< MAX ITER and improvement >= ε
end

Algorithm 1: GMM training algorithm.

2.3 Classification with Gaussian Mixture Models [10 marks]

Given a set of trained parameters θs for speaker s, assume that the log likelihood of a test sequence X̃
being uttered by that speaker is:

logP
(
X̃|θs

)
=

T∑
t=1

log p (~xt|θs) (2)

Your task is to classify each of the test sequences in the Testing data set according to the most likely
speaker, ŝ:

ŝ = argmax
s=1,...,S

logP
(
X̃|θs

)
(3)

Report the likelihoods of the five most likely speakers for each test utterance. Put these in files called
unkn N.lik for each test utterance N .

2.4 Experiments and discussion [10 marks]

Experiment with the settings of M and ε. For example, what happens to classification accuracy as the
number of components decreases? What about when the number of possible speakers, S, decreases? You
will be marked on the detail with which you empirically answer these questions and whether you can devise
one or more additional valid experiments of this type.

Additionally, your report should include short hypothetical answers to the following questions:

• How might you improve the classification accuracy of the Gaussian mixtures, without adding more
training data?

• When would your classifier decide that a given test utterance comes from none of the trained speaker
models, and how would your classifier come to this decision?

• Can you think of some alternative methods for doing speaker identification that don’t use Gaussian
mixtures?

3 Speech Recognition

Speech recognition is the task of correctly identifying a word sequence given an input speech sequence
X. Typically this process involves language models, dictionaries, and grammars. In this section we will

3

consider only a small subset of the acoustic modeling component. We will use the Bayes Net Toolbox,
written for Matlab by Kevin Murphy, which is documented on-line at http://bnt.googlecode.com, along
with some interface code that simplifies it for the case of continuous HMMs.

3.1 Continuous HMMs

Continuous HMMs are exactly like (discrete) HMMs except that the emission probability matrix is replaced
by a vector of continuous probability density functions, one for each row of the former matrix. This is
necessary because the set of outputs, K, is no longer discrete, but rather continuous. In this case, the
outputs are all of the potential MFCC vectors. These vectors contain real numbers. For our specific
purposes, we will assume that each of these probability densities is a Gaussian mixture model.

3.2 Phonetic annotation [10 marks]

We will require phonetic transcriptions for all test files. This will require you to use the WaveSurfer
program1. You will also need the CMU dictionary again.

The *.phn files in /u/cs401/speechdata/Testing have errors in them. Each file has one substitution
error, one deletion error, and one insertion error. In this part of the assignment, you should find and
correct these errors.

For each of the 10 files (i.e., unkn 1.wav ... unkn 10.wav), perform the following:

1. Open the wave file in WaveSurfer. When given the option, select “TIMIT transcription” as your
configuration. The result should look similar to Figure 1, with the editable “.PHN” pane.

2. Open the associated text file and *.phn file.

3. Find each word from the text file in the CMU dictionary. Note the phonetic expansion of each word.
You can consult Appendix C for a description of these phones.

4. Fix the transcription errors that you find, and ensure that all of the phone boundaries are accurate.
You will be trained on marking phone boundaries in tutorial.

5. Save the resulting *.phn file — you will have to submit this.

Figure 1: Example WaveSurfer window, including a spectrogram of unkn 1.wav .

1This can be obtained for home use at http://www.speech.kth.se/wavesurfer/ .

4

Note: The transcription files produced by WaveSurfer will give the starting and ending samples of
the associated waveform file. Since the waveform is sampled at 16kHz, and MFCC frames are windowed
every 128 samples, you have to divide the numbers in these transcription files by 128 to match those in
the *.mfcc files.

3.3 Training and decoding Hidden Markov models [15 marks]

Using the interface functions initHMM and trainHMM in /u/cs401/matlab, write a simple program,
hmmTrain , that can be used to initialize and train continuous hidden Markov models for each phoneme in
the data set. You should not modify the interface functions, nor submit them along with your assignment.
You won’t need to study how they work either (this simply drags you into unnecessary details of the data
structures of the BNT) — simply how to call them. Note that you will build a different model for each
phoneme, and that you will train each of them with a collection of data from more than one speaker; hence
these models will be speaker-independent.

Once you have trained the models, collect all the sequences from the test data given their respective
*.phn files. Find the log likelihood of each phone sequence in the test data for each HMM phone model
using the loglikHMM function. Report on the proportion of correct identifications of the phoneme
sequences in the test data.

3.4 Log likelihoods revisited [10 marks]

Your worked on the last section using our log-likelihood function, which was written using BNT. Now
you should write your own without BNT, assuming that you have a vector Pi of initial probabilities,
a matrix A of transition probabilities, and parameters W , Mu and Cov for the Gaussian mixture
models that govern the emissions from each state.

The stub file, /u/cs401/matlab/MYloglikHMM.m, contains an interface between BNT and this simpler
form for HMMs so that you can test your code with everything else. Add your code directly to this file
and submit it.

3.5 Experiment and discussion [10 marks]

Again, experiment with changes to the parameters, e.g., numDimensions and numMixtures, and the
number of training examples. Your discussion will be marked by the same criteria as in Section 2.4.

3.6 Word-error rates [10 marks]

Imagine that we have now combined our phonetic HMMs into a larger speech recognition system that can
recognize whole words and sentences. Develop a function Levenshtein in Matlab that computes the
word-error rate between a test string and a reference string using Levenshtein distance. Assume that the
cost of a substitution is 0 if the words are identical and 1 otherwise.

Assume that a speech recognition system produced the transcriptions for the *.wav files in the Testing
directory and has written its hypotheses in the file hypotheses.txt, also in that directory. In that file,
the ith line is the hypothesis for unkn i.wav .

Report on the word error rates between those transcriptions and the reference transcriptions (*.txt)

5

according to the following measures for each utterance, and for the entire data set:

SE = prop. substituted words =
Substituted words
Reference words

IE = prop. inserted words =
Inserted words

Reference words

DE = prop. deleted words =
Deleted words

Reference words
prop. total error = SE + IE +DE

4 What to hand in

Your assignment should be submitted electronically only. You should submit:

1. All your code for gmmTrain.m, hmmTrain.m, Levenshtein.m and MYloglikHMM (including helper
scripts, if any).

2. The files unkn *.lik

3. Your correctly annotated output, unkn *.phn.

4. Your discussion for both tasks, in a file called discussion.txt. Clearly demarcate the discussions
of the two tasks — do not combine them into a single essay.

5. The ID file available from the course web-site.

Submissions missing any of the information requested in the ID file will not be marked.

Electronically: The electronic submission must be made from the CDF submission site. Do not tar or
compress your files, and do not place your files in subdirectories.

5 Working at home

If you want to do some or all of this assignment on your home computer, you will have to do the extra
work of downloading and installing the requisite software and data. You take on the risk that your home
computer might not be adequate for the task. You are strongly advised to upload regular backups of
your work to CDF, so that if your home machine fails or proves to be inadequate, you can immediately
continue working on the assignment at CDF. When you have completed the assignment, you should try
your programs out on CDF to make sure that they run correctly there. A submission that does not
work on CDF will get zero marks.

6

A Appendix: File formats

Each utterance is represented by the five following file types:

*.wav The original speech waveform sampled at 16kHz.
*.mfcc The Mel-frequency cepstral coefficients obtained from an analysis of the waveform.

Each line represents a 16ms frame of speech and consists of 14 space-separated
floating point values.

*.phn Frame-aligned phonetic transcription. Each line has the format
[BEGIN] [END] [PHONE]
where [BEGIN] and [END] are integers indexing the first and last frames of a span
of the utterance with phonetic label [PHONE].

*.wrd Frame-aligned word transcription. Each line has the format
[BEGIN] [END] [WORD]
where [BEGIN] and [END] are integers indexing the first and last frames of a span
of the utterance with orthographic label [WORD].

*.txt Orthographic transcription of the entire utterance. The line has the format
[BEGIN] [END] [UTTERANCE]
where [BEGIN] and [END] are the first and last frames of the utterance.

The MFCCs were obtained by applying 12 filters to windows of 256 consecutive samples of the speech
waveforms, so each frame represents 256/16000 = 0.016 seconds of speech. These windows are moved in
increments of 128 samples, so frame f represents a window of speech beginning at 0.008f seconds. Each
MFCC frame consists of 13 cepstral coefficients, including the 0th order coefficient, as well as log energy
and the first and second derivatives of those 14 variables.

All frame numbers in *.phn, .*wrd , and *.txt refer approximately to associated MFCC frame
numbers.

7

B Appendix: Training Gaussian mixture models

Initialize θ

Initialize your model with randomly chosen parameters. Don’t forget that they must be interpretable as
probabilities.

Compute likelihood

Equation 4 is the observation probability for the mth mixture component, given diagonal covariance ma-
trices.

bm (~xt) =

exp

[
−1

2

d∑
n=1

(xt[n]− µm[n])2

σ2
m[n]

]
(2π)d/2

√∏d
n=1 σ

2
m[n]

(4)

Given the feature vector ~xt and parameters θ, the prior probability of the mth Gaussian component is

p (m|~xt, θ) =
ωmbm (~xt)∑M
k=1 ωkbk (~xt)

(5)

Update parameters

Given posterior probabilities computed using Equations 4 and 5, we want to update estimates for the
mixture weights, means, and diagonal covariance matrices. These are accomplished thus:

ω̂m =
∑T

t=1 p (m|~xt, θ)
T

~̂µm =
∑T

t=1 p (m|~xt, θ) ~xt∑T
t=1 p (m|~xt, θ)

~̂σ2
m =

∑T
t=1 p (m|~xt, θ) (~xt − ~̂µm)2∑T

t=1 p (m|~xt, θ)

(6)

In the third equation, the square of a vector on the right-hand side is defined as the component-wise square
of each dimension in the vector.

8

C Appendix: TIMIT phone set

Tables 1, 2, and 3 list the permissible TIMIT phone symbols.

symbol example word example transcription
stops

b bee BCL B iy
d dumb DCL D ah m
g gum GCL G ah m
p pea PCL P iy
t tea TCL T iy
k key KCL K iy
dx muddy, dirty m ah DX iy, dcl d er DX iy
q bat bcl b ae Q

affricates
jh joke DCL JH ow kcl k
ch choke TCL CH ow kcl k

fricatives
s sea S iy
sh she SH iy
z zone Z ow n
zh azure ae ZH er
f fin F ih n
th thin TH ih n
v van V ae n
dh then DH e n

nasals
m mom M aa M
n noon N uw N
ng sing s ih NG
em bottom b aa tcl t EM
en button b ah q EN
eng washington w aa sh ENG tcl t ax n
nx winner w ih NX axr

semivowels
and glides

l lay L ey
r ray R ey
w way W ey
y yacht Y aa tcl t
hh hay HH ey
hv ahead ax HV eh dcl d
el bottle bcl b aa tcl t EL

Table 1: TIMIT consonant phone-set.

9

symbol example word example transcription
vowels

iy beet bcl b IY tcl t
ih bit bcl b IH tcl t
eh bet bcl b EH tcl t
ey bait bcl b EY tcl t
ae bat bcl b AE tcl t
aa bott bcl b AA tcl t
aw bout bcl b AW tcl t
ay bite bcl b AY tcl t
ah but bcl b AH tcl t
ao bought bcl b AO tcl t
oy boy bcl b OY
ow boat bcl b OW tcl t
uh book bcl b UH kcl k
uw boot bcl b UW tcl t
ux toot tcl t UX tcl t
er bird bcl b ER dcl d
ax about AX bcl b aw tcl t
ix debit dcl d eh bcl b IX tcl t
axr butter bcl b ah dx AXR
ax-h suspect s AX-H s pcl p eh kcl k tcl t

Table 2: TIMIT vowel phone-set.

symbol description
pau pause
epi epenthetic silence
h# begin/end marker (non-speech events)
1 primary stress marker
2 secondary stress marker

Table 3: Other TIMIT codes.

10

