Computer Science 401 10 February, 2010
St. George Campus University of Toronto

Homework Assignment #2
Due: Friday, 5 March, 2010 at 12 PM, IN CLASS

Letter-substitution Ciphers

TA: Jackie Cheung

1 Introduction

This assignment will give you experience in working with hidden Markov models, bigram models, and
Baum-Welch re-estimation.

Your task is to build a hidden Markov model (HMM) to decipher texts that have been encoded with a
letter-substitution cipher, without the use of annotated data.

2 Decipherment

What does this say?

NKalcAvXaOAX AV3aoAlibUKAfwAJ3ibAilAaKI3i2KbARKaaiLLAE124YAv30il3LAR3aoKIJA
IXAJKLLAIIJANKalcAetDiOnK2IAIK2I3LAvXaOAD2il
5YKaKAiJA2XAQaKJJi2UA2KKbAIXAJKLLAITYKAD2IIATDIAgKA3aKAbXi2UAITAJXAqKA4
32A4X24K21a3IKAX2AXDaA4XaKATDJi2KJJAaK2li2UA3DIXnXTiLKJAi2AITYKABsA32bA3Ta,
X3bAJ3ibA8iLLi3nAsLibKaANKalcAJAKmK4DIIGKAGi4KAQOaKJibK2I
8KA3aKAX2L1AUXi2UAIXAJKLLA3IAIYKAaiUYIAOaidKA NKalcAetDiOnK2IAY3bAXOKa3li

Give up? It’s the beginning of the file, /u/cs401/Texts/test_data_plain.tzt. This entire document is enci-
phered as /u/cs401/Texts/test_data.tzt.

Cryptographic protocols today use very sophisticated functions for encoding data, but there was a time
in antiquity when simply substituting one character for another was considered secure. These functions
are called letter-substitution ciphers. They make fun parlour games now, and they are still of some interest
among people who study archaeological decipherment, in which ancient writing systems that use unknown
scripts are translated — these are special because generally the author did not mean for them to be
unreadable!

In this assignment, we’ll be considering text with upper and lower case letters, as well as digits and
interword spaces — no punctuation. We’ll take the upper and lower case variants of a letter to be distinct
symbols, however — no special relationship can be assumed in how they are encoded. We'll also assume
that space is no different than any other character, in that interword spaces can be encoded by and
stand for another character, but that sentence boundaries are always indicated with a newline. This is
an idealization: there are few writing systems that have absolutely no punctuation, a great many writing
systems that do not indicate word or end-of-sentence boundaries, but probably not so many that would
use interword spaces to indicate an actual sound value.

9Copyright © 2008-2009, Gerald Penn. All rights reserved.



We'll also assume that we have a very definite hypothesis of the language that the enciphered text is
written in: English. Not only that, but we’ll assume that the enciphered text is derived from a letter-
substitution that has been applied to standard English spelling (as opposed to a phonetic transcription),
and that the letter-substitution is bijective. This means that every letter of plain text is encoded by only
one letter of cipher text, and vice versa. As a result, there is a unique inverse to any letter-substitution
function that is used to encipher text. It is your job to find this inverse, given a lot of plain-text English
training data, and a sample of enciphered text. The inverse can then be used to decipher the test data, as
well as other documents that are enciphered using the same function.

Warning! We are not just asking you to decipher this one document. When we test your code, we’ll
test it on different documents that have been enciphered with different letter-substitution functions, and it
should work. Do not hard-wire specific details of the function used to encode /u/csf01/Texts/test_data.txt
into your implementation. All that you can assume is the general information stated here.

3 Your tasks

1. Preprocess the texts [5 marks]

Write a Python program that translates text (enciphered or plain) into sequences of numbers. You may
assume that punctuation has already been stripped out of the text. Map every character, including
interword spaces, but not including newlines, into a fixed positive integer. Different occurrences of the
same character, even on different lines or in different files (training and test data, for example), should
receive the same number. Your program should map newlines to newlines. Make sure that your output
separates each integer with a space.

This step is necessary because the HMM utility which you will be using can only work with positive
integers, not other symbols. Call this program, w2id.py.

2. Estimate initial [5 marks] and bigram [5 marks| probabilities

You should build a model of conditional bigraph probabilities using the plain text in
/u/cs401/Texts/training_data.tzt. A bigraph is like a bigram, but at the character level. You will need to
run w2id.py on /u/cs}01/Texts/training_data.tzt for this task.

There are actually two parts to this. Write one program that estimates the probability of a sentence
(input line) of plain text beginning with a particular character. Call this program get_init.py. Write
another program that estimates, for each pair of characters A and B, the probability of seeing B in English
plain text after having seen an A, i.e., P(B | A). Make sure that these probabilities are normalized over
contexts A. Call this program get_cond.py.

The outputs of both programs should use negative base-10 logarithms of probabilities instead of prob-
abilities themselves. The output of get_init.py should be a sequence of pairs, one per line, of the form
ID wal, where ID is the id number assigned to a particular character by w2id.py, and wval is the negative
base-10 logarithm of the probability that that character will begin a sentence. Sort the output by ID
number, and call it init.tzt.

The output of get_cond.py should be a sequence of triples, one per line, of the form AID BID wal,
where AID is the ID number assigned to the context character A above by w2id.py, BID is the ID number
of the predicted character B above, and wal is the negative base-10 logarithm of the probability that B
will follow an occurrence of A. To conserve space, do not generate any line for which val would be infinity
(corresponding to probability zero). Sort the output by AID, and within each value of AID by BID. Call
this file cond.tzt.

You do not need to perform any smoothing on either estimate.



3. Build an HMM [25 marks]

Design an HMM that will allow you to decipher a text without annotated training data using the models
from step (2) and Baum-Welch re-estimation. There is no specific topology (an arrangement of states and
edges) required here — just find the best one that you can for this task.

Write a program called run_bw.py that initializes your HMM, and runs N iterations of Baum-Welch
re-estimation on the test data, for a command-line input parameter NN.

run_bw.py should call the utility, /u/cs401/sbw/sbw, which runs one iteration of Baum-Welch on the
model. The Appendix contains information on the input/output formats for this utility. You may write
temporary files, but upon termination run bw.py should have deleted all of them. It is your responsibility
to ensure that your temporary files will not exhaust the TA’s disk space when he runs your code.

Call the final output matrix of the HMM, after all iterations have completed, output.tzt. This file
should be formatted just as /u/cs{01/sbw/sbw expects the initial output matrix to be.

4. Decipher the test data [10 marks]

Using output.tzt, map /u/cs01/Texts/test_data.tzt to the file test_data_deciphered.tzt. You do not have to
implement a Viterbi decoder (although you may) — use the output matrix however you like. Make sure
that you translate the id numbers back into characters, using the same function that w2id.py used. Call
this program decipher.py. In your discussion, be certain to tell us the value of N that you used to obtain
this output. Give us only your best test_data_deciphered.tzt, and the output.txt for it.

5. Compute error [15 marks]

Write a Python program, error.py, that compares your output to the correct decipherment. Do this in two
different ways. First, compare every character of test_data_deciphered.tzt to the corresponding character
of /u/cs401/Texts/test_data_plain.tzt. Count the number of characters that you got wrong. A lower score
is better in this measure.

Second, compare your output matrix, output.tzt, to the unique output matrix that contains only Os
and 1s and makes no errors. The actual matrix depends on your HMM topology — give us the one for
your HMM as goldoutput.tzt. Explain how you performed this comparison in your discussion. Hint: use
Kullback-Leibler divergence.

This program should generate a report with these computations on standard output. Be sure to generate
enough text along with the two error measures so that we know which they are.

6. Perform steps (3)-(5) again [25 marks]

This time, however, write a different program, called run mbw.py, which runs Baum-Welch in a very
strange way. After each round of re-estimation, run mbw.py will discard the new transition matrix and
initial probability vector, and run the next round using the new output matrix, but the original transition
matrix, and the original initial probability vector. So Baum-Welch will make changes in each iteration, but
you throw out all of the changes except the new output matrix. Call the final output matrix moutput.tzt,
and the resulting decipherment test_data_mdeciphered.txt.

You may experiment with different HMM topologies, but you should submit a version of run bw.py
and run mbw.py that that use the same topology. Submit whichever topology gives you the best overall
performance in either version.

7. Discussion [10 marks]

Why did you choose the HMM topology that you did? What others did you try (if any)? What value of N
did you need to use for Baum-Welch? What value of N did you need with the modified training regimen?



Did the modification seem to help? Why do you think that it did (not)? What error measures did your
best attempts receive? How did you compare output matrices? Looking through your output, were there
particular characters that your model had trouble with? Why?

Please limit your answer to 500 words or less.

4 General specification

When we test your code, we will call it like this:

python w2id.py /u/cs401/Texts/training data.txt > training data_id.txt
python get_init.py training data_id.txt > init.txt

python get_cond.py training data_id.txt > cond.txt

python w2id.py /u/cs401/Texts/test_data.txt > test_data_id.txt
python run (m)bw.py test_data id.txt init.txt cond.txt N

python decipher.py test_data id.txt (m)output.txt > test_data_(m)deciphered.txt
python error.py /u/cs401/Texts/test data plain.txt test_data_(m)deciphered.txt (m)output.txt
goldoutput.txt

> report

where N is a number of iterations that we choose. run_(m)bw.py should create (m)output.tzt.

Remember that we will test your code on different documents that use different letter-substitution
functions. Do not hardwire the substitution for /u/cs401/Texts/test_data_plain.tzt into your code. You
may hardwire the character-to-id mappings in w2id.py and decipher.py if you wish. We do not care
which IDs you assign to which characters.

As part of grading your assignment, the grader may run your programs using Unix scripts. It is
therefore important that your each of your programs precisely meets all the specifications and formatting
requirements, including program and file names. A program or HMM that cannot be evaluated
because it varies from specifications will receive zero marks.

If a program uses a file or helper script name is specified within the program, it must read it either from
the directory in which the program is being executed, or it must read it from a subdirectory of /u/cs401
whose path is completely specified in the program. Do not hardwire the absolute address of your home
directory within the program; the grader does not have access to this directory.

All your programs must contain adequate internal documentation to be clear to the graders. External
documentation is not required.

5 What to hand in

Except where noted, your assignment should be submitted both on paper (so that the graders can easily
view the results and scribble on them) and electronically (so that the graders can run your programs and
grep your results if they need to). You should submit:

1. All your code for w2id.py, get_init.py, get_cond.py, run_bw.py, run mbw.py, decipher.py, and
error.py (including helper scripts, if any).

2. A brief description of your HMM, with an indication of what the states correspond to. Be precise;
a reader should be able to reimplement your model from the information you provide. You must
indicate how many states you had to use in your model.



3. The files init.tzt and cond.tzt (electronic only — no paper copy).

4. Your output files, output.tzt, moutput.tzt, goldoutput.txt, test_data_deciphered.tzt and test_data_mdeciphered.txt
for the best HMM topology you tried, and for the best value of N (electronic only — no paper copy).
The versions you submit for the modified training regimen in step (6) can be for a different N, but
must have used the same topology.

5. Your discussion (paper only—no electronic copy).

On paper: Your paper submission must be in an unsealed 9 x 12-inch envelope. On the outside of the
envelope, or on a sheet attached to the outside of the envelope, provide the following information:

e your first and last name — underline your last name
e your student number,

e your CDF login id,

e your preferred contact email address,

e whether you are an undergraduate or graduate

e this statement with your signature below it: I declare that this assignment, both my paper and
electronic submissions, is my own work, and is in accordance with the University of Toronto Code of
Behaviour on Academic Matters and the Code of Student Conduct.

Envelopes missing any of this information, and electronic submissions without timely paper
submissions will not be marked.

Electronically: The electronic submission must be made from the CDF submission site. Do not tar or
compress your files, and do not place your files in subdirectories.

6 Working at home

If you want to do some or all of this assignment on your home computer, you will have to do the extra
work of downloading and installing the requisite software and data. You take on the risk that your home
computer might not be adequate for the task. You are strongly advised to upload regular backups of
your work to CDF, so that if your home machine fails or proves to be inadequate, you can immediately
continue working on the assignment at CDF. When you have completed the assignment, you should try
your programs out on CDF to make sure that they run correctly there. A submission that does not
work on CDF will get zero marks.



Appendix: sbw

We have provided a utility, /u/cs401/sbw/sbw, to help you with Baum-Welch re-estimation. This utility
comes with no documentation of its own, apart from this appendix.
The input format is as follows:

2k 2k k ok 2k 2k 3k ok ok 2k dk ok >k k 2k ok ok %k ok 3k 5k %k k 5k ok % %k %k %k 5k

N KM

pil ... piN

#colsl all ... aN1 (sparse, transposed)

#cols2 al2 ... aN2

#colsN alN ... aNN

#colsl b1l ... bN1 (sparse, transposed)

#cols2 b1l2 ... bN2

#colskK blK ... bNK

#colsl ol ... oT1 (the first observed sequence/sentence)
#cols2 ol ... oT2

#colsM ol ... oTM (the M-th observed sequence/sentence)
Notation:

N = number of states

K = number of output symbols
M = number of output observed sequences

Ti = length of the i-th observed sequence/sentence
st ok ks o ok sk sk o ok sk sk ke ok sk o ke ok sk ke sk sk e ok ko

All of the variables referred to here are positive integers, even the actual characters of the observed
sequence(s).

Note well: the transition and output matrices are transposed. This means that they have been rotated

so that their columns are rows and their rows are columns.
Note extra well: you need not — and should not — specify probabilities that are 0. Each aij and bij is
actually a pair, r : v, where r is the row number (of the actual matrix, column number of the transposed
matrix) and v is the value at that position. Values are negative base-10 logarithms of probabilities, and
are assumed to be row-normalized (in the transposes, column-normalized).

The output of sbw to stderr consists of the number of processed sentences and the average log-
likelihood of the observed sequences. The output to stdout consists of new II, A, and B parameters in the
same order and format as the input. The parameters N, K and M are not repeated, nor are the observed
sequences.



