Homework Assignment \#2
Due: November 4, 2010 at 6pm
$\overline{\text { On the cover page of your assignment, you must write and sign the following statement: "I have read and understood }}$ the homework collaboration policy described in the Course Information handout." Without such a signed statement your homework will not be marked.

1. (20 marks) In this question you should prove your assertions using only the logical equivalences of Section 5.6 (i.e. without using truth tables).
(a) (5 marks) Prove that $x \wedge(\neg y \leftrightarrow z)$ is logically equivalent to $((x \rightarrow y) \vee \neg z) \rightarrow(x \wedge \neg(y \rightarrow z))$
(b) (5 marks) Find a CNF formula that is logically equivalent to $\neg y \rightarrow(x \leftrightarrow z)$. Prove your assertion.
(c) (10 marks) Classify each formula below as either a tautology, a contradiction or a contingency (satisfiable but not a tautology). Justify your answers.
i. $((x \vee y) \rightarrow z) \vee(z \rightarrow(x \vee y))$
ii. $(x \rightarrow y) \wedge(\neg x \rightarrow y)$
iii. $(x \rightarrow y) \vee(x \rightarrow \neg y)$

Soln

(a)

$$
\begin{array}{lll}
x \wedge(\neg y \leftrightarrow z) & \text { LEQV } x \wedge((\neg y \wedge z) \vee(y \wedge \neg z)) & \text { (} \leftrightarrow \text { law) } \\
& \text { LEQV }(x \wedge \neg y \wedge z) \vee(x \wedge y \wedge \neg z) & \text { (Distr. law) } \\
& \text { LEQV } \neg(x \wedge \neg y \wedge z) \rightarrow(x \wedge y \wedge \neg z) & \text { (} \rightarrow \text { law) } \\
& \text { LEQV }(\neg x \vee y \vee \neg z) \rightarrow(x \wedge y \wedge \neg z) & \text { (De Morgan's law) } \\
& \text { LEQV }((x \rightarrow y) \vee \neg z) \rightarrow(x \wedge y \wedge \neg z) & \text { (} \rightarrow \text { law) } \\
& \text { LEQV }((x \rightarrow y) \vee \neg z) \rightarrow(x \wedge \neg(\neg y \vee z)) & \text { (De Morgan's law) } \\
& \text { LEQV }((x \rightarrow y) \vee \neg z) \rightarrow(x \wedge \neg(y \rightarrow z)) & (\rightarrow \text { law) }
\end{array}
$$

(b)

We will show that the CNF formula $(x \vee y \vee \neg z) \wedge(\neg x \vee y \vee z)$ is logically equivalent to $\neg y \rightarrow(x \leftrightarrow z)$.

$$
\begin{array}{lll}
(x \vee y \vee \neg z) \wedge(\neg x \vee y \vee z) & \text { LEQV }(y \vee(x \vee \neg z)) \wedge(y \vee(\neg x \vee z)) & \text { (Comm. law) } \\
& \text { LEQV } y \vee((x \vee \neg z) \wedge(\neg x \vee z)) & \text { (Distr. law) } \\
& \text { LEQV } \neg y \rightarrow((x \vee \neg z) \wedge(\neg x \vee z)) & \text { (} \rightarrow \text { law) } \\
& \text { LEQV } \neg y \rightarrow(((x \vee \neg z) \wedge \neg x) \vee((x \vee \neg z) \wedge z)) & \text { (Distr. law) } \\
& \text { LEQV } \neg y \rightarrow((x \wedge \neg x) \vee(\neg z \wedge \neg x) \vee(x \wedge z) \vee(\neg z \wedge z)) & \text { (Distr. law) } \\
& \text { LEQV } \neg y \rightarrow((\neg z \wedge \neg x) \vee(x \wedge z)) & \text { (Identity law) } \\
& \text { LEQV } \neg y \rightarrow(x \leftrightarrow z) & \text { (↔ law) }
\end{array}
$$

(c) You can justify these with truth tables, or:
1.

$$
\begin{array}{lll}
((x \vee y) \rightarrow z) \vee(z \rightarrow(x \vee y)) & \text { LEQV }(\neg(x \vee y) \vee z) \vee(\neg z \vee(x \vee y)) & \text { (} \rightarrow \text { law) } \\
& \text { LEQV }(\neg(x \vee y) \vee(x \vee y)) \vee(z \vee \neg z) & \text { (Comm. law) }
\end{array}
$$

Therefore the formula is logically equivalent to a disjunction of 2 tautologies (namely the tautologies $\neg(x \vee y) \vee(x \vee y)$ and $z \vee \neg z$. Hence it is itself a tautology.
2. This formula is a contingency because the assignment $(x, y)=(1,1)$ satisfies the formula whereas the assignment $(x, y)=(1,0)$ falsifies it.
3.

$$
\begin{array}{lll}
(x \rightarrow y) \vee(x \rightarrow \neg y) & \text { LEQV }(\neg x \vee y) \vee(\neg x \vee \neg y)) & \text { (} \rightarrow \text { law) } \\
& \text { LEQV } \neg x \vee(y \vee \neg y) & \text { (Idempotency law) }
\end{array}
$$

Since $(y \vee \neg y)$ is a tautology, so is our formula.
2. (20 marks)
(a) (10 marks) Prove that $\{\neg, \rightarrow\}$ is a complete set of connectives.
(b) (10 marks) Prove that $\{\oplus, \vee\}$ is not a complete set of connectives.

Soln

(a) $\{\neg, \&\}$ is a complete set of connectives, so we only need to show that it is possible to implement \& using \neg and \rightarrow :

$$
\begin{array}{rlrl}
\neg(p \rightarrow \neg q) & \\
\text { LEQV } \neg(\neg p \vee \neg q) & & \rightarrow \text { law } \\
\text { LEQV } \neg \neg p \& \neg \neg q & & \text { DeMorgan's law } \\
\text { LEQV } p \& q & \text { Double } \neg \times 2 .
\end{array}
$$

(b) We define the set G of propositional formulas that use only connectives in $\{\oplus, \vee\} . G$ is the smallest set such that:

BASIS: Any propositional variable is in G.
INDUCTION STEP: If $P_{1}, P_{2} \in G$ then so are $P_{1} \oplus P_{2}, P_{1} \vee P_{2}$.
Consider the truth assignment τ that assigns false to all the propositional variables. That is, $\tau(x)=0$ for every propositional variable x. For $P \in G$, let $S(P)$ be the predicate:

$$
S(P): \tau \text { falsifies } P
$$

We use structural induction to prove that $S(P)$ holds for every $P \in G$.
BASIS: P is a propositional variable. Then clearly $S(P)$ holds.
INDUCTION STEP: Let $P_{1}, P_{2} \in G$ for which $S\left(P_{1}\right), S\left(P_{2}\right)$ hold, i.e., τ falsifies both P_{1} and P_{2}. We must show that $S(P)$ holds for any formula $P \in G$ that can be constructed out of P_{1} and P_{2}. There are 2 cases to consider:

CASE 1: P is of the form $P_{1} \oplus P_{2}$. Since τ falsifies P_{1} and P_{2} it will also falsify P by the truth table of \oplus. Hence $S(P)$ holds.

CASE 2: P is of the form $P_{1} \vee P_{2}$. Again, τ falsifies P since both P_{1} and P_{2} are falsified.
Thus we have proved that any formula that belongs to G is falsified by τ. Now consider the formula $\neg x$ where x is an arbitrary propositional variable. This formula is clearly satisfied by τ. Hence it cannot belong to G, which means that $\{\oplus, \mathrm{V}\}$ is not a complete set of connectives.

3. (10 marks)

Consider truth assignments containing only the propositional variables $x_{0}, x_{1}, x_{2}, x_{3}$ and $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$. Every such truth assignment gives a value of 1 (representing true) or 0 (representing false) to each variable. Therefore we can think of a truth assignment τ as determining a 4-bit integer x_{τ}, where the most significant bit is x_{3} and the least significant bit is x_{0}. In particular, $x_{\tau}=\tau\left(x_{0}\right)+2 \tau\left(x_{1}\right)+4 \tau\left(x_{2}\right)+8 \tau\left(x_{3}\right)$. Similarly the assignment τ determines a 5 -bit integer $y_{\tau}=\tau\left(y_{0}\right)+2 \tau\left(y_{1}\right)+4 \tau\left(y_{2}\right)+8 \tau\left(y_{3}\right)+16 \tau\left(y_{4}\right)$.
Write a formula that is satisfied by exactly those truth assignments τ for which $y_{\tau}=x_{\tau}+1$. You may use any of the Boolean connectives discussed in the notes. Justify your answer.
Hint: You need to express as a formula the condition under which the 5 -bit number $y_{4} y_{3} y_{2} y_{1} y_{0}$ is one more than the 4 -bit number $x_{3} x_{2} x_{1} x_{0}$. Think of what this formula would have to say about y_{0}, \ldots, y_{4} first in case $x_{0}=0$, then in case $x_{0}=1$ but $x_{1}=0$ and so on and so forth.
Soln A formula that is satisfied whenever $y_{\tau}=x_{\tau}+1$ is the following:

\[

\]

The formula is a conjunction of 5 subformulas. The first such subformula expresses the fact that when $x_{0}=0$ then y_{0} should be $1, y_{4}$ should be 0 and all other bits of y should agree with the corresponding bits of x. This ensures that in this case $y_{\tau}=x_{\tau}+1$. The second subformula expresses the conditions that should be true for the bits of y in the case that $x_{0}=1$ and $x_{1}=0$. In particular, y_{1} should be $1, y_{0}$ and y_{4} should be 0 and all other bits should agree with the corresponding bits of x. In a similar fashion, all the other subformulas take care of the cases when x_{0} and x_{1} are 1 but $x_{2}=0$, or $x_{0}=x_{1}=x_{2}=1$ and $x_{3}=0$ as well as the case when all bits of x are 1 . Note that all possible settings for the bits of x are covered by these 5 cases.
4. (12 marks) Consider the first order language of arithmetic described in Section 6.2 and the structures \mathcal{N} and \mathcal{Z} described on page 152 in the notes. For each sentence below state whether it is true in \mathcal{N}, \mathcal{Z}, both or neither. Justify your answer by translating each sentence into a statement in precise English about numbers and then explain why that statement is true or false for the natural numbers or for the integers.
(a) $\forall x \exists y L(y, x)$
(b) $\forall x \forall y((L(x, 0) \wedge P(x, x, y)) \rightarrow L(0, y))$
(c) $\forall x \exists y \forall z \neg P(y, z, x)$
(d) $\exists x \forall y(\neg \approx(0, y) \rightarrow L(x, y))$

Soln

(a) The formula says that for any x there exists a y such that $y<x$. This is clearly true if x, y are integers. However it is not true if they are natural numbers because for $x=0$ there is no natural number that is less than 0 . Hence the formula is true in \mathcal{Z} but false in \mathcal{N}.
(b) The formula says that for any x and any y, if $x<0$ and $y=x^{2}$, then y is positive. If x, y are integers this is true because if y is the square of a negative number, y is positive. If x, y are natural numbers, then
$x<0$ is false hence the condition $x<0$ and $x^{2}=y$ is always false, which means that the implication is true. Therefore the sentence is true in both \mathcal{Z} and \mathcal{N}.
(c) This says that for any x we can find a y such that for any z, x is not equal to $y z$. For $x=z=0$, this cannot be true. Hence the sentence is false in both \mathcal{Z} and \mathcal{N}.
(d) The formula says that there exists a number x that is smaller than any nonzero number. If the domain is the integers, this is false as there is no minimum element. If the domain is \mathbb{N} however this is true since any nonzero natural number is greater than 0 .
5. (4 marks) Find an equivalent formula F^{\prime} to

$$
F: \exists x R(x, y) \rightarrow \exists x(P(x) \vee \neg(\exists y) Q(x, y))
$$

such that F^{\prime} is in PRENEX form and F^{\prime} has the same free variables as F.

Soln:

$$
\begin{array}{rll}
\exists x R(x, y) \rightarrow \exists x(P(x) \vee \neg(\exists y) Q(x, y)) & \\
\text { LEQV } \exists x R(x, y) \rightarrow \exists x(P(x) \vee \neg(\exists y) Q(z, y)) & \text { Rename } x \text { to } z \\
\text { LEQV } \exists x R(x, y) \rightarrow \exists z(P(z) \vee \neg(\exists u) Q(z, u)) & \text { Rename } y \text { to } u \\
\text { LEQV } \exists x R(x, y) \rightarrow \exists z(P(z) \vee \forall u \neg Q(z, u)) & \text { Quantifier duality } \\
\text { LEQV } \forall x(R(x, y) \rightarrow \exists z(P(z) \vee \forall u \neg Q(z, u))) & \text { Quantifier factoring } \\
\text { LEQV } \forall x \exists z(R(x, y) \rightarrow P(z) \vee \forall u \neg Q(z, u)) & \text { Quantifier factoring } \\
\text { LEQV } \forall x \exists z \forall u(R(x, y) \rightarrow P(z) \vee \neg Q(z, u)) & \text { Quantifier factoring }
\end{array}
$$

It is also possible to derive:

$$
\exists z \forall u \forall x(R(x, y) \rightarrow(P(z) \vee \neg Q(z, u)))
$$

6. (16 marks) For each of the following formulas determine whether it is valid, satisfiable or unsatisfiable. Justify your answer either with a formal proof using logical equivalences and/or by defining appropriate structures.
(a) $(\forall x Q(x) \rightarrow \neg \exists y \exists z R(y, z)) \leftrightarrow \exists x \forall y \forall z(Q(x) \rightarrow \neg R(y, z))$

Soln:

$$
\begin{array}{rll}
\qquad(\forall x Q(x) \rightarrow \neg \exists y \exists z R(y, z)) & \\
\text { LEQV }(\forall x Q(x) \rightarrow \forall y \neg \exists z R(y, z)) & \text { Duality of Quantifiers } \\
\text { LEQV }(\forall x Q(x) \rightarrow \forall y \forall z \neg R(y, z)) & \text { Duality of Quantifiers } \\
\text { LEQV }(\exists x(Q(x) \rightarrow \forall y \forall z \neg R(y, z)) & \text { Factoring of Quantifiers } \\
\text { LEQV }(\exists x \forall y \forall z(Q(x) \rightarrow \neg R(y, z)) & \text { Factoring of Quantifiers } \times 2
\end{array}
$$

Therefore, since the left hand side is logically equivalent to the right hand side, the formula is valid.
(b) $(\forall x P(x) \rightarrow \exists y \neg Q(y)) \rightarrow(\forall x Q(x) \rightarrow \exists y \neg P(y))$

Soln:

$$
\begin{array}{rlrl}
\forall x P(x) & \rightarrow \exists y \neg Q(y) & \\
\text { LEQV } \neg \forall x P(x) \vee \exists y \neg Q(y) & & \text { Arrow law } \\
\text { LEQV } \exists y \neg Q(y) \vee \neg \forall x P(x) & \text { commutativity of } \vee \\
\text { LEQV } \neg \exists y \neg Q(y) & \rightarrow \neg \forall x P(x) & \text { Arrow law } \\
\text { LEQV } \forall y \neg \neg Q(y) & \rightarrow \exists x \neg P(x) & \text { Duality of Quantifiers } \times 2 \\
\text { LEQV } \forall y Q(y) & \rightarrow \exists x \neg P(x) & \text { Double } \neg \\
\text { LEQV } \forall y Q(y) & \rightarrow \exists y \neg P(y) & \text { Rename } x \text { to } y \\
\text { LEQV } \forall x Q(x) & \rightarrow \exists y \neg P(y) & \text { Rename } y \text { to } x
\end{array}
$$

Therefore, since the left hand side is logically equivalent to the right hand side, the left hand side logically implies the right hand side, so the formula is valid.
(c) $(\forall x P(x) \rightarrow \neg \forall x Q(x)) \leftrightarrow \exists x \forall y(P(x) \rightarrow \neg Q(y))$

Soln:

This is satisfiable. Consider a simplification of both sides.
We can say that:

$$
\begin{array}{rlll}
\forall x P(x) \rightarrow \neg \forall x Q(x) & & \\
\text { LEQV } \neg \forall x P(x) \vee \neg \forall y Q(y) & \rightarrow & \text { law } \\
\text { LEQV } \exists x \neg P(x) \vee \exists y \neg Q(y) & \text { Duality of } & \text { Quantifiers }
\end{array}
$$

and for the RHS we notice that:

$$
\begin{array}{rlll}
\exists x \forall y(P(x) \rightarrow \neg \mathbf{Q}(\mathbf{y})) & & \\
\text { LEQV } \exists x \forall y(\neg P(x) \vee \neg Q(y)) & \rightarrow & \text { law } \\
\text { LEQV } \exists x \neg P(x) \vee \forall y \neg Q(y) & \text { Factoring } & \text { quantifiers }
\end{array}
$$

To show this is satisfiable, we need to find two structures, one that satisfies both, and one that satisfies one but not the other.
Let S_{1} be a structure with domain $D^{S_{1}}=\{a, b\}$ and define $P^{S_{1}}=\{a, b\}$ and $Q^{S_{1}}=\{a, b\}$. Both sides are always false, so the bi-implication is always true.
Now let S_{2} be a structure with domain $D^{S_{2}}=\{a, b\}$ and define $P^{S_{2}}=\{a, b\}$ and $Q^{S_{2}}=\{a\}$. The left hand side is always true under S_{2}, but the right hand side is always false.
(d) $(\forall x(P(x) \rightarrow \exists y \neg Q(y))) \rightarrow \neg(\forall x Q(x) \rightarrow \exists y \neg P(y))$

Soln

Note that:

$$
\begin{array}{rll}
\quad(\forall x(P(x) \rightarrow \exists y \neg Q(y))) & \\
\text { LEQV } \forall x(\neg P(x) \vee \exists y \neg Q(y)) & \rightarrow \text { law } \\
\text { LEQV }(\forall x \neg P(x)) \vee \exists y \neg Q(y) & \text { Quantifier factoring } \\
\text { LEQV } \neg(\exists x P(x)) \vee \neg \forall y Q(y) & \text { Quantifier duality } \times 2 \\
\text { LEQV } \neg(\exists x P(x) \& \forall y Q(y)) & \text { DeMorgan's law }
\end{array}
$$

but:

$$
\begin{array}{rll}
\neg(\forall x Q(x) \rightarrow \exists y \neg P(y)) & \\
\text { LEQV } \neg(\neg \forall x Q(x) \vee \exists y \neg P(y)) & \rightarrow \text { law } \\
\text { LEQV } \neg(\neg \forall x Q(x) \vee \neg \forall y P(y)) & \text { Quantifier duality } \\
\text { LEQV } \neg \neg(\forall x Q(x) \& \forall y P(y)) & \text { DeMorgan's law } \\
\text { LEQV } \forall x Q(x) \& \forall y P(y) & \text { Double } \neg \\
\text { LEQV } \forall y Q(y) \& \forall y P(y) & \text { Rename } x \text { to } y \\
\text { LEQV } \forall y Q(y) \& \forall x P(x) & \text { Rename } y \text { to } x
\end{array}
$$

When the left hand side is true, then either there is a y such that $\neg Q(y)$, in which case the right hand side is false, or there is no x such that $P(x)$ in which case the right hand side is false. So the implication is unsatisfiable.

