Homework Assignment #2 Due: November 4, 2010 at 6pm

On the cover page of your assignment, you must write **and sign** the following statement: "I have read and understood the homework collaboration policy described in the Course Information handout." Without such a signed statement your homework will not be marked.

- 1. (20 marks) In this question you should prove your assertions using only the logical equivalences of Section 5.6 (i.e. without using truth tables).
 - (a) (5 marks) Prove that $x \land (\neg y \leftrightarrow z)$ is logically equivalent to $((x \to y) \lor \neg z) \to (x \land \neg (y \to z))$
 - (b) (5 marks) Find a CNF formula that is logically equivalent to $\neg y \rightarrow (x \leftrightarrow z)$. Prove your assertion.
 - (c) (10 marks) Classify each formula below as either a tautology, a contradiction or a contingency (satisfiable but not a tautology). Justify your answers.
 - i. $((x \lor y) \to z) \lor (z \to (x \lor y))$
 - ii. $(x \to y) \land (\neg x \to y)$
 - iii. $(x \to y) \lor (x \to \neg y)$
- 2. (20 marks)
 - (a) (10 marks) Prove that $\{\neg, \rightarrow\}$ is a complete set of connectives.
 - (b) (10 marks) Prove that $\{\oplus, \lor\}$ is not a complete set of connectives.
- 3. (10 marks)

Consider truth assignments containing only the propositional variables x_0, x_1, x_2, x_3 and y_0, y_1, y_2, y_3, y_4 . Every such truth assignment gives a value of 1 (representing true) or 0 (representing false) to each variable. Therefore we can think of a truth assignment τ as determining a 4-bit integer x_{τ} , where the most significant bit is x_3 and the least significant bit is x_0 . In particular, $x_{\tau} = \tau(x_0) + 2\tau(x_1) + 4\tau(x_2) + 8\tau(x_3)$. Similarly the assignment τ determines a 5-bit integer $y_{\tau} = \tau(y_0) + 2\tau(y_1) + 4\tau(y_2) + 8\tau(y_3) + 16\tau(y_4)$.

Write a formula that is satisfied by exactly those truth assignments τ for which $y_{\tau} = x_{\tau} + 1$. You may use any of the Boolean connectives discussed in the notes. Justify your answer.

Hint: You need to express as a formula the condition under which the 5-bit number $y_4y_3y_2y_1y_0$ is one more than the 4-bit number $x_3x_2x_1x_0$. Think of what this formula would have to say about $y_0, ..., y_4$ first in case $x_0 = 0$, then in case $x_0 = 1$ but $x_1 = 0$ and so on and so forth.

- 4. (10 marks) Consider the first order language of arithmetic described in Section 6.2 and the structures N and Z described on page 152 in the notes. For each sentence below state whether it is true in N, Z, both or neither. Justify your answer by translating each sentence into a statement in precise English about numbers and then explain why that statement is true or false for the natural numbers or for the integers.
 - (a) $\forall x \exists y L(y, x)$
 - (b) $\forall x \; \forall y \; ((L(x,0) \land P(x,x,y)) \rightarrow L(0,y))$
 - (c) $\forall x \exists y \forall z \neg P(y, z, x)$
 - (d) $\exists x \; \forall y (\neg \approx (0, y) \rightarrow L(x, y))$

5. (4 marks) Find an equivalent formula F' to

$$F: \exists x R(x, y) \to \exists x (P(x) \lor \neg (\exists y) Q(x, y))$$

such that F' is in PRENEX form and F' has the same free variables as F.

- 6. (16 marks) For each of the following formulas determine whether it is valid, satisfiable or unsatisfiable. Justify your answer either with a formal proof using logical equivalences and/or by defining appropriate structures.
 - (a) $(\forall x Q(x) \rightarrow \neg \exists y \exists z R(y, z)) \leftrightarrow \exists x \forall y \forall z (Q(x) \rightarrow \neg R(y, z))$
 - (b) $(\forall x P(x) \rightarrow \exists y \neg Q(y)) \rightarrow (\forall x Q(x) \rightarrow \exists y \neg P(y))$
 - (c) $(\forall x P(x) \rightarrow \neg \forall x Q(x)) \leftrightarrow \exists x \forall y (P(x) \rightarrow \neg Q(y))$
 - (d) $(\forall x (P(x) \to \exists y \neg Q(y))) \to \neg (\forall x Q(x) \to \exists y \neg P(y))$