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1 Problem Formulation and Notations

Given n patients and m measurements (e.g. m is a number of genes in a mRNA
expression patient profile), we want to identify C clusters of patients, each of
which corresponds to a (known or novel) disease subtype. We associate each pa-
tient x

i

with a label indicator vector y
i

2 {0, 1}C such that y
i

(k) = 1 if patient
x

i

belongs to the k-th cluster (subtype), otherwise y
i

(k) = 0. So a Partition Ma-

trix Y = [yT

1 ;y
T

2 ; . . . ;y
T

n

]T 2 {0, 1}n⇥C is used to represent a clustering scheme.
A patient similarity network is represented as a graph G = (V, E). The vertices
V correspond to the patients {x1, x2, . . . , xn

}, and the edges E are weighted as is
represented by an n⇥ n similarity matrix W with W

ij

indicating the similarity
between patients x

i

and x

j

. The graph is constructed according to a chosen dis-
tance metric (see below). N

i

represents a set of x
i

’s neighbours in graph G, not
including x

i

. In this paper, we use K Nearest Neighbors (KNN), i.e., |N
i

| = K.

2 Constructing Patient Network

Traditionally in computational biology networks and network approaches are
used in conjunction with gene-gene interaction information, where very large
networks between genes (tens of thousands) are derived based on relatively small
sets of patients (hundreds to a couple of thousand at best). In our work, we
construct a network between patients. The weight of each edge in this network
is associated with the similarity (e.g. correlation) between patients. The idea is
that patients that have the same disease subtype are more likely to be similar
than patients that have di↵erent subtypes. We denote ⇢(x

i

, x

j

) as the correlation
between patients x

i

and x

j

. We then use a scaled exponential similarity kernel
to determine the weight of the edge e

ij

:

W (i, j) = exp(
⇢(x

i

, x

j

)2

⌘⇠

2
ij

), (1)

where ⌘ is a hyperparameter that can be empirically set and ⇠

ij

is used to
eliminate the scale problem. In our paper, we define

⇠

ij

=
mean(⇢(x

i

,N
i

)) +mean(⇢(x
j

,N
j

))

2
, (2)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
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Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:
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2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:
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W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.
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Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
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(2). The cross-di↵usion process is defined as:
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(i.e. it’s not clear which kernel should be used), making the problem di�cult for MKL where the
structure must be encoded in the choice of the kernel. In general, we actually found that MKL
performs worse than iCluster, for example, presumably due to the lack of adequate accounting for
non-linearity.

5.1.4 Patient Specific Data Fusion

Patient Specific Data Fusion (PSDF) [27] is a nonparametric Bayesian model for discovering cancer
subtypes by combing gene expression and copy number variations. The model is based on an idea
of Hierarchical Dirichlet Processes [15]. Each patient is inferred with a binary state variable that
defines whether their data are concordant across the data sets. In addition, feature selection is
incorporated in the model by assuming each feature is drawn from a multinomial distribution with
unknown class probabilities. Multiple MCMC chains are employed to improve the mixing e↵ect
and infer the statical uncertainties in PSDF. In our experiments we used the authors’ code, setting
100 MCMC iterations in each step and fusion weight to 0.5 as was suggested by the authors.

While PSDF appears to be a powerful framework for unsupervised multi-view learning, there
are essential disadvantages precluding the use of PSDF to analyze the real cancer data used in
this paper: 1) large number of unknown parameters make the model inference very di�cult and
computationally expensive; 2) it is only suitable for combing two data types. PSDF could poten-
tially be applied to the METABRIC cohort which only contains 2 data types, but unfortunately
the approach is not scalable to the full size of this data.

6 Supplementary Methods

6.1 Stopping Criteria

SNF is proved to converge, and empirically it converges fast. We keep track of the relative change
in consecutive rounds Et = kWt+1�Wtk

kWtk . One simple stopping criteria is that we set a threshold

✏ = 10�6 and if the relative change is lower than the threshold, we stop the iteration. Some
empirical observations about the convergence can be found in Figures 5, 6 and 7. We note that,
when the number of iterations exceeds 20, it is always enough to converge. So we empirically set
the number of iterations in the range of [10, 20].

6.2 Parameter Selection

In our method, there are two free parameters ⌘ and K. Our method is not sensitive to these two
parameters, see Figures 8, 9 and 10. In our method, a reasonable range for ⌘ would be 0.3�1. The
rule of thumb for choosing parameter K is K = N/C where N is the number of patients, and C is
the number of clusters that is believed to be in the data. However, if C is unknown, we usually set
K ⇡ N/10.

6.3 Model Selection

How to identify the number of subtypes is a key problem in disease classification. Spectral Cluster-
ing method provides two main approaches to decide the optimal number of clusters. One is to use

27
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where P

(1)
t

is the status matrix after t iterations. This procedure exchanges
the status matrices each time generating two parallel inter-changing di↵usion

processes. After t steps, the overall status matrix is computed as P (c) = 1
2 (P

(1)
t

+

P

(2)
t

). Since P is a KNN graph of P which can reduce some noise between
instances, our cross di↵usion process is robust to the noise in similarity measures.

Another way to think of P (1)
t+1(i, j) is as

X

l,k2Ni
T

Nj

P

(1)
0 (i, k)(P (2)

t

(k, l))P (1)
0 (j, l)

(the same for P (2)
t+1(i, j)). Ni

represents the neighborhood of x
i

, and P(1) = P

(1)
0 .

We can see that similarity information is only propagated within the common
neighborhood. This renders the cross di↵usion process robust to noise. An impor-
tant observation is that if x

i

and x

j

have common neighbors in both similarity
matrices (views), it is highly possible that they belong to the same class. Another
essential fact our method benefits from is that even if x

i

and x

j

are not very
similar in one metric, their similarity can be expressed in another metric and
this similarity information can be propagated through cross di↵usion process.

We use regularization to increase CrDP’s robustness:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 + ⌘I

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 + ⌘I (8)

By adding the regularization term we (1) ensure that throughout the di↵usion
process a patient is always most similar to himself than to other patients; (2)
ensure that our final network is full rank, important for the classification and
clustering applications of the final network. Finally, we have found that the use
of regularization leads to quicker convergence of CrDP.

The input to our algorithm can be feature vectors, pairwise distances, or
pairwise similarities. The learned status matrix P

(c) can then be used for re-
trieval, clustering, and classification; in this paper, we focus on clustering. We
refer readers to [3] for more details.

4 Extension to m > 2

We extend the CrDP above to multiple (m > 2) similarity matrices (views) by
adjusting Eq (6) as follows

P

(i)
t+1 = P(i) ⇥ (

1

m� 1

X

j 6=i

P

(j)
t

)⇥ (P(i))0 + ⌘I

where i = 1, . . . ,m. The corresponding final status matrix is computed as P (c) =
1
m

P
m

i=1 P
(i)
t

.
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coefficient vector z is estimated by maximizing the Cox’s log-
partial likelihood:
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where n is the number of patients, ti is the survival time for the 
i-th patient and R(ti) is the risk set at time ti, i.e., the set of patients 
who still survived before ti. i(·) is an indicator function whether 
the survival time is observed ( i = 1) or censored ( i = 0).

It is possible to improve survival prediction by incorporat-
ing additional information, such as gene interaction data26 or 
patient similarity based constraints. To incorporate the network 
structure, similarity between either features or patients (or both) 
can be used as a regularizer. According to the hazard function 
of Cox’s model, the relative risk between patient i and patient j 
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T
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where  is the regularizing coefficient. Newton optimization  
techniques are applied to solve this maximization problem.

Combining data types. SNF can be used to incorporate arbitrary 
types of discrete (binary or categorical) and continuous data. For 
integration of discrete data, we recommend the use of chi-squared 
distance as the similarity measure. Compatibility of data sources 
can be checked via normalized mutual information (NMI). If the 
patient similarity obtained from different data sources is com-
pletely discordant; NMI can help to clarify which data should and 
which should not be combined.
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