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Sequential decision making under uncertainty is always a challenge for autonomous agents

populating a multiagent environment, since their behaviour is inevitably influenced by the be-

haviour of others. Further, agents have to constantly struggle to find the right balance between

exploiting current information regarding the environment and the rest of its inhabitants, and ex-

ploring so that they acquire additional information. Moreover, they need to profitably trade off

short-term rewards with anticipated long-term ones, while learning through interaction about

the environment and others—employing techniques from reinforcement learning (RL), a fun-

damental area of study within artificial intelligence (AI).

Coalition formation is a problem of great interest within game theory and AI, allowing

autonomous individually rational agents to form stable or transient teams (or coalitions) to

tackle an underlying task. Agents participating in realistic scenarios of repeated coalition

formation under uncertainty face the issues identified above, and need to bargain to succesfully

negotiate the terms of their participation in coalitions—often having to compromise individual

with team welfare effectively.

In this thesis, we provide theoretical and algorithmic tools to accommodate sequential de-

cision making under uncertainty in multiagent settings, dealing with the issues above. Specif-

ically, we combine multiagent Bayesian RL with game theoretic ideas to facilitate the agents’

sequential decision making. We deal with popular multiagent problems which were to date not

tackled under uncertainty, or more specifically under type uncertainty. In our work, we assume
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that the environment dynamics or the types (capabilities) of other agents are not known, and

thus the agents have to account for this uncertainty, in a Bayesian way, when making decisions.

Handling type uncertainty allows information about others acquired within one setting to be

exploited in possibly different settings in the future.

The core of our contributions lies in the area of coalition formation under uncertainty. We

studied several aspects of both the cooperative and non-cooperative facets of this problem,

coining new theoretical concepts, proving theoretical results, presenting and evaluating algo-

rithms for use in this context, and proposing a Bayesian RL framework for optimal repeated

coalition formation under uncertainty.
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Chapter 1

Introduction

Learning through interaction with the environment is a fundamental idea underlying many

theories of learning and intelligence. Reinforcement Learning (RL) [KLM96, SB98], from a

computer science point of view, is the problem that an agent faces when trying to learn to

act by trial and error through interactions with a dynamic environment. This is different from

supervised learning, which is learning from examples provided by an external supervisor; it

also contrasts with classical planning, in that agents do not know a priori how their actions will

affect the world. An RL agent is a goal-seeking agent that can sense aspects of its environment

and can choose actions to influence this environment, so as to maximize a numerical reward

signal. Reinforcement learning is a highly active research area, and is strongly connected not

only with artificial intelligence (AI) research—such as machine learning, planning and neural

networks—but neuroscience, psychology, and statistics, as well.

The reinforcement learning problem becomes even more interesting when studied in the

context of multiple reinforcement learning agents co-existing in the same environment. This

situation constitutes the multiagent reinforcement learning (MARL) problem. The presence of

multiple RL agents creates new opportunities for them to seize or obstacles to overcome so

that they enhance their learning capabilities. It also raises important questions1 regarding the

value of employing “social behaviours” like cooperation and coordination. Agents also face

questions such as whether it is worth sacrificing short-term rewards in anticipation of long-

term ones, whether it is valuable to them—under certain circumstances or conditions—to form

teams, and whether and in which ways their own behaviour will influence the behaviour of

others (and in which way these changes will affect them in the short or long term). Learning in

1Sometimes, even questions of philosophical nature (see, e.g., [Axe84]).

1
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a multiagent world of this kind can be viewed as learning in a game with multiple players.

This chapter underscores the motivations and questions which lead us to explore research

at the borderline of game theory and reinforcement learning It also briefly outlines the solu-

tions and answers we provide to the questions explored in this thesis, and highlights the main

research contributions of our work.

1.1 Motivation: Sequential Decision Making in Uncertain

Multiagent Environments

In realistic settings, agents have to repeatedly make decisions over time, having only incom-

plete information about the environment and the other agents present. In a multiagent world,

others’ actions influence one’s own decisions and actions; furthermore, when the agents are

faced with the question of forming teams or coalitions, the issue of finding the right balance in

sacrificing individual welfare for team welfare or vice-versa is important (individual vs. team

rationality). Taking all those issues into consideration, other interesting questions then arise:

What does it mean to “act optimally” in such an environment? How do we make (a series of)

decisions that are beneficial both in a short and in a long term? In other words, how can an

agent in a multiagent world make sequentially optimal decisions under incomplete informa-

tion?

Game Theory and Reinforcement Learning

Game theory is the study of strategic interactions between multiple intelligent rational decision-

makers—rationality meaning that the agents (or, in a game setting, “players”)2 consistently

pursue their own objectives, trying to maximize the expected value of their own payoffs, which

is measured in some utility scale [Mye91]. Being the theory of strategic interactions between

multiple goal-driven agents, game theory provides many of the tools for dealing with situa-

tions and questions such as those mentioned above. The importance of game theory is evident

in the fact that it is now widely applied in various fields, such as economics, biology, political

science, social psychology, sociology and anthropology [Gin00]. In addition, a part of game

theory deals with learning in games. Learning in games involves modeling the processes by

which players change the strategies they are using to play a game over time. The very notion

2We will be using the terms “agents” and “players” interchangeably in this thesis.
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of equilibrium can be considered to be the long-run result of a process where rational players

try to learn and play optimally over time [FL98].

Of course, as the critics of game theory argue, the assumption of rationality does not always

hold in realistic environments. Especially in AI, “...we do not generally have the luxury of as-

suming rationality—it is our burden to explain how to realize approximately rational behaviors

in operational computational terms”[BSW97]. Moreover, the players’ decisions are arguably

stochastic or “noisy”, perhaps due to errors in perception, calculation, or the recording of ac-

tions. However, the relaxation of the classical assumptions of game theory and the incorpora-

tion of stochasticity (or “noise”) into the agents’ introspection process can some times provide

the leverage to overcome those problems [GH99].

Further, the repeated encounter of the same or similar game scenarios provides the agents

with the opportunity to learn, revising their beliefs, predictions and decisions over time. Re-

inforcement learning techniques, in particular, can be successfully employed in multiagent

game settings in tasks as diverse as robots competing in soccer [BV01b, Lit94] and agents

coordinating their actions in order to rescue civilians trapped in buildings collapsed after an

earthquake [KT01]. The assumption underlying most of these techniques is that the MARL

problem can profitably be defined within a stochastic games framework; this game-theoretic

framework enables the participating agents to better align their action choices with those of

others—since in a multiagent world the effects of an agent’s actions are directly influenced by

the actions of others, and also, crucially, have the potential to influence the future deliberations

and actions of others. Therefore, one is forced to cast aside the direct adoption of single-agent

RL techniques as simplistic and, largely, inappropriate.

On the whole, several learning scenarios in repeated games pose interesting questions re-

garding the rationality of agents and the effectiveness of predictions: Can rational players really

learn to play effectively in repeated games? Can they achieve optimality in their play, and end

up in equilibrium? In addition, can convergence to equilibrium at any cost be considered as

the optimal behaviour?

The Bayesian approach is an attractive model for defining optimal sequential behaviour,

when agents act under uncertainty: since it is impossible to remove all underlying uncertainty

in a realistic environment, the reasonable behaviour for a rational agent would be to act accord-

ing to its own evolving beliefs, trying—by being Bayesian—to implicitly take into account all

eventualities concerning possible models of the world, and other agents inhabiting this world.
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Combining (Bayesian) RL with Coalition Formation

While in non-cooperative (“strategic”) game theoretic settings the players just pursue their

own interests, in cooperative game theoretic settings players are allowed to form coalitions

and combine their decision-making problems in order to achieve reward through cooperation.

Cooperative game theory concentrates on the question of what a coalition can get, without

saying how: instead of concentrating on the strategic choices of the individual, it deals with the

options available to the group [AH92].

This does not mean that the players cease to be rational. If, in particular, transferable utility

[Mye91] is assumed, the participants in a cooperative game can reach enforceable agreements

that will exploit side payments among the agents. These side payments can induce players to

use specific mutually beneficial strategies. The question of the stability of coalitions is central

to cooperative coalition formation research, and several cooperative solution concepts to the

problem of stability have been proposed.3 In any case, rational players should seek to join the

coalition that guarantees them the highest return. In fact, John Nash claimed, in his position

known as the “Nash Program”, that all cooperative games can be reduced into some non-

cooperative form [Nas51, Nas53]. Moreover, there exists a substantial body of game theory

research which examines (mainly from a non-cooperative standpoint) the processes by which

coalitions emerge.

Game theory provides nowadays the main methods of examining economics. Non-cooperative

game theory can be used, among its other applications, to analyze models for oligopolies or

auctions, while cooperative game theory can find many applications in real-life problems, such

as bilateral or multilateral bargaining [AH92, Fri91]; furthermore, e-commerce is another field

for the potential application of both non-cooperative and cooperative game theory and coalition

formation in particular. However, in many cases the assumptions made in existing research

are unrealistic with respect to the requirements of real-life environments: in particular, the

inevitable burden of uncertainty. Moreover, when scenarios of repeated coalition formation

activities come into consideration, the possibility of employing learning mechanisms in order

to enhance the decision making of agents presents itself. This is the case, for example, when

the opportunity exists to bargain repeatedly with partners encountered in the past, or to revise

the structure or the strategies adopted by the formed coalitions. It is quite natural that agents

should then be capable of exploiting the experience they gathered in the past in order to make

more informed decisions. As we will argue throughout our thesis, these are all areas where em-

3We expand on all these issues in section 2.3.
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ploying Bayesian reasoning and Bayesian RL techniques can prove to be of value to rational

agents that have to operate and interact under uncertainty.

To provide some intuitions into the dynamics of the problem of repeated coalition forma-

tion under uncertainty, and its implications for strategic reasoning and learning, let us consider

a simple example. Suppose there exists a set of agents that have to form teams to participate in

a construction project (such as one that would require them to build a new residential area). The

agents may have different professional training, for example they can be carpenters, plumbers

or electricians, each with different degrees of skills or expertise—an agent’s training and ex-

pertise define its capabilities, or its type. Each agent may be uncertain regarding the others’

types, for example, their degree of expertise. When a project is to be undertaken, the agents

have the choice to form coalitions whose members will collectively decide to act and complete

one of possibly several project components—such as choosing to build an apartment building,

a single house, or a skyscraper. The choice and execution of a project or a project compo-

nent is a coalitional action. The degree of the successful completion of the project component

(i.e., the outcome of the coalitional action) would depend on the capabilities of the agents, and

would result in an eventual payoff to the coalition. Naturally, there is inherent uncertainty in the

environment regarding the outcomes of the coalitional actions (i.e., the outcomes are stochas-

tic). Each member will get a share of the eventual payoff, and this share should be decided

in advance. The choice of teammates, the choice of the coalitional action to perform, and the

agreement over the shares to be allocated, must all be simultaneously decided via bargaining

among all the agents, each of whom seek to maximize their expected payoff shares. Thus, the

coalitions form endogenously, rather than being determined by some external force. Once the

coalitions have formed and acted, a new, possibly different, project may be announced—thus,

the agents would have the opportunity to engage in similar coalition formation activities over

and over again.

This setting of repeated coalition formation under uncertainty presents an agent with many

challenges and questions. The agent will have to decide whether he should stay in a coalition or

abandon it. He might be content working with a specific electrician, yet he may be tempted to

team-up with someone else and learn about this new partner’s capabilities. While bargaining,

the question of how big a share to ask for is always pressing, especially since one is unsure of

the potential that a coalition has given uncertainty regarding his partners. Thus, it is difficult to

decide how much payoff he could reasonably expect to claim successfully. Further questions

might arise, such as what are the bargaining processes, if any, that can potentially guarantee the

stability of formed coalitions, or how can one learn and benefit by observing the behaviour of
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Figure 1.1: A Bayesian RL framework for repeated coalition formation under uncertainty.

others during bargaining. Thus, as demonstrated by even this simple example, the introduction

of type-related uncertainty in the coalition formation problem can provides a rich agenda of

research questions.

In this dissertation, we formally state and attempt to resolve several of those questions. In

order to do so, we develop a Bayesian RL framework for repeated coalition formation under

uncertainty, the outline of which is shown in Figure 1.1. The agents in this framework engage

repeatedly in coalition formation activities resulting in a set of coalitional agreements, com-

prising a set of formed coalitions and a set of payoff allocations and coalitional actions (one per

coalition) to perform (thus, we say that the agents participate in the “coalition formation stage”

of the repeated process). The formed coalitions take the actions agreed by their members, and

the observation of their outcomes enables the agents to update beliefs regarding the types of

partners. This, in turn, revises their expectations regarding the sequential value of the potential

coalitional agreements that may emerge as the result of the coalition formation activities (“RL
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stage”). The evaluations of these agreements are then used in subsequent coalition formation

activities.

We consider the development of this framework to be an important contribution of this

thesis: in fact, the work presented in the various chapters of this dissertation builds towards

this framework (or informs aspects of it). We now present a more comprehensive list of our

major contributions.

1.2 Contributions and Thesis Outline

In this thesis we provide theoretical and algorithmic tools to accommodate sequential decision

making under uncertainty in multiagent settings, dealing with issues and questions such as the

ones identified above. Starting with the observation that the MARL problem can be best viewed

through a game-theoretic perspective, we combine it with various interesting cooperative and

non-cooperative game theory problems, and by doing so we facilitate both online learning and

decision making under incomplete information.

Combining multiagent Bayesian RL with game theoretic ideas to facilitate agents’ sequen-

tial decision making is the major contribution of this work. We deal with popular multiagent

problems which research has so far hesitated to tackle under uncertainty, or more specifically

under type uncertainty. Our work explicitly models this uncertainty: our research assumes that

the environment dynamics or the capabilities (types) of the environment’s co-inhabitants are

not known, and thus the agents have to account for this uncertainty, in a Bayesian way, when

making decisions.

Figure 1.2 provides a map of the research areas wherein our contributions lie. Other re-

searchers have already defined the MARL problem within a game-theoretic, stochastic games

framework. We have contributed a Bayesian approach to the MARL problem, introducing a

model-based Bayesian MARL framework for sequential decision-making in stochastic games.

Stochastic games lie within the non-cooperative branch of game theory, a branch that focuses

on studying the strategic interactions of rational players and on describing their equilibrium

behaviour. Cooperative game theory, on the other hand, deals basically with the coalition for-

mation problem, focusing on the question of stability of formed coalitions, irrespectively of the

process through which the coalitions have emerged. The branch of coalition formation research

that does examine the dynamic processes by which coalitions emerge is usually referred to as
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Figure 1.2: Areas of contributions (with our contributions marked in red).

dynamic coalition formation, and has strong links with the purely non-cooperative problem of

coalitional bargaining, that examines the equilibrium behaviour of agents during multilateral

bargaining to form coalitions. Dynamic coalition formation examines the endogenous forma-

tion of coalitions by some bargaining process,4 usually modeled as a Markov process, mainly

with respect to their potential of giving rise to stable coalitions (stability being described by

some cooperative coalition formation solution concept). Coalitional bargaining research, on

the other hand, focuses on examining the (purely non-cooperative) equilibrium solutions of the

coalition formation problem. As we have already mentioned, however, and as we shall see in

more detail, the treatment of uncertainty in coalition formation, dynamic coalition formation,

and coalitional bargaining research is very limited. We, on the other hand, make contributions

in all those fields, providing models, solution concepts and algorithms that take uncertainty

(more specifically, type uncertainty and reward stochasticity) into account. As mentioned

above, and as shown in the right part of Figure 1.2, an important contribution of our work

is providing a link between Bayesian MARL and coalition formation research, by introducing

a Bayesian RL framework for repeated coalition formation under uncertainty, which we detail

in Chapter 6 of this thesis.

One main idea that links various pieces of our work together is the formulation of the un-

known environment and agent interactions as a Partially Observable Markov Decision Process

(POMDP). This provides firm foundations upon which agents can base their deliberations in

4The bargaining process in question may be cooperative or non-cooperative—focusing more on the joint or
individual value to be gained, respectively.
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order to determine rewarding behaviour. Thus, our work provides a belief-state MDP formu-

lation for Bayesian sequential decision making under uncertainty in multiagent environments,

which allows for the expected value of information of agents’ actions to be taken into account

during deliberations (the “value of information” represents the ability this information has to

change future decisions). Such an approach intertwines online learning with optimal decision

making under uncertainty. Our work shows that this approach can be successfully employed

both in stochastic games, and in the coalition formation problem. In particular, our introduction

of a model of Bayesian coalition formation under type uncertainty, and its integration within a

Bayesian RL framework for coalition formation under uncertainty are two aspects of our work

that make it quite original.

Modeling coalition formation under type uncertainty (i.e., uncertainty regarding the capa-

bilities of others) is another important contribution of our work. Dealing with coalitional value

uncertainty alone5 does not allow an agent to learn in a way general enough to enable him to

tackle similar or different problems in the future. On the contrary, if an agent is able to progres-

sively enrich its knowledge regarding the capabilities of its peers, this will allow it to tackle

other problems involving those same peers in the future, as these capabilities influence the val-

ues of the potential coalitions under any possible scenario. Uncertainty regarding types can

then be readily translated into uncertainty regarding coalitional values (given any other nec-

essary specifics of the particular problem), and thus the acquired knowledge (or uncertainty)

about the types of others can be applied in different coalition formation scenarios.6

More specifically, our work has resulted in the following list of main research contributions,

which we present and discuss in detail in subsequent chapters of this thesis:

1. To the best of our knowledge, we are the first to introduce Bayesian Multiagent Rein-

forcement Learning, proposing a multiagent, model-based, Bayesian RL framework for

optimal sequential decision making in stochastic games (Chapter 3).

5Coalitional value uncertainty may depend on the particular characteristics of a specific problem—such as,
perhaps, a particular model of stochasticity regarding the rewards paid to coalitions, or the particular uncertainty
regarding resources to be allocated.

6For instance, consider a construction coalition in the toy example described earlier: the knowledge (or uncer-
tainty) regarding the capabilities of team members (e.g., knowledge of whether agentsA orB are good carpenters
or not and of whether agents C or D are good plumbers or not) will guide an agent (perhaps agent E, an electri-
cian) in his choice of partners, even if the particulars of the construction project change (e.g., even if project A
requires him to team up with a plumber and project B with a carpenter, or if project C pays more for building a
mansion in Toronto while project D suggests it is better to build an apartment in San Francisco). Not taking into
account type uncertainty would have required agent E to try and learn the values of different coalitions for each
different project from scratch.
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• We focus on the problem of multiagent coordination in stochastic games and show

that a Bayesian approach enables the agents to deal with the multiagent exploration-

exploitation problem.

• The solution to the multiagent exploration-exploitation problem can be cast as the

solution of a belief-state MDP, capturing the expected value of information of the

agents’ actions (and its impact to subsequent actions).

2. We provide a formal model for the problem of coalition formation under type uncertainty

(Chapter 4).

• We formulate a Bayesian coalition formation model that enables the agents to have

beliefs about their potential partners’ types, and expectations about the values of

coalitions and their own payoff shares (in environments with stochastic rewards

and unknown partner types).

• We identify a stability concept for coalition formation under uncertainty, the Bayesian

core; we note that ours is one of a few existing coalitional stability concepts under

uncertainty—and the first proposed for coalition formation under type uncertainty.

• We also discuss the problem of the existence of the Bayesian core (i.e., the problem

of verifying whether stable coalitional configurations exist while bargaining under

uncertainty). For small games, we provide an algorithmic method to decide whether

the BC is empty or not.

• Finally, we propose two algorithms for dynamic coalition formation under uncer-

tainty, and prove that one of them converges to the Bayesian core.

3. We examine the problem of discounted coalitional bargaining under type uncertainty

(Chapter 5).

• Our discounted coalitional bargaining framework focuses on the strategic consid-

erations required during coalition formation. We formulate the (Perfect Bayesian)

equilibrium solution to the problem, and devise a coalitional bargaining algorithm

to approximate it. The algorithm allows the agents to update beliefs regarding the

types of others while observing their bargaining behaviour. In addition, we exam-

ine the effects of learning by observation of coalitional actions to the quality of

decisions taken in such repeated coalitional bargaining settings.
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• We are the first to examine the correspondence between cooperative (Bayesian

core) and non-cooperative (Bayesian bargaining equilibria) solution concepts for

coalition formation under uncertainty, proving propositions that relate them to each

other. (This is similar to results that related research has obtained for determinis-

tic, “certain” environments.) We thus provide a non-cooperative justification of the

Bayesian core as a coalitional stability concept under uncertainty. As a corollary to

our results, we also establish a sufficient condition for the existence of the Bayesian

core (but only under specific assumptions regarding the bargaining strategies of the

agents).

4. We bring together the coalition formation problem with Bayesian MARL, providing a

Bayesian RL framework for coalition formation under uncertainty (Chapter 6).

• Critically, our Bayesian approach to repeated coalition formation enables rational

agents to make sequential decisions on taking formation (bargaining) actions and

coalitional actions, in an informed manner:

• “Coalition formation stages” alternate with “RL stages”, in accordance to Fig-

ure 1.1, and the agents use one of several algorithms we propose in order to evaluate

the quality of the various potential agreements.

• The evaluation of the quality of the coalitional agreements is done by using the

(approximate) sequential value of these agreements—we have proposed a belief-

state MDP formulation that describes the long-term value that the agents place on

the agreements (incorporating their expected value of information), and contributed

RL algorithms that solve it approximately. Thus, our approach provides a solution

for what we can call the problem of optimal repeated coalition formation under

uncertainty (in which the participating agents are interested in eventually forming

efficient, profitable coalitions, but they are also interested in gathering as much

reward as possible while doing so).

• Furthermore, we demonstrate experimentally that our approach enables the agents

to effectively deal with situations where the coalition formation scenarios change

over time (i.e., situations where the tasks the coalitions have to face are different

after each coalition formation stage).

• Notice that our framework can readily incorporate the dynamic coalition formation

algorithms provided in Chapter 4 and the discounted coalitional bargaining algo-
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rithm provided in Chapter 5 as its coalition formation components.

• We argue that this approach provides a novel perspective to the (repeated) coali-

tion formation problem, interweaving as it does Bayesian deliberations based on

observations with formation decisions and collective coalitional action-taking.

At the beginning of each of the chapters, we provide further motivation for the work de-

scribed there, and elaborate on our relevant contributions. Furthermore, in each chapter we

discuss related work as appropriate, and provide experimental results that support our ap-

proaches. Finally, Chapter 2 provides the background necessary for our thesis, while Chapter

7 draws conclusions and outlines possible future work. There, we also expand a bit on some of

the potential application domains for our research, which include multi-agent planning (e.g.,

logistics, supply chain planning, robotic teams’ formation and decision-making), e-commerce

(e.g., many forms of multilateral bargaining, supply chain formation), computational trust, grid

computing, ubiquitous computing, and so on.



Chapter 2

Background

Here we provide an overview of the basic concepts related to the problems we tackle throughout

this thesis, specifically background on single-agent and multiagent reinforcement learning, and

on non-cooperative and cooperative game theory. In the process, we draw the connections

among those fields, focusing on the concepts, problems and approaches that are of the most

relevance to our work.

2.1 Single-Agent Reinforcement Learning

Reinforcement learning is learning how to map situations to actions, so as to maximize a se-

quence of rewards. There exist two important features of reinforcement learning, distinguishing

it from other kinds of machine learning. The first one is that the learner has to discover which

actions yield the most reward through trial-and-error search. The second is delayed reward:

actions may affect not only the immediate reward, but also the next situation and, through that,

all subsequent rewards [SB98].

More specifically, an agent in a reinforcement learning system has in its disposal a finite1

set of actions, A, through which it interacts with the environment, that has a finite set of states

S. At each time step, the agent observes the environment’s state, and on that basis selects an

action; one time step later, in part as a consequence of its action, the agent receives a reward

and finds itself in a new state. The reward is provided by a (real-valued) reward function.

The reward function defines the goals of the reinforcement learning problem, by providing

the agent with reinforcement signals that depend on the current state or state-action pairs.

1In many cases in this article—for the sake of simplicity— we will be restricting attention to discrete time,
and finite number of actions, states or rewards; however, more general formulations are possible.

13
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The rewards determine the immediate desirability of states. However, the long-term goal of

an agent acting within a reinforcement learning system is to maximize the total amount of

accumulated reward, therefore delayed reward has to be considered along with instantaneous

reward [KLM96, SB98].

In order to achieve its goal, the agent has to follow a policy. The policy π of the agent is a

mapping from perceived states of the environment to actions to be taken when in those states.

More accurately, π is a mapping from each state s ∈ S and action a ∈ A to the probability

π(s, a) of taking action a when in state s. In order for the agent to determine its policy, it needs

to consider the value of each state. The value of a state is the total amount of reward an agent

can expect to accumulate over the future starting from that state, and is specified by a value

function. Values indicate the long-term desirability of states.

Some reinforcement learning systems have as an element a model of the environment, that

can be learned and used for predicting the next state and next reward, given the current state

and action. A model of the environment is not an essential part of a reinforcement learning

system; as a matter of fact, it is debated whether a model should or should not be learned and

used by RL algorithms. (We discuss this issue in 2.1.2.)

The current section will allow for a more detailed description of the reinforcement learning

concepts mentioned above.

2.1.1 Markov Decision Processes

A key assumption underlying much reinforcement learning research is that the interaction be-

tween an agent and the environment can be modeled as a Markov Decision Process (MDP)

[Bel57, How60, Put94, BDH99].

An MDP is a 4-tuple 〈S, A, pT , pR〉. S is a set of states, A is a set of actions, pT is a

transition model that captures the probability pT (s, a, t) of reaching state t after executing

action a at state s, and pR is a reward model that captures the probability pR(s, a, r) that we

receive reward r after executing a at s. From an RL point of view, an MDP can be viewed as

a complete specification of the reinforcement learning environment that satisfies the Markov

property [SB98].2

2The environment within which an RL agent operates is said to have the Markov property if its response at
t+ 1 depends only on the state and agent’s action at t, in which case the environment’s dynamics can be defined
by specifying only the probability distribution Pr{st+1 = s′, rt+1 = r|st, at} for all s′, r, st and at. If an
environment has the Markov property, then its one-step dynamics enable us to predict the next state and expected
next reward given the current state and action [KLM96, SB98].
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A history h is the sequence of states and actions generated from the beginning of system’s

evolution to some point of interest [BDH99]. The solution of an infinite-horizon MDP requires

that the agent’s performance be evaluated over an infinite history. Therefore, the discounted

infinite-horizon model of optimal behaviour [Bel57, How60] assumes that rewards received in

the future are geometrically discounted according to a discount factor γ (0 ≤ γ ≤ 1). The

expected reward that has to be optimized is then given by:

E(
∞∑

t=0

γtrt)

where rt is the reward at time step t. The agent’s aim is to maximize the expected discounted

total reward it receives. This requires computing an optimal value function V ∗ and a Q-function

Q∗. These functions satisfy the Bellman optimality equations (for all a and s)[Bel57, SB98]:

V ∗(s) = max
a∈A

Q∗(s, a) (2.1)

where

Q∗(s, a) = EpR(s,a,r)[r|s, a] + γ
∑

s′∈S

pT (s, a, s′)V ∗(s′) (2.2)

These equations say that the quality Q of a state-action pair is the immediate reward plus

the expected discounted value of all succeeding states weighted by their likelihood, and that

the value V of a state is the quality of the best action for that state.

The state-value function V ∗(s) is the unique solution of (2.1) and (2.2). Once one has

V ∗ it is easy to determine an optimal policy: any policy that is greedy3 with respect to V ∗ is

an optimal policy. In other words, once the optimal value function is known, the actions that

appear to be best (i.e., the actions at which the maximum of (2.1) is attained) after a one-step

search will be optimal actions. In the case the transition and reward models are given, dynamic

programming [Bel57] techniques can be used to determine the optimal policy:

The method of value iteration (Figure 2.1) starts with estimates Q and V of Q∗ and V ∗,

respectively, and updates them repeatedly by applying the previous equations to get new values

for Q and V [KLM96, SB98]. It has been shown that the estimated values for Q and V converge

to their true values [Ber87, Put94]. This in theory requires an infinite number of iterations, but

3A policy π is greedy with respect to a value function f if, for all states s, π(s) is an action satisfying
Qf (s, π(s)) = maxa∈AQ

f (s, a). A greedy policy selects an alternative based only on local or immediate con-
siderations, without considering the possibility that such a selection may prevent future access to even better
alternatives.
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initialize V(s) arbitrarily, e.g. V (s) = 0, for all s ∈ S
repeat //(until policy is good enough)
∆ := 0

For s ∈ S
{

u := V (s)
For a ∈ A
{

Q(s, a) = EpR(s,a,r)[r|s, a] + γ
∑

s′∈S pT (s, a, s′)V (s′)
}
V (s) := maxaQ(s, a)
∆ := max(∆, |υ − V (s)|)

}
until ∆ < ε (a small positive number)

output a policy π such that for each s
π(s) = argmaxaQ(s, a)

Figure 2.1: The value iteration algorithm

choose an arbitrary policy π′

repeat
π := π′

compute the value function of policy π:
solve the linear equations

Vπ(s) = EpR(s,π(s),r)[r|s, π(s)] + γ
∑

s′∈S pT (s, π(s), s′)Vπ(s
′)

improve the policy at each state:
π′(s) := argmaxaEpR(s,a,r)[r|s, a] + γ

∑
s′∈S pT (s, a, s′)Vπ(s

′)
until π = π′

Figure 2.2: The policy iteration algorithm

in practice the execution of the algorithm is stopped once an appropriate stopping criterion is

satisfied. Such a criterion could be that the value function changes by a small amount ε in a

sweep, such that ε = ε′(1 − γ)/2γ. It is proved that the resulting policy is ε′-optimal [WB93].

The value iteration algorithm guarantees that—in many cases—the greedy policy is optimal

long before the value function has converged [Ber87]. Moreover, the assignments to V can

occur asynchronously, provided that the value of each state gets updated infinitely often on an

infinite run, so that faster convergence is achieved.

Policy iteration (Figure 2.2), on the other hand, manipulates the policy directly rather than

finding it indirectly via the state-value function. The value function of a policy, Vπ, is the
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expected infinite discounted reward that will be gained, at each state, by the execution of that

policy. It can be computed by solving a set of linear equations. This constitutes the policy

evaluation step of the algorithm. Once the value of each state under the current policy is

known, a policy improvement step is tried by changing the first action taken when in a state. If

the value of the state can be improved, the new action is adopted by the policy; thus, the policy

is strictly improved. The algorithm iterates policy evaluation and improvement steps, until no

further improvements are possible. The policy is then guaranteed to be optimal [How60].

The computational complexity of the value iteration algorithm, per iteration, is linear in the

number of actions and quadratic in the number of states (O(|A||S|2). However, the number of

iterations required can grow exponentially in the discount factor, because, as the discount factor

approaches 1, the decisions must be based on results that happen further and further into the

future [LDK95]. In practice, policy iteration tends to converge in far fewer iterations than does

value iteration: its rate of convergence is quadratic, rather than linear as is the case for value

iteration [Put94]. However, its per iteration costs of O(|A||S|2 + |S|3) can be prohibitive.4

Dynamic programming techniques may not be practical for large problems because of the

curse of dimensionality [Bel57], the fact that the number of states often grows exponentially

with the number of state variables. However, there exist methods to avoid some of the compu-

tational difficulties that arise in large state spaces. Real-time dynamic programming [BBS95],

for example, a form of online asynchronous value iteration, has been proposed as a way of

approximately solving large MDPs.5 Another way to alleviate the computational burden of a

large state space is to use sampling methods [DeG70], which sample from the space of possible

histories and use this information to provide estimates of the values of specific policies.

More generally, learning in large state spaces can be addressed through the adoption of

generalization techniques, which allow compact storage of learned information and transfer of

knowledge between “similar” states and actions [KLM96]. Popular techniques include vari-

ous function approximation methods, such as neural network methods and generalizations of

nearest neighbours method. For instance, a function approximator such as a backpropagation

network can be used to take examples from a value function and attempt to generalize from

4Policy improvement can be performed in O(|A||S|2) steps and value determination by solving the system of
linear equations requiresO(|S|3) steps at most; in practice, however, the second cost is usually much less than its
forementioned theoretical worst case value [KLM96].

5An online RL algorithm is one that not only learns a value function but also simultaneously controls a real
environment. Asynchronous algorithms, unlike synchronous algorithms, do not place any constraints on the or-
der in which the state-update equation is applied to update the values of the states; however, the values of all
statesshould in the limit be updated infinitely often.
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them to construct an approximation of the entire function.

Finally, representational economy can be achieved by adopting factored representations of

states, actions, rewards and other components of an MDP [BDH99]. A state space is factored

if it is determined by a set of state variables, representing the features that are required in

order to describe the state. Instead of viewing the state as a single variable taking on a huge

number of values, it can be viewed as a cross product of its features, each one of them taking

on substantially fewer values. A factored action representation describes the effect of an action

on specific state features rather than on entire states.

We end this subsection by briefly introducing an extension to the MDP model: An MDP

assumes full observability of the current state; a Partially Observable Markov Decision Pro-

cess (POMDP) [Mon82, KLC98], on the other hand, is an MDP in which the agent is unable

to observe the current state, but is able to make (probabilistic) observations about it. (The

probability of making an observation depends on the action taken and the resulting state.) Any

given (discrete) POMDP induces an MDP whose states are belief states—or a belief-state MDP

[Ast65, SS73, Son78]. Belief states are probability distributions over the states of the world,

and they comprise a sufficient statistic for the past history (the process over belief states is

Markov) [Ast65, SS73, Son78]. The optimal solution of the belief-state MDP gives rise to

optimal behaviour for the original POMDP [Ast65, SS73, Son78]. There are many techniques

for the efficient solution of POMDPs, even in the case of large state spaces [KLC98, Pou05].

2.1.2 Reinforcement Learning

As mentioned above, it is a common assumption in RL research that the agent-environment

interaction can be modeled as an MDP. Learning by reinforcement is well-suited to situations

where there is significant uncertainty about some parameters of the MDP model: RL algorithms

try to maximize the agent’s expected reward when the transition model pT and sometimes the

reward model pR are initially unknown. So, in a nutshell, the reinforcement learning problem

can be defined as an agent’s attempt to maximize its long-term reward through trial-and-error,

while operating in an environment that is modeled as an MDP with unknown pT and, possibly,

unknown pR.

Maximization of long-term reward, either in a finite or infinite horizon, is the criterion to use

in order to assess the policies learned by a given algorithm. The quality of learning, however,

can be assessed by using measures such as whether the algorithm provably converges to optimal

behaviour or not, whether the algorithm converges fast to optimality or near-optimality, and
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whether the regret of the algorithm is large or not (i.e., what is the expected decrease in reward

gained due to executing the learning algorithm instead of behaving optimally from the very

beginning). Unfortunately, these learning performance metrics may be incompatible with each

other: for example, an algorithm may be provably always convergent but with a very slow

rate, or it can take long to achieve optimality but at the same time be very effective in terms of

accumulating reward along the way [KLM96].

A central debate in RL research is over whether learning and using the unknown transition

and reward models is important in order to control the actions of an agent [KLM96, SB98].

Model-based algorithms use a model of the environment to update the value function. In case

the model is not given a priori, then—as is common in the RL case—it has to be estimated:

real experience is used for improving the model (model learning). The current learned model

is then used to update the corresponding value (or Q-value) function and plan a policy that

optimizes a given criterion. Model-free (or direct reinforcement learning) algorithms do not

have access to the transition or the reward model; they just apply the state-update equation to

the state of the real environment, trying to directly learn the Q-function and policy.

Both model-based and model-free methods have advantages and disadvantages. A common

argument for the use of model-based algorithms is that by learning a model the agent can avoid

costly repetition of steps in the environment. The agent is able to use the model to reason about

the effects of its actions. Thus, the number of steps actually executed by the agent is reduced,

since simulated steps in the model can be used for learning or computing a value function. On

the other hand, model-free algorithms have the advantage of being simpler than their model-

based counterparts, and, in addition to that, they are not affected by biases in the design of

the model. In the following paragraphs we will present some well-known model-based and

model-free algorithms.

Model-Based Algorithms

Model-based algorithms need to make use of the transition probabilities and/or a reward model.

A conceptually straightforward model-based algorithm is the certainty equivalence method

[KLM96, SB98]. It is given its name because it assumes that the model is known with certainty,

even though in reality it is being approximated. The method tries to continually learn the model

by keeping statistics about the results of each action. The estimated transition probability from

state s to state s′ under action a might be, for example, the fraction of observed transitions that

from s to state s′, and the associated expected reward is the average of the rewards observed
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on those transitions. At each step, the current model is used to compute an optimal policy

and value function, employing, perhaps, some dynamic programming technique. Thus, even

though the use of data available is effective, the method is computationally demanding (since at

each step a complete computation of the optimal policy is required). In addition, the algorithm

does not explore the environment at all.6

Another well known model-based RL algorithm is prioritized sweeping [MA93]. Prior-

itized sweeping, being a model-based method, works by maintaining an estimated transition

model p̂T and a reward model p̂R. Whenever an experience tuple 〈s, a, t, r〉 is sampled, the

estimated model at state s can change; a Bellman backup is done at s to incorporate the re-

vised model and some number of additional backups are performed at selected states. States

are selected according to a priority that estimates the potential change in their values, based on

the size of the changes occured by earlier backups (the backups are focused on states that can

benefit from them the most). Prioritized sweeping has found several applications, such as in

learning by imitation [PB99].

Last but not least, Dearden et al.[DFA99] have presented a way to be Bayesian when em-

ploying model-based RL. We will describe this approach later in this dissertation.

Model-Free Algorithms

Unlike their model-based counterparts, model-free algorithms try to learn and produce an op-

timal policy without having to learn and use a model of the environment.

TD(0) [Sut88] is a model-free method that learns the value of a policy π by using the update

rule

Vπ(s) := Vπ(s) + α(r + γVπ(t) − Vπ(s))

Whenever a state s is visited, its estimated value is updated7 so that it approaches r + γVπ(t),

where r is the instantaneous reward received, 0 < α < 1 is the learning rate governing

to what extent the new sample is replacing the current estimate, and V (t) is the estimated

value of the observed next state t, after taking action a prescribed by π for s. The quantity

r + γVπ(t) is a sample of the real Vπ(s); it depends in part on the error-prone V (t) estimate,

but it also incorporates the real, error-free r. In this way, convergence can be achieved because

of per-update reduction of the largest error between true and estimated values of Vπ(s). If α

is slowly decreased and the policy π held fixed, TD(0) is guaranteed to converge to the value

6We will refer in detail to the question of exploration shortly.
7TD(0) updates are sample backups, because they are based on a single sample successor state.
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function Vπ [JJS94]. Then, in order to estimate the optimal policy, one can combine TD with

an “actor-critic” method [KLM96, SB98]. These essentially alternate policy evaluation stages

(which “criticize” a policy π using TD) with policy improvement steps (that try to improve π

by taking into account the “critique” provided to each state by the estimated value function

Vπ(s) and its corresponding error r + γVπ(t) − Vπ(s)).

TD(0) looks only one step ahead when adjusting the value estimates. Its multi-step version,

TD(λ) [Sut88], uses an update rule that is similar to the one used by TD(0):

Vπ(u) := Vπ(u) + α(r + γVπ(t) − Vπ(s))e(u)

The rule is not just applied to the immediately previous state, but to every state u, according

to its eligibility e(u), which shows the degree it has been visited in the past and is a function

of γ and λ, 0 ≤ λ ≤ 1. TD(λ) is a way of averaging the n-step backups. The one-step return

has weight 1 − λ, the two-step return has weight (1 − λ)λ, the three-step return has weight

(1 − λ)λ2 and so on. Thus, for λ = 0, TD(λ) becomes TD(0), while when λ = 1 it is roughly

equivalent to updating all the states according to the number of times they were visited by the

end of a run.

Q-learning [WD92] is an off-policy8 TD control method; it estimates the Q-values online9

using essentially TD(0), but at the same time it uses them to define a policy, because an action

can be chosen just by acting greedily with respect to the Q-values. An update is performed by

an agent whenever it receives a reward of r when making a transition from s to s′ after taking

action a. The update rule is

Q(s, a) := Q(s, a) + α(r + γmaxa′Q(s′, a′) − Q(s, a))

The probability with which this happens is precisely pT (s, a, s′), which is why it is possible

for an agent to carry out the appropriate update without using a transition model. The learned

Q-value function directly approximates Q∗, independently of the policy being followed, but, of

course, the policy followed has an effect on which state-action pairs are visited and updated.

In any case, if each action is tried infinitely often and α is decayed appropriately, the Q-values

8Off-policy algorithms may update estimated value functions on the basis of actions other than those actually
executed. In this way, off-policy algorithms can conceptually separate exploration from control; so, convergence
proofs are enabled independently of the exploration technique. On-policy methods, on the other hand, update
value functions just on the basis of experience gained from executing a policy [KLM96, SB98].

9Online algorithms face the exploration vs. exploitation tradeoff to be discussed shortly. Therefore, Q-learning
does face the exploration vs. exploitation tradeoff.
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will converge to Q∗ [WD92, JJS94].

At this point, it may be worth pointing out some analogies between TD(0) and TD(λ) to

policy iteration and Q-learning to value iteration. Interestingly, the update rules used by TD(0)

and TD(λ) methods refer to the value of states given a policy, as does the update rule used by

policy iteration; on the other hand, the update rule used by Q-learning updates a state-action

pair, while the backup is also maximizing over all those actions possible in the next state,

exactly as backups used by value iteration do [KLM96, SB98].

Finally, in departure from the methods mentioned above, Arai and Sycara propose in [AS00,

AS01] an RL method that does not attempt to satisfy the Bellman equations. Their approach

is closely related to the Profit-Sharing method [Gre88], that does not utilize successive ap-

proximations to compute state values. Rather, their method piles reward on successful (i.e.,

leading to goals) state-action pairs encountered within episodes of task execution in stochas-

tic domains. An internal episodic memory is used to successfully identify perceptual aliasing

states, discard looping behaviour, and thus form effective stochastic policies—and even resolve

potential conflicts in multiagent domains.

The Exploration vs. Exploitation Problem

One major characteristic of reinforcement learning is that the agent should explicitly explore

its environment in order to acquire knowledge about it. This is where the exploration vs.

exploitation problem [SB98, Thr92] arises: the agent has to choose between executing actions

that allow it to improve it estimate of the value function (exploration) and actions that return

high (anticipated) payoffs (exploitation). This is often a hard dilemma, since rewards cannot

really be maximized over time without exploring the environment, while exploration can waste

much time in exploring costly parts of the environment or losing the opportunity to act in more

rewarding regions. So, optimal combination of exploration and exploitation strongly depends

on the particular learning problem, as well as the particular learning technique employed.

Two categories of exploration techniques can be identified. Undirected exploration tech-

niques explore an environment based on randomness, while directed exploration utilizes some

exploration-specific knowledge for guiding exploration: actions are selected so that the ex-

pected knowledge gain is optimized.

The most basic undirected exploration technique, random exploration, always selects ac-

tions randomly, with uniform probability. On the other hand, the purest way to minimize

exploration is to adopt a greedy action-selection policy. Greedy agents always perform the
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action with the highest estimated value. ε-greedy methods adopt a greedy policy most of the

time, but once in a while, with a small probability ε select an action at random [SB98, Thr92].

The exploration policies that become more and more greedy over time are called decaying

exploration policies. The class of decaying exploration policies that demand that each action

is tried infinitely often in every state that is visited infinitely often, and that, in the limit, the

learned policy is greedy with probability 1, is labeled GLIE, i.e., “greedy in the limit with

infinite exploration”. An example of a GLIE technique is Boltzmann exploration: action a is

chosen at state s with probability

eQ(s,a)/T

∑
a′∈A eQ(s,a′)/T

where Q(s, a) is the agent’s estimate of the Q-value of performing a at s. The temperature

parameter T can be decreased over time so that the exploitation probability increases; this can

be done in such a way that convergence is assured [SJLS00].

Boltzmann exploration is an undirected exploration technique. Counter-based exploration,

on the contrary, is a directed exploration technique that tries to drive the agent to less explored

states of the environment. This, in the simplest way, is achieved by counting the occurrences

of each state and then using a rule that forces the agent to visit the least visited neighbouring

states of the current state [Thr92].

The interval estimation method [Kae93], proposed originally for bandit problems [BF85]

and generalized by [Wie99] to general MDPs, is a popular statistical algorithm that tries to

control the exploration-exploitation tradeoff. Confidence-interval estimates of each action’s

value are constructed. They serve to capture the uncertainty for each action and some infor-

mation about “how good” the action is—in other words, what the potential of it being the best

action in terms of expected reward is—based on statistics kept regarding the success of the

action. An action a is chosen according to a = argmaxa{Q(s, a) + U(s, a)}, where U(s, a)

is a (1 − δ) upper confidence interval on the point estimate Q(s, a). Intuitively, the more un-

certain a’s value is, the greater the probability that a will prove to be optimal. Naturally, the

method can be misled by particular configurations of the environment so that to suggest sub-

optimal actions; this is a “curse” associated with algorithms that simply define local measures

of uncertainty based on the theory of bandit problems.

Meauleau and Bourgine[MB99], on the other hand, propose the IEQL+ algorithm, which is

closely related to interval estimation but is less likely to fall prey to the aforementioned “curse”.

IEQL+ backs up Q-values and uses them to compute a local exploration bonus. However,
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unlike interval estimation, IEQL+ backs up an exploration bonus and combines the two to

compute the new exploration value of the action. Nevertheless, this is still in essence a heuristic

approach (even if a principled one) to resolving the exploration-exploitation tradeoff.

Bayesian Reinforcement Learning

In contrast, the Bayesian approach [SL73, DFR98, DFA99, Duf02, Pri03] is a principled, non-

problem-specific approach that provides an optimal solution to the action choice problem in

RL. The optimal solution to the RL action selection problem—or optimal learning—is the

pattern of behaviour that, in expectation, maximizes performance over the entire history of

interactions of an agent with the world. As mentioned earlier, a performance metric commonly

used in RL—and, actually, the main metric we will be using when evaluating the performance

of RL algorithms throughout this thesis—is discounted accumulated reward.

The Bayesian approach formulates the action selection problem as a belief-state MDP, rep-

resenting the agent’s beliefs as a prior density over (all) the possible dynamics’ and rewards’

models of the environment, allowing thus for the explicit representation of his uncertainty. The

solution to the belief-state MDP provides the optimal solution to the action selection prob-

lem (by choosing the policy that obtains maximum expected reward in the belief-state MDP),

without requiring the definition of an explicit exploration strategy (therefore, the Bayesian

action selection is also referred to as Bayesian exploration): the agents simply act greedily

with respect to the Bayesian Q-values. No other method outperforms the Bayesian method

in expectation, when using the same prior information [Bel61, Mar67]. However, there is no

guaranteed efficient way to compute the aforementioned solution [MGLA00, LGM01], and

thus approximation algorithms have to be devised.

Dearden et al.[DFR98, DFA99] were the first10 to explicitly define and utilize Bayesian

RL. [DFR98] provides a Bayesian approach to Q-learning: probability distributions over the

Q-values are maintained and propagated, in order to represent the uncertainty the agent has

about its estimate of the Q-value of each state. Actions to be performed are selected according

to local Q-value information, but the distributions are used so as to compute a myopic approx-

imation to the value of information for each action, and hence to select the action that balances

exploitation and exploration in the best possible way. To put it differently, this work uses the

concepts of the value of perfect information (VPI) and of the value of exploration estimates in

10However, there do exist earlier attempts for the Bayesian control of Markov chains and MDPs, such as
[CGZM65, SL73].
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order to boost the desirability of different actions. [DFA99] proposes a model-based Bayesian

RL approach. Under some reasonable assumptions, a posterior distribution over possible dy-

namics and reward models given past experience can be represented and updated in a tractable

fashion. The Bayesian model-based RL approach starts with some conjugate prior11 over all

possible MDPs, and progressively the mass of the posterior distribution is focused on those

MDPs in which the observed experience tuples are most probable. If parameter independence

is assumed, then the learning problem can be reformulated as a collection of unrelated local

learning problems, in each of which the estimation of a probability distribution over all states

and all rewards is required. Then, at each stage, the models are updated, and k MDPs are

sampled from the distributions to be solved for sample Q-values for each state-action pair. VPI

is again used to estimate the benefit of exploration. The main advantage of the Bayesian ap-

proach over existing model-based approaches which use simple estimation methods to learn

the environment and keep a point estimate of its dynamics, is that it does not ignore the agent’s

uncertainty about those dynamics.12 By representing a distribution over possible models, the

agent’s uncertainty can be quantified, which can in turn be used to inform it as to what are

the best actions to perform. We will provide more details on [DFA99] in Section 3.1, as it

provides the basis of our multiagent Bayesian RL approach (presented in Chapter 3). Bayesian

agents [DFR98, DFA99] have been experimentally shown to effectively balance exploration

with exploitation of actions.

More recently, [Duf02] has proposed several other computational procedures to sidestep

the intractability of solving the belief-state MDP representing the action selection problem. Fi-

nally, the Bayesian approach has also been used in learning by imitation[PB03], and it has been

combined with sparse sampling to improve action selection by intelligently growing sparse

lookahead trees [WLBS05].

2.2 Non-Cooperative Game Theory

In this section, we provide the reader with a small review of basic non-cooperative game theory

concepts. Non-cooperative game theory deals with the strategic interactions of players pursu-

ing their own individual interests in games. We also illustrate how specific learning models

11A conjugate prior is a family of prior probability distributions which has the property that the posterior
probability distribution also belongs to that family [DeG70].

12It is worth noting here that Wyatt [Wya01] has combined the Bayesian view of exploration with model-based
interval estimation, via the use of an “optimistic model selection” algorithm.
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Figure 2.3: The matrix representation of a two-player, two-action strategic form game.

can be utilized in the process of game-playing. (A learning model [FL98] is any model that

specifies the learning rules used by individual players, and examines their interaction when a

game is played repeatedly.13) We then proceed to define the multiagent reinforcement learning

(MARL) problem and present attempts to solve it within a principled game-theoretic frame-

work.

2.2.1 Strategic Games

One very simple way to represent a game is to use the strategic form. A strategic (or normal)

form game [FL98, Mye91] is a tuple 〈N, (Ai)i∈N , (ui)i∈N〉. N is a finite set of n players, Ai is

a finite set of actions available to player i, and ui is the real-valued utility (payoff) function for

player i.

More specifically, ui is defined as ui : Σ → <, Σ = Σ1 × ...×Σn, where Σ is the set of the

possible strategy profiles. The strategy profile σ is the combination of strategies σi ∈ Σi that

the players might choose. A player follows a pure strategy if he selects and executes a single

action from the set of actions available to him. A randomization by a player over his pure

strategies, according to a fixed probability distribution, is called a mixed strategy; a strategy

profile composed of mixed strategies is a mixed-strategy profile. The vector containing the

strategies of i’s opponents is denoted by σ−i.

Strategic form games with two or three players can usually be easily represented by one or

more matrices depicting the players, their possible actions, and their payoffs. This is why they

are also called “matrix” games. The matrix representation of a two-player, two-action normal

form game is shown in Figure 2.3.

Finally, strategic games with incomplete information, meaning that players enter the game

with private information, are called Bayesian games. The private information of the players

is captured by their type: a Bayesian game is a tuple 〈N, (Ai)i∈N , (Θi)i∈N , (pi)i∈N , (ui)i∈N〉,

13In other words, a learning model attempts to model the processes by which players change their behaviour
while playing a game.
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where N , Ai are as before (and let A = ×i∈NAi); Θi is a set of possible types for player i

(and let Θ = ×i∈NΘi; pi summarizes what i believes about the types of others: pi(θ−i|θi) is

the probability that i of type θi assigns to opponents’ profile θ−i ∈ Θ−i; and ui : A × Θ → <,

(ui(a|θ) is the payoff to i when the action profile is a and the type profile is θ—however,

frequently ui depends only on θi rather than θ as a whole).

2.2.2 Equilibria and Equilibrium Selection

An important concept in a game is the concept of Pareto optimality [FL98, Mye91]. A strategy

profile of a game is Pareto optimal (or Pareto efficient) if and only if there exists no other

strategy profile in the game that would have a higher payoff for some players without resulting

to a lesser payoff for any other players. Obviously, a Pareto optimal outcome is highly

desired. A different game solution concept, but indeed really important and much celebrated,

is the concept of Nash equilibrium.

A mixed-strategy profile σ of a game is a Nash equilibrium if and only if, for all i ∈ N and

for all σ̃i in the set of all possible randomized strategies for i,

ui(σ) ≥ ui(σ̃i, σ−i)

Equivalently, a mixed strategy profile of a game is a Nash equilibrium if and only if each player

plays a best response14 strategy to the other players’ choices of strategies [FL98, Mye91],

which means that no player can benefit by unilaterally deviating from the equilibrium. The

best response BRi(σ−i) of player i to his opponents’ strategies is the strategy that would

maximize his expected utility payoff, given the strategy profile vector of all players’ strategies:

BRi(σ−i) = argmaxσ̃i
ui(σ̃i, σ−i).

Every matrix game has a mixed-strategy Nash equilibrium [Nas51]. Mixed strategies have

to be assumed for proving the existence of a Nash equilibrium, since there exist matrix games

that have no equilibria in pure strategies.

In Bayesian games (see Section 2.2.1 above), players know only their own type (and have

priors over others’ types). Since other players’ types are unknown, in equilibrium each player

needs to form a best response against the expected strategy of each opponent, averaging over

the reactions of all possible types of an opponent—we can formally define Bayesian equilibria

14A best response strategy of a player to his opponents’ strategies is the strategy that would maximize his
expected utility payoff, given the strategy profile vector of all players’ strategies.
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Cooperate (do not confess)
Deviate (confess)

Cooperate (do not confess)
5, 5
6, 0

Deviate (confess)
0, 6
1, 1

Figure 2.4: The Prisoner’s Dilemma game. If the players follow the unique equilibrium strategy
profile prescribing confession, they get a payoff of 1 year of freedom (5 years imprisonment),
while if they cooperate they gain 5 years of freedom (only 1 year of imprisonment).

for these games, as follows: A randomized (mixed) strategy profile for a Bayesian game is

any strategy profile σ =
(
(σi(ai|θi))ai∈Ai

)
θi∈Θi,i∈N

in the set ×i∈N ×θi∈Θi
∆(Ai) (with ∆(Ai)

representing the set of all possible probability distributions over actions for player i) [Mye91].

In σ, the number σi(ai|θi) is the probability that player i would use action ai if he was of type

θi, and the randomized strategy for type θi of player i is σi(·|θi) = (σi(ai|θi))ai∈Ai
[Mye91].

Then, a Bayesian (or Bayes-Nash) equilibrium of the Bayesian game is any σ such that, ∀i ∈ N

and ∀θi ∈ Θi,

σi(·|θi) ∈ argmaxτi∈∆(Ai)

∑

θ−i∈Θ−i

pi(θ−i|θi)
∑

a∈A

( ∏

j∈N−i

σj(aj|θj)

)
τi(ai)u

i(a, θ)

In words, this means that player i adopts (for each one of his possible types) the mixed strat-

egy that is most rewarding, given his expectation regarding the types of opponents and their

corresponding adopted mixed strategies.

The importance of the Nash equilibrium lies in the fact that, if the predicted behaviour of all

the players in a game does not satisfy a Nash equilibrium, then there must be at least one player

whose expected utility could be improved just by re-educating him to simply pursue his own

best interests, without any other social change. So, a Nash equilibrium is an outcome that does

not violate the assumption of rational individual behaviour. However, there exist situations

where the pursuit of the individual best interest in a game, i.e., playing a Nash equilibrium,

may lead to outcomes that are bad for all the players. A very well-known example of this is

the Prisoner’s Dilemma game (Figure 2.4). Moreover, the presence of multiple equilibria in a

game gives rise to the equilibrium selection problem: if players choose strategies that belong to

different Nash equilibria, the resulting strategy profile is not a Nash equilibrium [Mye91]; and,

further, it would be preferable that the most efficient equilibrium for all players be played, and

thus the issue of coordinating the players’ actions so that they play this “better” equilibrium

arises.
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2.2.3 Repeated and Stochastic Games

A repeated game is a game made up from iterations of a single strategic form game. The

strategy space of such a game is much richer than that of the single strategic form game. This

is because a strategy for a player in a repeated game is a rule for determining his move in

every round as a function of the history of moves that have been used at every preceding round

[Mye91]. So, each player is able to choose a different stage-game strategy to play in each

repetition, since he has access to state information about the number of the current iteration,

and also about the other players’ previous choices of stage-game strategies. However, in each

iteration of the normal form game, players cannot know the actions chosen by other players in

that iteration.

A repeated game may be either finitely repeated or infinitely repeated. In the first case, the

players’ payoffs are calculated at the end of the game, and each player may choose his optimal

strategy by backward induction. In the case of infinite repetition, discounting of future payoffs

is often15 used: the value of a strategy after each choice of action in a particular game iteration

is defined as the the payoff of that game iteration plus the sum of the payoffs of all future

games, suitably discounted. In infinitely repeated games, players usually adopt strategies that

are strongly dependent on the past behaviour of their opponents.16

Note that a repeated game deals only with one single state, since the same game setting

is repeated in each iteration. Repeated games with multiple states are called stochastic games

[Sha53]. A stochastic game is a tuple 〈S, N, A1, ..., An, pT , r1, ..., rn〉. S is a finite set of states,

N is a finite set of n players, Ai is a finite set of actions available to player i, pT (s, α, t) is a

transition model that captures the probability of reaching state t after executing the joint action

α at state s and ri(s, α) is the real-valued payoff function for player i. A joint action is a vector

of individual players’ actions. Two-player stochastic games where r1(s, α) = −r2(s, α) for all

s and α are called zero-sum games, while when the sum of the payoffs is not restricted to 0 or

any other constant the game is called general-sum. Figure 2.5 depicts a single-state zero-sum

and a single-state general-sum game.

A strategy πi = (π0
i , ..., π

t
i , ...) for a player i in a stochastic game is defined over the whole

15An average reward optimality criterion is sometimes used as well.
16Consider for example the well known tit-for-tat or Grim trigger strategies and their application to the repeated

Prisoner’s Dilemma game [Mye91]. A player following the tit-for-tat strategy would choose to cooperate with his
opponent, until his opponent deviates, in which case he would deviate as well in the next repetition and as long as
his opponent deviates, but would be “forgetful” as soon as his opponent started being cooperative again. A player
following the Grim trigger strategy would be cooperative as long as his opponent is cooperative, but in the case
his opponent deviates once, he would “punish” him by “confessing” forever.
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Rock
Paper

Scissors

Rock
0, 0

1,−1
−1, 1

Paper
−1, 1
0, 0

1,−1

Scissors
1,−1
−1, 1
0, 0

Right
Down

Left
25, 0
30, 0

Right
0, 0

10, 20

Down
0,−10
10,−20

Up
100, 100
−10, 20

Figure 2.5: Two repeated games: The Rock-Paper-Scissors zero-sum game, where, for each
joint action, the column player receives the negative payoff of the row player; and a general-
sum game, where the sum of the players’ payoffs per action is not zero.

course of the game. πt
i is called the decision rule at time t. A decision rule tells the player

what action to play in each state of the game, should the state be reached. In stochastic games,

a strategy is often called a policy. Assuming (as we implicitly did when defining the decision

rules above) that a policy relies on no history information, the policy is Markovian. If π t
i is fixed

over time then πi is a stationary policy. A set of strategies for all n players, π = π1× ...×πn, is

called a strategy vector. The vector of strategies for all players except player i is denoted by π−i.

The objective of each player in a stochastic game is to maximize a discounted sum of rewards.

It should be noted that there do exist equilibria solutions for stochastic games. However, this

is a non-trivial result, proven by [Sha53] for zero-sum games and [FV97a] for general-sum

games. Furthermore, the value of the Nash equilibria in a zero-sum game is always unique.

Given the analogies between the MDPs and stochastic games definitions, stochastic games

constitute a game theoretic framework that extends simple strategic games to MDP-like envi-

ronments. We will return to this issue shortly.

2.2.4 Learning in Games

Learning in games involves the modeling of the processes by which players change, in the

course of time, the strategies they are using to play a game. A starting point for this could be

to imagine some players playing a game repeatedly and trying to learn to anticipate the play

of others by observation of past play. However, a difficulty that is inherent to the problem is

that players should consider that their own current play might influence the future play of their

opponents. For example, the repetition of an action over and over again can lead to the eventual

adoption of a best response to that action by an opponent (a fact which under different game

settings might well be beneficial or damaging to the first player). In any case, this process in

which—possibly up to an extent—sophisticated and rational players of a game try to learn and

play optimally over time can provide one explanation of equilibrium; an equilibrium can be

considered to be the long-run result of this process [FL98].
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Fictitious Play

One well-known and quite simple learning model for repeated games is fictitious play [Bro51].

According to fictitious play, the players observe the results of their (own) past encounters and

then play a best response to the historical frequency of play.

In more detail, the simplest form of fictitious play requires that each player i keeps a count

Cj
aj , for each opponent j and aj ∈ Aj, of the number of times agent j has used the action aj in

the past. For each opponent j, i assumes j plays action aj with probability

Pri
aj =

Cj
aj∑

ãj∈Aj
Cj

ãj

Player i updates the counts —which reflect his beliefs regarding opponents’ play— appropri-

ately, and, at each iteration, he plays a best response to this empirical mixed-strategy profile.

One way to interpret fictitious play is to note that it corresponds to Bayesian inference

when player i believes that the play of each one of his opponents corresponds to a sequence

of i.i.d. multinomial random variables with a fixed but unknown distribution, and player i’s

prior beliefs over that unknown distribution take the form of a Dirichlet [FL98]. Weights are

assigned to initial fictitious play beliefs, in order to represent preference to some strategies; this

is analogous to setting the “prior counts” of the outcomes of a Dirichlet distribution.

One problem that is exhibited by the fictitious play model is its inherent discontinuity: a

small change in the data can lead to an abrupt change in behaviour. This is a reason that

triggered the development of stochastic variations of the traditional (deterministic) process of

fictitious play; those variations enable the players to randomize when they are nearly indifferent

[FL98]. Smooth fictitious play is a stochastic variation on fictitious play in which players

use a smooth approximation to the best response, a best response distribution BR, instead of

the best response itself. It has been proved that smooth fictitious play converges to profiles

that approach Nash equilibria in all games where those profiles are global attractors for the

continuous-time smooth fictitious play process (i.e., the sequence of near-best responses to

the empirical mixed-strategy profile) [FL98]. It’s worth mentioning that there is a variation

on (smooth) fictitious play, the “stimulus-response” model, that ignores information about the

opponent and uses only own payoff information. This variation constitutes a reinforcement

learning method.

Identical interest games form a special category of stochastic games in which the players’

payoff functions are identical. Identical interest games exhibit the particularly interesting ficti-
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A
B

A
2
0

B
0
1

Figure 2.6: A simple fully cooperative game. It holds u1(σ) = u2(σ), ∀σ. A game with a
reward structure such as this one is commonly referred to as a “coordination” game.

tious play property; that is, every fictitious play process (i.e., every sequence of best responses

to the empirical mixed-strategy profile) within a game with identical interests converges in

beliefs to equilibrium [MS96]. A process converges in beliefs to equilibrium if, ∀ε > 0, the

sequence of beliefs (regarded as mixed strategies), is within distance ε from the set of equilib-

ria after a sufficient number of iterations. A mixed strategy profile σε ∈ Σ is in ε-equilibrium

if ∀i ∈ N , ui(σε) ≥ ui(σ̃i, σ−i
ε ) − ε, ∀σ̃i ∈ Σi. Randomization over best responses or ε-

best responses may be employed as a tie-breaking rule in order to ensure the convergence of a

fictitious play process [Bou96a].

Identical interest games are also known as fully cooperative games (or “common value

games”, or “coordination games”). As all repeated games, a repeated fully cooperative game

can be viewed as a degenerate case of a stochastic game having only one state. Since the game

is fully cooperative, each player’s reward is drawn from the same distribution reflecting the

utility assessment of all players, and thus only one matrix is needed, listing only one utility in

each cell (Figure 2.6).

Fully cooperative games have been broadly used in learning research dealing with agent

cooperation. We will review several relevant approaches in subsection 2.2.5.

Rational Learning and Convergence to Equilibrium

Rational players are those who try to maximize their expected gains, using their beliefs about

future behaviour of their opponents. To be able to predict the future behaviour of the opponents

means to be able to give a nearly accurate forecast of the probability with which the opponents

will take various actions. Can rational players really learn to play a repeated game? Can they

achieve optimality in their play, and therefore end up in a Nash equilibrium? The answers to

these questions are seemingly contradictory.

We have already seen that fictitious play in games of identical interest leads to Nash equilib-

rium [MS96]. Furthermore, Kalai and Lehrer show in [KL93] that if the prior beliefs of each

player contain a “grain of truth”, that is, they put positive probability on the actual repeated
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game strategies of the opponent, then, by using Bayesian updating of these beliefs, players

learn to predict with probability 1. Therefore, if the players choose at all times their best re-

sponses to their beliefs, they must eventually play according to a Nash equilibrium. There

could be interpretations of this result that would lead one to believe that it is valid to claim that

Nash equilibrium behaviour is a necessary long-run consequence of optimization by cautious

players. As Nachbar points out in [Nac97] and [Nac01], however, this is not the case, since

the “grain of truth” condition may be very difficult to satisfy in practice. He shows that in

games with Bayesian players it is difficult to identify any plausible family of beliefs such that

the players’ best response strategies are in support of their beliefs.

In addition to that, Foster and Young [FY01] argue about the impossibility of predicting the

behaviour of rational agents. They prove that rationality and prediction are incompatible and

they do that without placing any restrictions on the players’ prior beliefs, their learning rules, or

the degree to which they are forward-looking. They show that there are very simple games of

incomplete information in which the players never come close to playing a Nash equilibrium.

The reason is that trying to predict the next-period behaviour of an opponent, a rational agent

must take an action this period that the opponent can observe, which may cause him to alter his

next period behaviour, thus invalidating the first agent’s prediction. So, in order for the players

to be good predictors, at least one must be intending to play a mixed strategy, and the other

one must be able to predict this. If the players are myopic, they cannot learn mixed equilibria

in the first place, no matter what their beliefs are. However, the incompatibility result between

prediction and rationality is proved for the more general case of forward-looking players. There

exist games at which the predicted probability of some action next period differs substantially

from the actual probability with which the action is going to occur. Nevertheless, an observer

may conclude that the system is being led to an equilibrium.

So, the results presented in the previously mentioned papers don’t really contradict each

other. The prediction by the players is what is problematic. To an observer, though, the average

behaviour of the players may exhibit empirical regularities; the players’ average behaviour may

mimic Nash equilibrium from the observer’s standpoint. However, this does not imply that

individual players ever play Nash equilibrium strategies or learn to predict [FY01].

Finally, it is worth mentioning here that there exists a class of no-regret learning algorithms

(e.g. [FV97b, GJ03]) that can be shown to converge in repeated games—not to Nash, but to

related equilibrium notions, such as the correlated equilibrium (CE) solution concept. Unlike

Nash, CE assumes dependencies among the agents’ probabilistic strategies: a CE is a prob-

ability distribution over the joint space of actions, with the agents optimizing with respect to



CHAPTER 2. BACKGROUND 34

one another’s probabilities of actions, conditioned on their own [Mye91, GH03].17 A no-regret

learning algorithm generates non-deterministic actions for an agent, such that, over time, the

strategies generated by the algorithm outperform any other fixed strategy, in terms of average

cumulative payoff—thus, the agents experience no regret for following the algorithm’s recom-

mendations.

Convergence of gradient dynamics for general-sum repeated matrix games: A common

class of algorithms within machine learning is the one which contains algorithms that pro-

ceed by gradient ascent or descent on some appropriate objective function. Gradient ascent in

expected payoff can be used by players in order for them to adapt their behaviour while partici-

pating in a repeated game. Regretably, the game theory literature does not make any assertions

about the convergence of strategies computed by gradient ascent.

However, Singh, Kearns and Mansour [SKM00] examined a simple gradient ascent method

(“Infinitesimal Gradient Ascent”—IGA) and were able to exhibit some convergence results.

According to their method, which assumes a full information game, a player adjusts his strategy

after each game iteration (i.e., modifies the probability with which each action is played) in the

direction of the current gradient of his expected payoff, with some step size; in this way, the

strategy is adjusted so that the expected payoff is increased. The main finding of the IGA

analysis is the proof that, if both players in such a game follow IGA, then their strategies will

converge to a Nash equilibrium or the average payoffs over time will converge in the limit to the

expected payoffs of a Nash equilibrium. However, at any moment in time the expected payoff

of a player could be arbitrarily poor. This may make it difficult to evaluate the learner, and

could also be problematic when applied with temporal differencing for multiple state games,

which assumes that past expected payoffs predict future ones.

Following [SKM00], Bowling and Veloso [BV01a] improved the IGA approach so as to

satisfy a stronger notion of convergence to Nash equilibrium. Instead of considering the step

size taken to the direction of the gradient as constant, [BV01a] introduces a variable learning

rate for gradient ascent, and uses the “Win or Learn Fast” (WoLF) principle in order to regulate

the learning rate: the learning rate is modified so that the agent will learn cautiously when

winning and quickly when losing. It is proved that when players are following the “WoLF-

IGA” approach, both strategies and expected payoffs converge to Nash equilibrium (for 2-

17The CE solution concept implies that there exist communication possibilities between the agents and a “me-
diator” that “recommends” strategies to the agents, drawn by a distribution that is common knowledge [Mye91].
Because the set of CEs is a convex polytope, CE can be computed easily via linear programming.
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player, 2-action, full-information iterated general-sum games).

2.2.5 Reinforcement Learning in Games

The previous subsection shows the strong bonds between game theory and learning, and shows

that game theory can be combined with learning in a multiagent environment. We have so

far focused on strategy learning. Now we describe the bonds between game theory and rein-

forcement learning, focusing on the multiagent reinforcement learning (MARL) problem from

a stochastic games perspective. As a result, the immediate goal here will not be strategy learn-

ing per se, but rather the maximization of the agents’ long term discounted rewards. We will

define the MARL problem, making explicit reference to approaches that attempt to solve it

under a principled game-theoretic framework. However, some non-game theoretic approaches

to MARL will be presented here as well.

Multiagent Reinforcement Learning

The obvious way to think about the multiagent reinforcement learning problem is to consider

it as the extension of the reinforcement learning problem. Under this perspective, a “naive”

definition of the MARL problem could be the following: “Multiple agents exist in a common

environment and try to achieve their long-term utility maximization goals while learning by

using RL techniques”. After all, RL seems to be well suited for multiagent systems where

agents know little about other agents. Simply applying single-agent RL algorithms in multia-

gent environments may seem an effective way to provide an “answer” to the MARL problem.

However, the approach just mentioned constitutes rather only one aspect of the MARL

problem, and of the attempt to “solve” it. If this approach is considered in isolation, one

runs the danger of treating other agents of the system as part of the environment, ignoring the

difference between responsive rational agents and passive environment. A second aspect of the

multiagent reinforcement learning problem therefore emerges. It’s the aspect that tries to deal

with the question: Does (and: “In which way? To what extent?”) the co-existence of multiple

agents within a setting affect their learning capabilities?

In the following subsections we will present attempted “solutions” to the MARL problem

dealing with both of these aspects. We should, however, state in advance that it is apparent

to us that in a multiagent world an agent has to learn how to align its action choices with

those of other agents, because the effects of one’s actions are directly influenced by the actions

of others. This could be achieved by game theoretic techniques within a stochastic games
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framework; within this framework, the MARL problem can be more accurately defined. In

game-theoretic terms, then, the definition of the MARL problem is as follows:

Definition 1. The multiagent reinforcement learning (MARL) problem is the problem of multi-

ple agents trying to maximize their expected discounted total reward, while co-existing within

a stochastic game environment whose underlying transition and reward models are unknown.

Reinforcement Learning in Stochastic Games

A description of the stochastic game framework was provided in 2.2.3. Here we will be dealing

with RL in stochastic games. The goal of each agent is to learn a Markovian and stationary18

though possibly stochastic strategy, that maps states to a probability distribution over the pos-

sible actions, such that the agent’s discounted future reward will be maximized.

To expand a bit on the MARL problem definition, a multiagent world can be viewed as a

game with multiple players. Each state in a stochastic game can be viewed as a matrix game

with the payoffs for each joint action determined by the reinforcement given to each agent at

this state for this joint action. After playing in the current state’s matrix game and receiving

the payoffs, the agents are transitioned to another state according to a distribution dictated by

their joint action. As was mentioned before, there exist Nash equilibria solutions for stochastic

games. It’s quite valid, therefore, to expect that the long-term solution for the agents’ reward

maximization problem may coincide with learning to playing such an equilibrium, given that

a Nash equilibrium is a self-enforcing solution concept that endorses “rational” individual be-

haviour. However, sub-optimal results (in terms of utility maximization) are quite possible in

a multiagent world. This is because of the equilibrium selection problem, and the uncertainty

regarding the strategies of the opponents that results to a multiagent extension of the classical

exploration vs. exploitation problem: should an agent explore in order to gather more infor-

mation about the strategies of its opponents, or should it just exploit its current knowledge

regarding those strategies?

In a nutshell, we can make two observations that place multiagent reinforcement learning

in this perspective:

Observation 1. Stochastic games are an extension of MDPs to multiple agents, and an ex-

tension of matrix games to multiple states. Stochastic games essentially are n-agent MDPs.

18The strategy is considered to be stationary and Markovian for simplicity purposes. This is the assumption
commonly used in current literature.
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Therefore, the solution to the multiagent reinforcement learning problem can be sought within

the stochastic games framework.

and

Observation 2. A multiagent reinforcement learning method should explicitly take other agents

into account.

Single-agent RL methods used in a multiagent world—no matter how effective they may

be under specific domains—lack the potential of exhibiting optimal behaviour in terms of the

declared goal of maximizing discounted reward, since they basically ignore the interactions

between the various agents and reason about them only implicitly: modeling all other agents

as part of the environment has the drawback that the agent cannot capture the fact that in most

situations the behaviour of others is influenced by his own presence. Placing the problem

under a game theoretic framework, on the other hand, enables one to explicitly monitor other

agents and reason about their expected future behaviour which is certain to have an impact

on the outcomes of agent interactions. Results presented in several of the papers we review

here suggest the validity of the second observation above (e.g., [Lit94, BV01b, DFR98, Lit01,

LR00]).

A Brief Review of Approaches to the Problem In a paper that was the first to introduce

stochastic (a.k.a. “Markov”) games as a framework for MARL, Littman [Lit94] describes a

Q-learning-like algorithm for finding optimal policies in 2-player zero-sum stochastic games.

The algorithm is called minimax-Q; essentially, Q-learning is used by each player, with the

basic difference that the value function is evaluated using a “minimax” approach. When using

the minimax approach, a player uses a strategy designed to maximize his minimum payoff (i.e.,

the payoff he would receive should the opponent do his best to minimize it; minimax is a rather

conservative approach).19 The notion of the traditional Q-function is extended to maintain the

value of joint actions, and linear programming is used to find the equilibrium of the games.

The approach is well-suited to zero-sum games, given that in those games one agent’s gain is

the other agent’s loss (thus, the interests of the agents are strictly opposite). Not surprisingly, in

Littman’s experiments minimax-Q learners did better than agents using standard single-agent

Q-learning. A criticism [BV01b] that can be applied to minimax-Q is that it is not “rational”,

19Actually, the minimax approach was well-studied within the framework of learning automata, long before
[Lit94]. Learning automata are simple low memory machines for solving a selectional (reinforcement) learning
problem known as the n-armed bandit [BF85].
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in the sense that it will always learn and play the (unique) equilibrium, independently of the

opponent’s policy; even when, for example, the opponent is “irrational”, the minimax-Q player

will still be conservative.

Hu and Wellman [HW99, HW98] extended Littman’s work, by dealing with the MARL

problem within a general-sum (rather than zero-sum) stochastic games framework. They de-

sign a multiagent Q-learning method (“Nash-Q”) under this framework and prove convergence

to Nash equilibrium under specific conditions, the most restrictive of which limits the structure

of the intermediate bimatrix games encountered during learning. A quadratic programming

solution is used to find the equilibrium of the games, with each agent trying to learn the Q-

values corresponding to playing a mixed Nash equilibrium strategy. Of course, in order for

the equilibrium to be derived, each agent needs to maintain Q-value tables for all the other

agents. Not only does this induce a computational burden, it also requires that each agent

can observe the other agents’ immediate rewards, which is a rather unrealistic assumption in a

general-sum game. The algorithm does find an optimal strategy whenever there exists a unique

Nash equilibrium in the game; however, to prove convergence to the equilibrium they assume

that a one-stage game with multiple equilibria is never encountered during learning — a re-

striction not satisfied by any non-zero-sum or non-fully cooperative games. When more than

one Nash equilibria exist, the algorithm is not guaranteed to converge, and cannot be useful

by itself; it should be combined with techniques that help overcome the equilibrium selection

problem. Finally, the same criticism of “irrationality” [BV01b] that was applied to Minimax-Q

also applies to the Nash-Q. In any case, this work did contribute to establishing the theoretical

foundations for applying RL to multiagent systems from a game theoretic perspective.

Another multiagent RL algorithm that attacks general-sum games is the “Friend-or-Foe Q-

learning” (FFQ) algorithm [Lit01]. In FFQ, the learner is given the additional information of

which of two kinds of opponents to expect: friends (opponents whose actions will help both

agents to maximize their possible rewards) or foes (opponents whose actions are such that

only an adversarial equilibrium may be reached, an equilibrium, that is, in which no player is

hurt by any change of the other players behaviour).20 In 2-player games, if the opponent is

considered a friend, ordinary Q-learning in the combined action space of the agents is used;

otherwise, a minimax-Q approach is adopted. In the latter case, the agent is guaranteed to

achieve its learned value independent of the opponents’ action choices. In n-player games,

the formulation of the Q-value learning algorithm is a minimax-Q formulation — the agents

20In the general case, the algorithm is actually mixing friends and foes.
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who are agent i’s friends are assumed to work together to maximize i’s value, while its foes

are collectively trying to minimize that value. Only one Q-function needs to be maintained by

each agent, unlike Hu and Wellman’s approach. FFQ is guaranteed to converge, but the values

learned by it do not necessarily correspond to those of a Nash equilibrium policy, unless the

game is fully cooperative or zero-sum. Another issue is that the agents have to be told whether

they are facing friends or foes. Furthermore, Friend-Q is in many cases incapable of achieving

the highest possible learned value in the presence of multiple equilibria.

Greenwald and Hall’s “Correlated-Q Learning” (CE-Q) [GH03] is a multiagent RL al-

gorithm that is based on the correlated equilibrium (CE) solution concept discussed earlier.

The set of CE contains the set of Nash equilibria, and thus CE-Q—which requires that the

agents play strategies that belong to some calculated CE equilibrium—generalizes both FFQ

and Nash-Q. Even though CE-Q learning is shown to empirically converge to CE equilibria

(in experiments with 2-agent games), no proof for its convergence has been provided—in the

presence of multiple equilibria, it too suffers from the equilibrium selection problem.

Bowling and Veloso [BV01b] introduce two desirable properties for a multiagent learning

algorithm: rationality, i.e., convergence to best-response policy for stationary policies; and

convergence, i.e., convergence to stationary policies. An RL algorithm is presented, “WoLF-

Policy Hill-Climbing” (WoLF-PHC), which has both properties in a variety of games; it is

rational and it is empirically shown to converge to mixed policy equilibria. WoLF-PHC works

by applying a variable learning rate and the “Win or Learn Fast principle” [BV01a] to another

algorithm introduced in [BV01b] which is named “Policy Hill Climbing” (PHC) and performs

hill-climbing in the space of mixed policies. PHC is essentially a Q-learning algorithm that

maintains the current mixed policy; it is rational and can play mixed policies, but does not con-

verge. WoLF-PHC is considered to be a state-of-the-art MARL algorithm, shown to perform

well in a variety of experimental domains; however, no theoretical guarantees of convergence

yet exist.

In one of the rare contributions to MARL research deriving from the game theory commu-

nity, Jehiel and Samet [JS01] address the problem of learning to play games “by valuation”.

The notion of valuation (i.e., the assignment of numeric values to different moves in the game)

is used to reflect the desirability of the moves to the players. This is another way, of course,

to talk about the quality of a state-action pair. A multiagent value iteration-like approach is

presented, but the setting is drawn with the use of game-theoretic terminology. An important

contribution of the paper is the provision of convergence results for the RL process presented.

Jehiel and Samet show that a player who has a winning strategy in a win-lose game (i.e. a game
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with only two payoffs—a winning and a losing one) can be guaranteed a win in the repeated

game that embeds iterations of the win-lose game, by updating the value of each state so that it

coincides with the payoff obtained in this round and by simply following a greedy exploration

strategy.21 When a player has more than two payoffs, they present a learning procedure that

associates with each state the average payoff in the rounds in which this node was reached, and

uses an ε-greedy exploration policy. This approach of exploiting past experience is reminiscent

of the “stimulus-response” variation of the smooth fictitious play, since it does not use informa-

tion on the opponent, just own payoff information. They proceed to show that, when all players

adopt this procedure, with some perturbations, then, strategies that are close to subgame per-

fect equilibrium22 are played after some time, with probability 1. However, a single player who

adopts this procedure can guarantee only his individually rational (i.e., his “maxmin”) payoff,

which is what he can be guaranteed even if all other players are disregarded. In addition, since

the method treats separately the valuation for every state, it becomes unrealistic for large state

spaces because then the chance of meeting a given node several times is too small.

Finally, Huang and Sycara present in [HS03] two RL algorithms for multiagent learning in

extensive form games with complete information and a unique subgame perfect equilibrium,

one of which—the “Multiagent Q-Learning” method—is somewhat related to the approach of

Jehiel and Samet. The second of their methods, “Multiagent Learning Automata”, uses the

reward obtained at the end of a game episode to reinforce the strategy (by properly updating its

probability of being chosen) followed at a node of the game—instead of reinforcing the values

of node-action pairs. Both of these algorithms are proved to converge to the subgame perfect

equilibrium of the game.

We have seen that MARL algorithms usually set the goal for the agents to find their policy

in the game’s equilibrium solution. One problem with this is that providing theoretic proofs

for convergence to equilibrium is non-trivial [BV00]. More importantly, however, as has been

accutely pointed out by some authors (e.g., [Bou96a, Bou99, SPG04]), convergence to an equi-

librium is valuable if and only if it serves the goal of maximizing payoff. Things get really

difficult when it comes to dealing (as is often the case) with multiple equilibria. Closed-form

solutions, even though they seem to be providing the assertion of opponent-independent algo-

rithms, do not suit a problem with multiple equilibria. This is because the Observation 2 above

holds: the optimal policy of one agent depends on the policies of the opponents. In fact, equi-

21However, this is not equivalent to saying that the player’s strategy is what guarantees him the victory [JS01].
22A subgame perfect equilibrium of an extensive form game is a strategy vector in which every player’s action

is optimal for this player in every subgame of the game [Mye91].
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librium selection affects the policy and the value of the state, while the value of the state affects

equilibria of the states that transition into it. The number of equilibrium solutions in stochastic

games can grow exponentially with the number of states, and thus equilibrium selection after

learning is not feasible.

A possible remedy to those problems is to observe the others and adapt to their behaviour.

This could be achieved by smooth fictitious play and other opponent-modeling or opponent-

dependent methods, such as a method that utilizes joint action learners (JALs) [CB98], i.e.,

agents that learn values for joint actions, as opposed to individual actions. We will return to

those issues and to JALs shortly.

Cooperative and Coordinating Agents and Reinforcement Learning

There are cases when agents occupying a system need to cooperate and coordinate in order

to achieve their goals. General problems involving the interaction of agents with identical

interests that have to cooperate in order to achieve a common goal naturally arise, for example,

in task distribution. It is easy to imagine a fully cooperative set of agents representing a user

— and sharing, therefore, the user’s utility function — which have to collectively act to the

common desired end. It is not surprising, thus, that the application of learning to the problem

of coordination in multiagent systems has become popular in both AI and game theory.

There exist basically three ways to achieve coordination in a multiagent setting. One ob-

vious way is using communication among the agents (e.g., [Tan93, YS93, JG00]). Sycara et

al. [SZ96, SDP+96] have developed the RETSINA (Reusable Environment for Task Structured

Intelligent Network Agents) framework, an open multiagent system supporting communities

of heterogeneous agents, which provides many challenges and opportunities for agent collab-

oration and coordination. The framework is distributed, with agents entering and leaving the

system dynamically. The agents are frequently in need to decide how to collaborate with others

in order to decompose and execute tasks, based on their capabilities. This is achieved through

inter-agent communication, facilitated by the architecture of the RETSINA system, which al-

lows the agents to take up different roles (in order to interact with users, gather and pass around

information, or execute tasks).

A second way to coordinate is through the introduction of “social conventions” or rules.

This is natural, since the multiagent coordination procedure is a highly “social” one: the needs

of others in the environment cannot simply be ignored. Thus, there exists a corpus of work

which tries to address questions that focus exactly on this “social” aspect of multiagent coordi-
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nation. Related approaches, which make use of social rules—or, more generally, use the social

environment to facilitate coordination, and also investigate the benefits of “social behaviour”—

include [ST92, WW95, Mat94a, Mat94b, Bal97].

In this thesis we are mostly interested in approaches that achieve coordination through the

use of learning. In [SSH94], for example, there is no use of information sharing; instead,

reinforcement learning techniques are employed so that eventual coordination is achieved.

The agents use standard Q-learning, and demonstrate an ability to coordinate while acquir-

ing complementary problem-solving knowledge (i.e., they learned to perform policies that

were complementary—they could be combined effectively in order to achieve the agents’

goal). Avoidance of information sharing is certainly beneficial, since it enhances adaptabil-

ity to changing and noisy environments. However, there exist drawbacks in this specific work,

such as convergence to sub-optimal policies due to incomplete exploration of the state space,

and slow convergence unless the system parameters were chosen with great care.

Another related approach is the “Coordinated Reinforcement Learning” framework pre-

sented in [GLP02], within which only limited communication is required between collaborat-

ing agents, in order for them to efficiently select an optimal joint action, without them explic-

itly considering every possible action; the latter would be impossible in an exponentially large

action space. The agents have only partial access to the state description. Structured commu-

nication and coordination of agents is used in the core of both the learning algorithms and

the execution architectures (policy search phase) of the RL methods presented in the paper—

communication needs are reduced by solving a “coordination graph” that is constructed ex-

ploiting the local structure of Q-functions corresponding to the agents. Learned policies can be

executed in a distributed manner. However, the issue of potential changes in the structure of the

problem—that would require agents to be inserted or deleted dynamically—is not addressed.

None of the aforementioned approaches addresses the problem of achieving coordination of

multiple reinforcement learners from a game theoretic perspective (even though game theory

has in fact identified or dealt with questions related to the benefits of cooperation [Axe84]).

Nevertheless, taking a game theoretic view at the problem of coordination, we could argue that

it could be cast as a problem of performing equilibrium selection in a cooperative repeated

game, whereas coordinated action choice can be learned through repeated play of the game.

Boutilier [Bou96b] has discussed the use of learning to achieve coordination introducing a

framework of Mutiagent Markov Decision Processes (MMDPs), which actually are n-person

stochastic games. He showed that decomposition of sequential decision processes can be em-

ployed so that coordination can be learned (or imposed) locally, at the level of individual states.
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He has also discussed elsewhere ([Bou96a]) both a Bayesian learning approach and a learning

model resembling fictitious play using likelihood estimates of opponents’ actions, in order to

achieve equilibrium selection in the case of unobservable actions. Moreover, he points to a

way to add conventions to the learning model through the use of maximum likelihood estimates

with the eventual goal to drop learning altogether after a while and achieve convergence to a

conventional equilibrium - reducing, thus, the computational burden associated with ongoing

computation of best responses [Bou96a]. In addition, Boutilier develops in [Bou99] an exten-

sion of value iteration, that allows for the systems’s state space to be expanded dynamically

to account for the coordination protocol used; thus, the agents are able to decide to engage or

avoid coordination problems based on expected value. However, the focus of this research is

more on coordination mechanisms and less on the employment of reinforcement learning in

coordination games.

Convergence to an Optimal Equilibrium No matter how successful their application has

been in empirical studies such as those presented so far (e.g., [SSH94, Tan93]), standard single-

agent RL models are not usually theoretically justifiable as convergent methods for multiagent

coordination in general. On the other hand, even in work where general-sum stochastic games

have in fact been used as a general MARL framework [HW98], the coordination problem has

been simplified by assuming a unique equilibrium. However, when more than one equilibrium

strategy exists, coordination becomes a challenge.

Claus and Boutilier proved in [CB98] that in cooperative repeated games, under a set of

conditions—which are basically the requirements that an agent samples each one of its actions

infinitely often and that its exploration strategy is exploitive—it is assured that Joint Action

Learners eventually play a (deterministic) equilibrium strategy profile, but not necessarily the

optimal one. This entails several advantages, when behaving well while learning is important

(i.e., when the discounted infinite-horizon model of optimal behaviour is used). More recently,

some model-free techniques have been proposed to enforce coordination to optimal equilibrium

in identical interest games—that is, convergence to the equilibrium with the maximum reward

(identical to both agents) [KK02, LR00, WS02]. These approaches, however, do not take

at all into account the fact that convergence to optimal equilibrium strategies may imply a

substantial cost to be payed by the agent ([LR00, WS02]), which is in contradiction to those

methods’ forestated goal of discounted accumulated reward maximization, or, in addition, are

not theoretically well-founded and generalizable ([KK02]). We critique those papers further in

Chapter 3.
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2.3 Cooperative Game Theory: Coalition Formation

Cooperative game theory deals with situations where players act together in a cooperative

equilibrium selection process involving some form of bargaining, negotiation, or arbitration

[Mye91]. The problem of coalition formation is the fundamental area of study within cooper-

ative game theory.

Let N = {1, . . . , n}, n > 2, be a set of players (or “agents”). A subset C ⊆ N is called a

coalition, and we assume that agents participating in a coalition will coordinate their activities

for mutual benefit.23 A coalition structure (CS) is a partition of the set of agents contain-

ing exhaustive and disjoint coalitions. Coalition formation is the process by which individual

agents form such coalitions, generally to solve a problem by coordinating their efforts. The

coalition formation problem can be seen as being composed of the following activities [SL97]:

(a) the search for an optimal coalition structure; (b) the solution of a joint problem facing

members of each coalition; and (c) division of the value of the generated solution among the

coalition members. The aforementioned activities interact with each other: the agents should

reach an agreement on those issues through negotiations. Furthermore, it should be noted that

one distinguishing feature of cooperative game theory is the ability of the agents to negotiate

effectively, meaning that if there were a feasible change in the strategies of the members of

a coalition (or a feasible change in the coalition structure) that would benefit the negotiating

agents, then they would actually agree to make that change [Mye91]. Finally, as mentioned in

Section 1.2 above, and as will become more apparent later in this thesis, coalition formation

can be viewed under both a cooperative (when the focus is on the final result of negotiations)

and a non-cooperative standpoint (when the focus is on the negotiation process itself—i.e., on

the coalitional bargaining problem); thus, one can refer (as we do in this thesis) to “cooperative

coalition formation” or to “non-cooperative coalition formation”.

There exists an ever-growing corpus of literature dealing with the coalition formation prob-

lem, both from a purely game-theoretic (e.g. [Aga97, BS00, CDS93, DS98, Eva97, HMC96,

MW95, Oka96, KR02, PR94, SV97, SBWT99, SB99, Yan03]) and from a more AI-related

(e.g., [AL04, MCW04, KG02, KST03, KST04, SK98, SL04]) point of view. Coalition for-

mation ideas have been applied to problems as diverse as multilateral bargaining and resource

allocation (e.g., [KST03, KST04, SL04, DJ06]), agent coordination for task execution (e.g.,

[SSJ97]), grid computing and e-business (e.g., [AL04, NPC+04, PTJ+05]), e-marketplaces

23Seeking “mutual benefit” does not imply that the agents are not individually rational—i.e., seeking to maxi-
mize their own individual payoffs by participating in coalitions. This will become more evident shortly.
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(e.g., [YS01, LS02, LCRS03]), multisensor networks (e.g., [DDRJ06]) or even cryptography

[ZR94]. However, most of the existing work does not deal with the problem of uncertainty (or,

more specifically, type uncertainty) during coalition formation, as we do in this thesis. We will

not be reviewing all related work in this section, but we will do so in subsequent chapters, as

appropriate. Here we will just briefly present some basic coalition formation-related concepts.

2.3.1 Characteristic Function (Transferable Utility) Games

While seemingly complex, coalition formation can be abstracted into a fairly simple model,

under the assumption of transferable utility, which assumes the existence of a (divisible) com-

modity (such as “money”) that players can freely transfer among themselves. Thus, it is easy

to to describe the possible allocations of utility among the members of each coalition, as it

is sufficient to specify a single number denoting its worth (i.e., the total payoff available for

division among its members).

This is the role of the characteristic function of a coalitional game with transferable utility

(TU-game): A characteristic function υ : 2N ⇒ < defines the value υ(C) of each coalition C

[vNM44]. Intuitively, υ(C) represents the maximal payoff the members of C can jointly re-

ceive by cooperating effectively. An allocation is a vector of payoffs x = (x1, ..., xn) assigning

some payoff to each i ∈ N . An allocation is feasible with respect to coalition structure CS if
∑

i∈C xi ≤ υ(C) for each C ∈ CS, and is efficient if this holds with equality. The reservation

value rvi of an agent i is the amount it can attain by acting alone (in a singleton coalition):

rvi = υ({i}).

One important concept regarding characteristic functions is the concept of superadditivity.

A characteristic function is called superadditive if any pair (C, T ) of disjoint coalitions C and

T is better-off by merging into one coalition: υ(C ∪ T ) ≥ υ(C) + υ(T ).24

When the transferable utility assumption is not in place, the coalitional games are called

non-transferable utility (NTU) games [Mye91]. We will not be dealing with NTU games in

this thesis.

2.3.2 The Core and Other Solution Concepts

When rational agents seek to maximize their individual payoffs, the stability of the underlying

coalition structure becomes critical. A structure is stable only if the outcomes attained by the

24We note that we do not make any superadditivity (or any other additivity-related) assumption in the work
presented in this thesis.
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coalitions and the payoff combinations agreed to by the agents are such that both individual

and group rationality are satisfied in some way. Research in coalition formation has developed

several notions of stability, among the strongest being the core [Gil53, LR57, KR84]. The core

of a characteristic function game is a set of payoff configurations 〈CS, x〉, where each x is a

vector of payoffs to the agents in coalition structure CS, which are such that no subgroup of

agents is motivated to depart from its coalition in CS.25 In other words, the core is the set of

all possible allocations that can be “accepted” by all possible coalitions:

Definition 2. Let CS be some coalition structure, and let x ∈ <n be some allocation of payoffs

to the agents. The core26 is the set of payoff configurations

core = {〈CS, x〉|∀C ⊆ N,
∑

i∈C

xi ≥ υ(C)and
∑

i∈N

xi =
∑

C∈CS

υ(C)}

A core allocation 〈CS, x〉 is both feasible and efficient, and no subgroup of players can

guarantee all of its members a higher payoff. As such, no coalition would ever “block” the

proposal for a core allocation. Unfortunately, in many cases the core is empty, as there exist

games for which it is impossible to divide the utility in such a way that the coalition structure

becomes stable (as there might always be coalitions that could gain if they were given one more

opportunity to negotiate effectively against the current configuration). Moreover, computing

the core or even deciding on its non-emptiness is—in general—intractable [Rap70, Chv78,

Tan91, DP94, SLA+99, CS03].

As mentioned in Section 1.2, dynamic coalition formation research is interested in the

question of establishing endogenous formation processes that reach stable structures, such as

structures in the core. Dieckmann and Schwalbe [DS98] provide such a dynamic formation

process (a bargaining process that induces an underlying Markov process), which allows for the

(conditional) destabilization, during some bargaining stage, of structures formed in previous

stages, so that the dynamic process retains the potential to reach an absorbing, stable state. This

destabilization is achieved through the random exploration of suboptimal bargaining actions

(i.e., formation proposals and replies), and the process can be shown to converge to the (usual,

25We will sometimes refer to the core defined in Definition 2 as the “deterministic” core, since it assumes no
form of uncertainty or stochasticity regarding partners or coalitional values. Analogously, we sometimes use the
term “deterministic” to refer to the usual model of coalition formation (which admits no uncertainty).

26This core definition is basically the one provided in [SL97], and is also very similar to the one coined in
[DS98]. It is more generic than other traditional core definitions which assume superadditivity, in that it considers
the 〈CS,x〉 configurations, rather than focusing only on the allocation of payoffs within the grand coalition (i.e.,
requiring that

∑
i∈N xi = υ(N)).
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deterministic) core.

Suijs et al.[SBWT99, SB99] do not deal with coalition formation processes, but do describe

a notion of the core concept under coalition value uncertainty—payoffs in their model are

stochastic, and depend on the coalition action taken. To deal with payoff stochasticity, they

use relative shares (i.e., shares described as percentages) for the allocation of the residual

(or the “risk”) of the stochastic coalitional value (i.e., actual payoff minus its expectation);

however, the agents have common expectations regarding the coalitional values. [SBWT99,

SB99] provide interesting theoretical results regarding the core concept under this restricted

form of uncertainty. In Chapter 4, we will describe the approaches of [DS98, SBWT99, SB99]

in some more detail.

In recent years, several papers in the game theory literature [PR94, MW95, HMC96, Eva97,

SV97, Yan03] have tried to establish connections between the outcomes arising from equilib-

rium play during coalitional bargaining and the core of the underlying coalition formation

problem. Broadly, the goal of this line of research is to show that the equilibrium payoff sets

in particular coalitional bargaining games correspond to core allocations for the participating

agents. The related results provide a further justification for the use of the core as a solu-

tion concept—i.e., they contribute to the non-cooperative justification of the core—and, more

generally, describe forms of equivalence between cooperative and non-cooperative coalition

formation solution concepts.

Apart from the core, there exist many other solution concepts, such as the Shapley value

[Sha53] and the kernel [DM65]. The latter is a stability concept that combines individual

rationality with team rationality, in the sense that it provides stability within a given coalition

structure (and under a given payoff allocation): the kernel is a payoff configuration space in

which each payoff configuration 〈CS, x〉 is stable in the sense that any pair of agents i, j

which are members of the same coalition in a specific CS are in equilibrium with one another,

given payoff vector x. Agents i and j are said to be in equilibrium if they cannot outweigh

one another within their common coalition—in other words, neither of them can successfully

claim a part of the other’s payoff under the configuration 〈CS, x〉. The kernel is always non-

empty. In particular, for every CS for which there exists at least one allocation y such that all

agents in CS receive at least their reservation value in y, there also exists an allocation x such

that the resulting configuration is in the kernel (we say that it is kernel-stable). However, note

that the kernel merely determines the way payoffs should be distributed so that agents cannot

outweigh their current partners given a specific CS. Thus, it is less generic than the core, while

computing a kernel element is—in the general case—exponentially hard also. Blankenburg et
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al.[BKS03] have recently coined a kernel stability concept under coalitional value uncertainty,

introducing the fuzzy kernel for use in fuzzy cooperative games.27

We study in this thesis several cooperative and non-cooperative aspects of the coalition for-

mation problem under the more general assumption of type uncertainty. Thus, in subsequent

chapters, we introduce the Bayesian core, a core-like stability concept for coalition formation

under type uncertainty (and payoff stochasticity), and also establish formation processes that

enable convergence to stable coalition structures—under this model of uncertainty. Further, we

deal with the problem of the non-cooperative justification of the Bayesian core, studying equi-

libria concepts for coalitional bargaining under type uncertainty, and establishing connections

between their outcomes and allocations that lie in the Bayesian core. Finally, since learning

can be of value to rational agents that seek to form rewarding coalitions in uncertain environ-

ments, we introduce a Bayesian RL framework to enable the agents to take informed decisions

in scenarios of repeated coalition formation under uncertainty.

27In order to formally define the kernel, we have to define the excess of a coalition and the surplus of one agent
over another:

Appendix Definition 1. The excess of a coalition C with respect to a payoff configuration (~x, CS) is defined
as e(C) = υ(C) −

∑
i∈C xi. C is not necessarily a coalition in the specific CS, but may belong in any other

coalitional stucture.

Appendix Definition 2. The surplus Sij of agent i over agent j with respect to a payoff configuration 〈CS,x〉
is defined by Sij = maxC|i∈C,j /∈C e(C); in other words, it is the maximum of the excesses of all coalitions C
that include i and exclude j, with C not in the current coalitional structure (since under the current coalitional
structure agents i and j belong in the same coalition).

We say that agent i outweighs agent j if Sij > Sji. If i outweighs j under 〈CS,x〉, it can claim a part of
j’s payoff xj . Individual rationality requires that xj > υ({j}), where υ({j}) is the coalitional value of j in a
singleton coalition. Two agents that cannot effectively outweigh one another are in equilibrium:

Appendix Definition 3. Two agents agenti and agentj are in equilibrium, if one of the following conditions is
satisfied:

1. Sij = Sji

2. Sij > Sji and xj > υ({j})

3. Sij < Sji and xi > υ({i})

Now we are in the position to define the kernel as follows:

Appendix Definition 4. A payoff configuration 〈CS,x〉 is K-stable if ∀i, j-pairs of agents in the same coalition
C ∈ CS under x, the agents i and j are in equilibrium. A payoff configuration is in the kernel iff it is K-stable.

For a nice presentation of the kernel solution concept see, e.g., [SK99]; for a scheme used to compute kernel
allocations see [Ste68].
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Bayesian MARL in Stochastic Games

In standard RL, the action selection problem an agent faces involves a tradeoff between exploit-

ing what one knows about the effects of actions and their rewards and exploring to gain further

information about actions and rewards that has the potential to change the action that appears

best. In the multiagent setting, the same tradeoff exists with respect to action and reward infor-

mation; but another aspect comes to bear: the influence one’s action choice has on the future

action choices of other agents. In other words, one can exploit one’s current knowledge of the

strategies of others, or explore to try to find out more information about those strategies. This

is the generalized exploration-exploitation tradeoff in MARL.

Furthermore, the possible existence of multiple equilibria in the game in which the agents

participate adds another aspect to this tradeoff: the agents should be able to coordinate their

choice of equilibrium, or risk converging to undesirable equilibria.1 This is the equilibrium se-

lection problem. However, in a MARL setting, attempting to coordinate equilibrium selection

may result to very poor rewards during the online learning period. This intensifies the need to

address the tradeoff between long-term benefits and short-term costs, especially if, as is often

the case in RL, the discounted reward criterion is used to evaluate performance.

In this chapter we develop a Bayesian, model-based MARL framework to tackle the issues

above. We describe the solution to the generalized exploration-exploitation tradeoff as the

solution to a system of Bellman equations over a belief state MDP. The Bayesian approach

enables the agents to make informed rational decisions without requiring them to take explicit

exploratory actions—rather, the value of information of the agents’ actions, incorporated in the

1Notice that, viewing MARL under a game theoretic perspective (Definition 1), coordinating individual ac-
tions to some commonly desirable joint action is equivalent to choosing to play some equilibrium of the under-
lying game; when the commonly desirable action is the most desirable one, this is the problem of coordinating
equilibrium selection so that some optimal equilibrium is played.

49
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aforementioned equations, plays a critical role in determining an agent’s policy.

However, as it is not feasible to provide an exact solution, we used computational approx-

imations to tackle the problem. One of the methods we develop is the multiagent extension to

a known Bayesian method (VPI exploration) introduced by [DFR98, DFA99].

We verify the value of our approach experimentally, applying it to the case of multiagent

coordination, which is of particular interest because of the equilibrium selection problem. Our

results show that the Bayesian approach outperforms other approaches (some of which enforce

convergence to optimal equilibria).2 Bayesian agents make cautious and informed decisions,

exhibiting good online behaviour while learning.

We start by providing background on single-agent model-based Bayesian RL (Section 3.1),

and a discussion of the multiagent coordination (equilibrium selection) problem (Section 3.2).

Then we proceed to present our multiagent extension to Bayesian RL (Sections 3.3 and 3.4),

and show experimentally that this can be used effectively to enhance the performance of agents

facing the multiagent coordination problem (Section 3.5).

Parts of the research described in this chapter appeared originally in [CB03].

3.1 Single-Agent Model-Based Bayesian RL

Assume an agent is learning to control a stochastic environment modeled as a Markov decision

process (MDP) which is a 4-tuple 〈S, A, pT , pR〉 with finite state and action sets S, A, transition

dynamics pT and reward model pR (as described in 2.1.1). Assuming an infinite horizon and a

discount factor 0 ≤ γ ≤ 1, an agent’s objective is to act so as to maximize the expected sum

of his future discounted rewards E[
∑∞

t=0 γtrt], where rt is the reward at time step t.

In the RL setting, the agent does not have direct access to the model components pT and

pR, so it must learn a policy based on its interactions with the environment. Any of a number

of RL techniques—such as policy or value iteration—can be used to learn an optimal policy

and its value V ∗(s) at each s ∈ S [SB98]. However, while striving to learn the optimal policy,

agents have to face the exploration-exploitation tradeoff: should one exploit what is already

known by performing an action that currently appears best, or should one explore in order to

gain further information about pT and pR and thus re-evaluate its perception of optimality of

available actions? If the underlying uncertainty is not properly accounted for, then the agents

risk exploring very unrewarding parts of the policy space.

2As others [SPG04] have also noted, “blindly” pursuing convergence to equilibria should not necessarily be
the goal of MARL.
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In model-based RL methods, the learner maintains an estimated MDP 〈S, A, p̂T , p̂R〉, based

on the set of experiences 〈s, a, t, r〉 obtained so far. At each stage (or at suitable intervals)

this MDP can be solved (exactly or approximately). Single-agent Bayesian methods [DFA99,

Duf02, SL73] allow agents to incorporate priors to represent their beliefs over all the possible

MDPs (models) that may be describing the environment, and explore optimally by updating

these priors as they gain more knowledge.3

We consider the Bayesian framework to be the appropriate framework for dealing with opti-

mal learning—acting so as to maximize performance while learning by striking an appropriate

balance between short-term and long-term gains [Duf02]. The basic idea is that a Bayesian

agent will model the uncertainty about the environment and take it into account when calculat-

ing value functions. In theory, once the uncertainty is fully incorporated into the model, acting

greedily with respect to these value functions is the optimal policy for the agent, the policy that

will enable him optimize his performance while learning. It is well known that Bayesian ex-

ploration is the optimal solution to the exploration-exploitation problem—meaning that there

is no other method that can outperform the Bayesian solution in expectation, while using the

same model space and same prior knowledge [Bel61, Mar67].

In practice, approximations to optimal Bayesian exploration have to be used. Even so, it

has been demonstrated that Bayesian agents can effectively balance exploration of the environ-

ment with exploitation of actions [DFR98, DFA99]. When Bayesian model-based RL is used,

the usual advantages of model-based RL apply: by learning a model the agent avoids costly

repetition of steps in the environment, and the agent is able to use the model to reason about

the effects of its actions so that the number of steps actually executed is reduced. In addition,

Bayesian RL can be advantageous in that it does not ignore the agent’s uncertainty about the

dynamics of the environment, as common model-based approaches which keep point estimates

of these dynamics do: by representing a distribution over possible models, the agent’s uncer-

tainty can be quantified, which can in turn be used to inform it as to what are the best actions

to perform. Finally, despite the fact that Bayesian methods are commonly regarded as being

time-consuming, it has been demonstrated that there exists a variety of techniques which al-

low them to overcome this criticism, for example via the efficient sampling of distributions

[DFA99, Duf02, Pri03].

Bayesian methods assume some prior density P over possible dynamics D and reward dis-

tributions R, which is updated with each data point 〈s, a, t, r〉. This prior density describes the

3This draws on methods for Bayesian exploration in bandit problems[BF85].
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agent’s belief state regarding the world. Letting H denote the (current) state-action history of

the observer, we can use the posterior P (D, R|H) to determine an appropriate action choice

at each stage. The formulation of [DFA99] renders this update tractable by assuming a conve-

nient prior. Specifically, the following assumptions are made: (a) the density P is factored over

R and D with P (D, R) being the product of independent local densities P (Ds,a) and P (Rs,a)

for each transition and each reward distribution (as with transition distributions Pr(s, a, s′), re-

ward distributions Pr(s, a, r) specify the probabilities for achieving each possible reward r, for

each s, a state-action pair); and (b) each density P (Ds,a) and P (Rs,a) is a Dirichlet [DeG70].

The choice of the Dirichlet is appropriate assuming discrete multinomials as the transition and

rewards models, for which Dirichlet priors are conjugate—so, the posterior can be represented

compactly: after each observed experience tuple, the posterior is also a Dirichlet.

Thus, the posterior P (D|H) can be factored into posteriors over local families, each of the

form:

P (Ds,a|Hs,a) = z Pr(Hs,a|Ds,a)P (Ds,a)

where Hs,a is the history of s, a-transitions—captured by updates of the Dirichlet parameters—

and z is a normalizing constant.4 To model P (Ds,a) a Dirichlet parameter vector n
s,a is used,

with entries ns,a,s′ for each possible successor state s′.5 (Similarly, to model P (Rs,a) a pa-

rameter vector k
s,a is used, with entries ks,a,r for each possible reward r.) The expectation

of Pr(s, a, s′) with respect to P is given by ns,a,s′/
∑

i n
s,a,si. The updating of a Dirichlet

is straightforward: given prior P (Ds,a;ns,a) and data vector c
s,a (where cs,a

i is the number of

observed transitions from s to si under a), the posterior is given by parameter vector ns,a+c
s,a.

To sum up, the Bayesian approach allows the natural incorporation of prior knowledge

as a prior probability distribution over all possible MDPs; also, approximations to optimal

Bayesian exploration can take advantage of this model, enabling the mass of the posterior to

become progressively focused on those MDPs in which the observed experience tuples are

most probable [DFA99]. The distribution maintained over possible MDPs, and the Q-values

4Similarly, P (Rs,a|Hs,a) = zPr(Hs,a|Rs,a)P (Rs,a).
5The probability density function of the Dirichlet distribution of order L for a random variable X drawn from

a multinomial distribution—with L corresponding to the number of values that X can take—is the following
function of an L-dimensional vector θ = 〈θ1, ..., θL〉 with θi ≥ 0 and

∑L
i=1 θi = 1:

f(θ;n) ∼
L∏

i=1

θni−1
i

where n = 〈n1, ..., nL〉 is a parameter vector with ni ≥ 0 (and where θi corresponds to the probability with which
the outcome xi is drawn for X).
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of each of these MDPs, induce a distribution over the Q-values at each s, a-pair. The Q-value

distribution is then used for action selection. As [DFA99, DFR98] suggest, this can be done

by incorporating the actions’ value of perfect information [RN95] in the agent’s exploratory

policy.

3.1.1 Value of Perfect Information Exploration

The estimation of a distribution over MDPs at each stage enables one to capture the un-

certainty about the model. Knowledge of this uncertainty can be exploited to improve ex-

ploration. The decision-theoretic idea of value of perfect information [RN95] is applied by

[DFA99, DFR98] in this context; the attempt is to balance the expected gain from exploration

(accumulation of more information that leads to improved policies) against the expected cost

of doing a potentially suboptimal action. This exploration method is known as VPI exploration

[DFA99, DFR98]:

Let EVPI(s, a) be the expected value of perfect information about the quality of a state-

action pair qs,a, where qs,a is a possible value of the optimal Q-value function Q∗(s, a) in one

of the possible MDPs. These quantities are variables that depend on the agent’s belief state.

The EVPI(s, a) coincides with the expected gain of performing a at state s given prior beliefs,

and thus provides an upper bound on the myopic value of information for exploring a at s. (We

present the details for an EVPI calculation method in Section 3.1.2.)

There is an expected cost incurred for the exploration of an action a. This is given by

the difference between the expected value of a, E[qs,a], and the expected value of the current

best action (given the agent’s current belief state), E[q∗s,a]. This can be written as Cost(s, a) =

E[q∗s,a]−E[qs,a]. The expected values are derived by estimating the Q-value distributions using

the maintained transitions and rewards models, as described in Section 3.1.2.

The value of exploration estimate Val(s, a) of a at s can be defined as

Val(s, a) = EVPI(s, a) − Cost(s, a)

The VPI exploration method proposes that the agent will select the action with the maxi-

mum value of exploration estimate. Val(s, a) is therefore used as a way of boosting the desir-

ability of different actions. Choosing the action maximizing Val(s, a) is equivalent to choosing

the action that maximizes

E[qs,a] + EVPI(s, a)
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When the agent is confident in the estimated Q-values, the EVPI of each action is close to

zero, causing the agent to always choose the action with the highest expected value.

3.1.2 Estimating Q-Value Distributions

One simple way to estimate the Q-value distributions is to use naive sampling [DFA99].

The approach consists of sampling k MDPs from the density describing the agent’s belief

state. Each MDP is solved by using value iteration. For each s and a pair then there exists a

sample solution q1
s,a, ..., q

k
s,a, where qi

s,a is the optimal Q-value given the ith MDP. Given these

samples, the mean Q-value is estimated as:

E[qs,a] ≈
1∑
i w

i

∑

i

wiqi
s,a (3.1)

Similarly, the EVPI can be estimated by summing over the k MDPs:

EVPI(s, a) ≈
1∑
i w

i

∑

i

wigains,a(q
i
s,a) (3.2)

In the formulas above, wi denotes the weight of each sample6 and gains,a(q
i
s,a) denotes the

gain from learning the value of qi
s,a (provided by solving that particular MDP). This gain is

calculated as described below.

Suppose that, given the agent’s current belief state, a1 is the action with highest expected

Q-value at state s and a2 is the second-highest.

The gain associated with learning that the true value of the s, a-pair is in fact q, is defined

as:

gains,a(q) =





E[qs,a2
] − q, if a = a1 and q < E[qs,a2

]

q − E[qs,a1
], if a 6= a1 and q > E[qs,a1

]

0, otherwise

(3.3)

Intuitively, the gain reflects the effect on decision quality of learning the true Q-value of a

specific action at state s. In the first two cases, what is learned causes us to change our decision

(in the first case, the estimated optimal action is learned to be worse than predicted, and in

the second, some other action is learned to be better than the predicted optimal). In the third

case, no change in decision at s is induced, so the information has no impact on the (estimated)

decision quality.

6Samples may have different weights depending on the sampling method used. All weights can be set to 1, in
the simplest case.
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Finally, note that since parameter independence is assumed, each of the transition and re-

wards models can be sampled independently, and thus the sampling problem is reduced to

sampling from “simple” posterior distributions. Furthermore, Dearden et al. propose various

other techniques to make the sampling process more computationally efficient, such as the im-

portance sampling technique which allows the reweighting of sampled MDPs (and their re-use,

instead of collecting new samples at each step). For a detailed description of those techniques

we refer to [DFA99].

3.2 Multiagent Coordination and Equilibrium Selection

Nash equilibria are generally viewed as the standard solution concept for stochastic games.

However, it is widely recognized that the equilibrium concept has certain (descriptive and

prescriptive) deficiencies. One important problem identified in Chapter 2 is the fact that games

may have multiple equilibria, leading to the problem of equilibrium selection.7 As an example,

consider the simple two-player single-state identical interest (coordination) game called the

penalty game [CB98], shown in Table 3.1 in standard matrix form. Here agent A has moves

a0 a1 a2
b0 10 0 k
b1 0 2 0
b2 k 0 10

Table 3.1: The Penalty Game

a0, a1, a2 and B has moves b0, b1, b2. The payoffs to both players are identical, and k < 0

is some penalty. There are three pure equilibria. While 〈a0, b0〉 and 〈a2, b2〉 are the optimal

equilibria, the symmetry of the game induces a coordination problem for the agents. With no

means of breaking the symmetry, and the risk of incurring the penalty if they choose different

optimal equilibria, the agents might in fact focus on the suboptimal equilibrium 〈a1, b1〉.

The existence of multiple “stage game” equilibria is again a problem that plagues the con-

struction of optimal strategies for multi-state (stochastic) cooperation games. Consider another

simple identical interest example, the stochastic Opt-In or Out game [Bou99] shown in Fig-

ure 3.1. In this game, there are two optimal strategy profiles that maximize sequential value.

7The equilibrium selection problem has drawn much attention in game theory [HS88] and is one prime moti-
vation for theories of learning in games [FL98].
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In both, the first agent chooses to “opt in” at state s1 by choosing action a, which takes the

agents (with high probability) to state s2; then at s2 both agents either choose a or both choose

b—either joint strategy gives an optimal equilibrium.

* *

* *

s1

s3

s4

s5

s6

s2

+10

-10

+6

a,b;  b,a

a,a;  b,b
* *

a *

b *

* *

Figure 3.1: The Opt-In or Out stochastic game

Intuitively, the existence of these two equilibria gives rise to a coordination problem at

state s2. If the agents choose their part of the equilibrium randomly, there is a 0.5 chance that

they miscoordinate at s2, thereby obtaining an expected immediate reward of 0. On this basis,

one might be tempted to propose methods whereby the agents decide to “opt out” at s1 (the

first agent takes action b) and obtain the safe payoff of 6. However, if we allow some means

of coordination—for example, simple learning rules like fictitious play or randomization—

the sequential nature of this problem means that the short-term risk of miscoordination at s2

can be more than compensated for by the eventual stream of high payoffs should they coordi-

nate. Boutilier [Bou99] argues that the solution of games like this, assuming some (generally,

history-dependent) mechanism for resolving these stage game coordination problems, requires

explicit reasoning about the odds and benefits of coordination, the expected cost of attempting

to coordinate, and the alternative courses of action. For example, suppose the two agents use a

randomization protocol for coordination, in which they randomly choose a potentially optimal

action in the case of equilibrium conflicts at a given state, and—should they ever play a jointly

optimal action (equilibrium)—they stick with that action at any subsequent visits to that state.

The algorithm for identical interest stochastic games presented in [Bou99] would, in this case,

determine that the optimal policy would have the agents opt in (and run the risk of miscoordi-

nating a few times before eventually coordinating) if the discount factor is close enough to 1;

but immediately opt out if the discount factor is too low.

As discussed in Chapter 2, Claus and Boutilier [CB98] proposed several MARL meth-
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ods for repeated games. A simple joint-action learner (JAL) protocol learned the (myopic, or

one-stage) Q-values of joint actions, using standard Q-learning updates. The novelty of this

approach lies in its exploration strategy: (a) a fictitious play protocol estimates the strategies of

other agents; and (b) exploration is biased by the expected Q-value of actions. Specifically, the

estimated value of an action is given by its expected Q-value, where the expectation is taken

with respect to the fictitious play beliefs over the other agents’s strategies. When semi-greedy

exploration is used, prescribing that actions with higher value are more likely to be played, this

method will converge to an equilibrium in the underlying stage game.

One drawback of the JAL method is the fact that the equilibrium it converges to depends

on the specific path of play. Certain equilibria can exhibit serious resistance—for example,

the odds of converging to an optimal equilibrium in the penalty game above are quite small

(and decrease dramatically with the magnitude of the penalty). Claus and Boutilier propose

several heuristic methods (such as the Optimistic Boltzmann and the Combined Boltzmann

methods [CB98]) that bias exploration toward optimal equilibria: that is, action selection can

be biased toward actions that form part of an optimal equilibrium. In the penalty game, for

instance, despite the fact that agent B may be predicted to play a strategy that makes the a0

look unpromising, the repeated play of the a0 by A can be justified by assuming that B will

play its part of this optimal equilibrium—i.e., by making an optimistic assumption. This is

further motivated by the fact that repeated play of a0 would eventually draw B toward this

equilibrium.

This issue of learning optimal equilibria in identical interest games has been addressed re-

cently in much greater detail. Lauer and Riedmiller [LR00] describe a Q-learning method for

identical interest stochastic games that explicitly embodies this optimistic assumption in its

Q-value estimates. Specifically, their update rule for playing an action a at state s defines that

its Q-value estimate Qt(s, a) at time step t is only updated if the new value estimate Qt+1(s, a)

is greater than Qt(s, a). By not allowing any lowering of the Q-values, [LR00] purposefully

“neglect” to incorporate any negative effects of an agent’s individual action into its correspond-

ing Q-value, and thus the Q-values eventually converge to the maximum reward corresponding

to their respective actions—and the agents’ play into that corresponding to selectin of the op-

timal joint action. However, [LR00]’s approach cannot guarantee convergence to the optimal

equilibrium in games with stochastic rewards.

Wang and Sandholm [WS02] do assume stochastic rewards when dealing with the problem

of coordination in identical interest stochastic games environments. Their approach, labeled

Optimal Adaptive Learning, also uses the optimistic assumption to guarantee convergence to
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an optimal equilibrium in this more general class of games —even if the agents do not know

the game’s stochastic state transition model.

Kapetanakis and Kudenko [KK02] propose a method called Frequency Maximum Q-value

(FMQ) for repeated games that uses the optimistic assumption to bias exploration, much like

[CB98], but in the context of individual learners. The FMQ heuristic updates Q-values by tak-

ing into account the frequency with which an individual action produces its maximum corre-

sponding reward encountered so far, and thus leads the agents’ play towards optimal equilibria

(since for an agent to achieve the maximum reward corresponding to one of its actions, the other

agent must be playing the game accordingly). FMQ is a non-generalizable heuristic approach.

Though it assures convergence to an optimal equilibrium in coordination games with determin-

istic rewards, or in games which have a specific structure that allows for the easy differentiation

among equilibria based on their associated rewards, even if these rewards are stochastic (such

as the penalty game), it cannot in general guarantee convergence in coordination games with

stochastic rewards.

The pursuit to devise methods that ensure eventual convergence to optimal equilibria of

repeated cooperation games is in some circumstances well justified. However, these methods

do not account for the fact that—by forcing agents to undertake actions that have potentially

drastic effects in order to reach an optimal equilibrium—they can have a dramatic impact on

accumulated reward. The penalty game was devised to show that these highly penalized states

can bias (supposedly rational) agents away from certain equilibria; yet optimistic exploration

methods ignore this and blindly pursue these equilibria at all costs. Under certain performance

metrics (e.g., average reward over an infinite horizon) one might justify these techniques.8

However, when using the discounted reward criterion, the tradeoff between long-term benefit

and short-term cost should be addressed.

As mentioned above, this tradeoff was discussed by [Bou99] in the context of known-model

stochastic games. When coordination on a “good” strategy profile requires exploration in parts

of policy space that are very unrewarding, the benefits of eventual coordination to an optimal

equilibrium ought to be weighed against the cost (in terms of reward sacrificed while learning

to play that equilibrium). In this chapter, we show that we can address the same tradeoff in the

actual RL context—assuming unknown (stochastic) reward and state transition models—by

formulating a Bayesian approach to model-based MARL. By maintaining probabilistic beliefs

over the space of models and the space of opponent strategies, our learning agents can ex-

8Even then, more refined measures such as bias optimality [Put94] might cast these techniques in a less
favourable light.
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plicitly account for the effects their actions can have on (a) their knowledge of the underlying

model; (b) their knowledge of the other agent strategies; (c) expected immediate reward; and

(d) expected future behaviour of other agents. Components (a) and (c) are classical parts of

the single-agent Bayesian RL model [DFA99]. Components (b) and (d) are key to the multia-

gent extension, allowing an agent to explicitly reason about the potential costs and benefits of

coordination.

3.3 A Bayesian Model for Multiagent Reinforcement Learn-

ing

Here we develop a model that accounts for the generalized exploration-exploitation tradeoff

in MARL. We adopt a Bayesian, model-based approach to MARL, much like the single-agent

model described in [DFA99]. The value of information will play a key role in determining

an agent’s exploration policy. Specifically, the value of an action consists of two components:

its estimated value given current model estimates, and the expected decision-theoretic value

of information it provides (i.e., the ability this information has to change future decisions).

We augment both parts of this value calculation in the MARL context. The estimated value

of an action given current model estimates requires predicting how the action will influence

the future action choices of other agents. The value of information associated with an action

includes the information it provides about other agents’s strategies, not just the environment

model. Both of these changes require that an agent possess some model of the strategies of

other agents, for which we adopt a Bayesian view [KL93]. Putting these together, we derive

optimal exploration methods for (Bayesian) multiagent systems.

We assume a stochastic game G in which each agent knows the game structure, but not the

reward or transition models. A learning agent is able to observe the actions taken by all agents,

the resulting game state, and the reward received by himself (but not the rewards of others).

Thus an agent’s experience at each point in time is simply 〈s, a, t, r〉, where s is a state in which

joint action a was taken, t is the resulting state, and r is the reward received by the agent.

A Bayesian MARL agent has some prior distribution over the space of possible models

as well as the space of possible strategies being employed by other agents. These beliefs are

updated as the agent acts and observes the results of its actions and the action choices of other

agents. The strategies of other agents may be history-dependent, and we allow our Bayesian

agent (BA) to assign positive support to such strategies. As such, in order to make accurate



CHAPTER 3. BAYESIAN MARL IN STOCHASTIC GAMES 60

predictions about the actions others will take, the BA must monitor appropriate observable

history. In general, the history (or summary thereof) required will be a function of the strategies

to which the BA assigns positive support. We assume that the BA keeps track of sufficient

history to make such predictions. For example, should the BA believe that its opponent’s

strategy lies in the space of finite state controllers that depend on the last two joint actions

played, the BA will need to keep track of these last two actions. If it uses fictitious play beliefs

(which can be viewed as Dirichlet priors) over strategies, no history need be maintained.

The belief state of the BA has the form b = 〈PM , PS, s, h〉, where: PM is some density

over the space of possible models (i.e., games); PS is a joint density over the possible strate-

gies played by other agents; s is the current state of the system; and h is a summary of the

relevant aspects of game history, sufficient to predict the action of any agent given any strategy

consistent with PS . Given experience 〈s, a, t, r〉, the BA updates its belief state using standard

Bayesian methods. The updated belief state is:

b′ = b(〈s, a, t, r〉) = 〈P ′
M , P ′

S, t, h′〉 (3.4)

Updates are given by Bayes rule:

P ′
M(m) = z Pr(t, r|a, m)PM(m)

and

P ′
S(σ−i) = z Pr(a−i|s, h, σ−i)PS(σ−i)

Here h′ is a suitable update of the observed history (as described above). This model combines

aspects of Bayesian reinforcement learning [DFA99] and Bayesian strategy modeling [KL93].

To make belief state maintenance tractable (and admit computationally viable methods for

action selection below), we assume a specific form for these beliefs [DFA99]. First, our prior

over models will be factored into independent local models for both rewards and transitions.

We assume independent priors P s
R over reward distributions (regarding each agent’s own re-

wards) at each state s, and P s,a
D over system dynamics for each state and joint action pair.

These local densities are Dirichlet and thus they can be represented using a small number of

hyperparameters, and can be easily updated. For example, our BA’s prior beliefs about the

transition probabilities for joint action a at state s will be represented by a vector n
s,a with one

parameter per successor state t. Expected transition probabilities and updates of these beliefs

are as described in Section 3.1.
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Second, we assume that the beliefs about opponent strategies can be factored and repre-

sented in some convenient form. For example, it would be natural to assume that the strategies

of other agents are independent. Simple fictitious play models could be used to model the BA’s

beliefs about opponent strategies (corresponding to Dirichlet priors over mixed strategies), al-

lowing ready update and computation of expectations, and obviating the need to store history in

the belief state. Similarly, distributions over specific classes of finite state controllers could also

be used. We will not pursue further development of such models,9 since we use only simple

fictitious play opponent models in our experiments below: Each agent i keeps a count C j
aj

for

each opponent j and aj ∈ Sj , with Sj being the opponent’s strategy space at each state s of the

stochastic game, of the number of times agent j has used the individual action aj (at that state)

in the past. For each opponent j, i assumes j plays aj with probability Pri
aj

=
Cj

aj
P

ãj∈Sj
Cj

ãj

.

We provide a somewhat different perspective on Bayesian exploration than that described

in [DFA99]. The value of performing an action ai at a belief state b can be viewed as involving

two main components: an expected value with respect to the current belief state; and its impact

on the current belief state. The first component is typical in RL, while the second captures

the expected value of information (EVOI) of an action. Since each action gives rise to some

“response” by the environment that changes the agent’s beliefs, and these changes in belief can

influence subsequent action choice and expected reward, we wish to quantify the value of that

information by determining its impact on subsequent decisions.

EVOI need not be computed directly, but can be combined with “object-level” expected

value through the following Bellman equations over the belief state MDP:

Q(ai, b) =
∑

a−i

Pr(a−i|b)
∑

t

Pr(t|ai ◦ a−i, b)

∑

r

Pr(r|ai ◦ a−i, b)[r + γV (b(〈s, a, t, r〉))] (3.5)

V (b) = max
ai

Q(ai, b) (3.6)

These equations describe the solution to the POMDP that represents the exploration-exploitation

problem, by conversion to a belief state MDP. These can (in principle) be solved using any

method for solving high-dimensional continuous MDPs—of course, in practice, a number of

9However, we note that the development of tractable classes of (realistic) opponent models remains an inter-
esting problem.
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computational shortcuts and approximations will be required (as we detail below, in 3.4). We

complete the specification with the straightforward definition of the following terms:

Pr(a−i|b) =

∫

σ−i

Pr(a−i|σ−i)PS(σ−i) (3.7)

Pr(t|a, b) =

∫

m

Pr(t|s, a, m)PM(m) (3.8)

Pr(r|b) =

∫

m

Pr(r|s, m)PM(m) (3.9)

This formulation determines the optimal policy as a function of the BA’s belief state. This

policy incorporates the tradeoffs between exploration and exploitation, both with respect to the

underlying (dynamics and reward) model, and with respect to the behaviour of other agents. As

with Bayesian RL and Bayesian learning in games, no explicit exploration actions are required:

acting greedily on the Bayesian Q-values guarantees optimal behaviour in terms of expected

discounted accumulated reward.

Of course, it is important to realize that this model may not converge to an optimal policy

for the true underlying stochastic game. Priors that fail to reflect the true model, or unfortunate

reward samples early on, can easily mislead an agent, and direct him away from exploring

sufficiently.

All the same, as we have seen, there are approaches that do ensure convergence to equilibria

in the case of identical interest repeated games.10 However, the cost in terms of discounted

accumulated reward can be too high for such methods, “rushing” as they do towards equilibria

without considering the dangers in their path.11 It is precisely the “well-reasoned” behaviour

exhibited by the Bayesian approach that allows an agent to learn how to behave well, avoiding

drastic penalties when operating in environments that entail such dangers. The Bayesian agents

willingly take the risk of converging to suboptimal policies, through due consideration of the

learning process given their current beliefs about the domain. Even so, they often manage

to find optimal strategies, as we shall see in Section 3.5. There, we also demonstrate that

10When learning is taking place, there are two aspects to convergence: convergence to the optimal solution and
convergence to any policy at all. The approaches in question deal with the first aspect, considering as “optimal
solution” the (eventual) play of an optimal equilibrium. However, as our experiments will demonstrate, this can
be in sharp contrast with optimal learning as presented earlier in this thesis.

11Note also that most of those methods were designed for known-model or low stochasticity identical interest
repeated games. As is admitted in the related literature (e.g., [KK02, LR00]), agents using those methods might
fail to coordinate when operating in stochastic RL environments, or take an agonizingly long time before doing
so—exacerbating their unrewarding online behaviour problem.
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the Bayesian MARL algorithms we developed enhance the online performance of agents in

coordination problems.

3.4 Computational Approximations

Solving the belief-state MDP defined in the previous section will generally be computationally

infeasible. Therefore, we now propose two methods that can be used to approximate the op-

timal solution to the multiagent exploration-exploitation problem described by the belief-state

MDP above.

3.4.1 Myopic EVOI

In specific MARL problems, the generality of a solution such as the one described by Equations

3.5 and 3.6—defining as it does a value for every possible belief state—is not needed anyway.

Most belief states are not reachable given a specific initial belief state. A more directed search-

based method can be used to solve this MDP for the agent’s current belief state b. Here we

present a form of myopic EVOI in which only immediate successor belief states are considered,

and their values are estimated without using VOI or lookahead.

Formally, myopic action selection is defined as follows. Given belief state b, the myopic

Q-function for each ai ∈ Ai is:

Qm(ai, b) =
∑

a−i

Pr(a−i|b)
∑

t

Pr(t|ai ◦ a−i, b)

∑

r

Pr(r|ai ◦ a−i, b)[r + γVm(b(〈s, a, r, t〉))] (3.10)

Vm(b) =max
ai

∫

m

∫

σ−i

Q(ai, s|m, σ−i)PM(m)PS(σ−i) (3.11)

The action performed is that with maximum myopic Q-value. Eq. 3.10 differs from Eq. 3.5 in

the use of the myopic value function Vm, which is defined as the expected value of the optimal

action at the current state, assuming a fixed distribution over models and strategies. Intuitively,

this myopic approximation performs one step-lookahead in belief space, then evaluates these

successor states by determining the expected value to BA w.r.t. a fixed distribution over models,

and a fixed distribution over successor states. Henceforth, we will therefore be referring to this

method as the Bayesian One-Step Lookahead (BOL) method.
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The computation in Eq. 3.10 involves the evaluation of a finite number of successor belief

states—A·R·S such states, where A is the number of joint actions, R is the number of rewards,

and S is the size of the state space (unless b restricts the number of reachable states, plausi-

ble strategies, etc.). Greater accuracy can be realized by BOL variants employing multistage

lookahead—with the requisite increase in computational cost. Conversely, the myopic action

can be approximated by sampling successor beliefs (using the induced distributions defined in

Equations 3.7, 3.8 and 3.9) if the branching factor A · R · S is problematic.

The final bottleneck in this approach involves the evaluation of the myopic value function

Vm(b) over successor belief states. The Q(ai, s|m, σ−i) terms are Q-values for standard MDPs,

and can be evaluated using standard methods, but direct evaluation of the integral over all

models is generally impossible. However, sampling techniques can be used to render the (ap-

proximate) evaluation of this integral possible [DFA99]. Specifically, some number of models

can be sampled, the MDPs corresponding to the samples can be solved (using methods such as

those presented in Section 2.1.1), and the expected Q-values estimated by averaging over the

sampled results. One can thus use the following “algorithm” to evaluate the myopic Q-value

of each individual action at belief state b:

(a) At belief state b, characterized by priors PM and PS , for each potential experience tuple

〈s, a, r, t〉 perform a one-step lookahead in belief space, resulting in successor belief state

b′ with updated P ′
M , P ′

S.12

(b) Sample a finite set of k models from each successor P ′
M .

• Solve each one of the k sampled MDPs (using a standard method such as value itera-

tion), with respect respect to the density P ′
S over strategies. This results in state-action

values Q(ai, s|m, σ−i) for each ai ∈ Ai in that (say the mth) sample MDP.

• Estimate the value Vm(b′) for this successor belief state as the value of the action with

the maximum average Q(ai, s|m, σ−i) value over all samples (this could possibly be

a weighted average, as described in Eq. 3.1).

(c) The estimated Vm(b′) values are subsequently used in the evaluation of Eq. 3.10.

Various techniques for making this process more efficient can be used as well, including im-

portance sampling (allowing results from one MDP to be used multiple times by reweighting)

12Alternatively, as already mentioned, we may just examine some samples of successor belief states, ifA ·R ·S
is problematic.
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and repair of the solution for one MDP when solving a related MDP [DFA99]. (We will not

provide more details on these techniques, since we did not employ them in the experiments

described in this chapter.)

For certain classes of problems, this evaluation can be performed directly. For instance,

suppose a repeated, that is, single-state (ss) game (with stochastic rewards) is being learned,

and the BA’s strategy model consists of fictitious play beliefs. The immediate expected reward

of any action ai taken by the BA (with respect to successor b′ derived by the observation

of the reward generated by the joint action) is given by its expectation w.r.t. its estimated

reward distribution and fictitious play beliefs. The maximizing action a∗
i with highest expected

immediate reward at b′,

a∗
i = arg max

ai

∑

a−i

Pr(a−i|b
′)
∑

r

Pr(r|ai ◦ a−i, b
′)[r]

will (presumably) be the best action at all subsequent stages of the repeated game—and its

expected reward r(a∗
i ) under the myopic (value) assumption that beliefs are fixed by b′. Thus,

the long-term value at b′ is

V ss
m (b′) = r(a∗

i )/(1 − γ) (3.12)

Then, expected reward for each action can readily be combined with the BA’s fictitious play

beliefs to compute the expected value of an action (over the infinite horizon) since the only

model uncertainty is in the reward:

Qss
m(ai, b) =

∑

a−i

Pr(a−i|b)
∑

r

Pr(r|ai ◦ a−i, b)[r + γV ss
m (b′)] (3.13)

3.4.2 A Multiagent VPI Algorithm

The approaches above are motivated by approximating the direct myopic solution to the ex-

ploration POMDP. As explained in Sections 3.1.1 and 3.1.2, a different approach to this ap-

proximation was proposed in [DFA99], which estimates the myopic value of obtaining perfect

information about the quality of a state-action pair. We adapt this approach in our setting.

Given an agent’s belief state b, let the expected value of (any of) his ai ∈ Ai action be

denoted by Q(s, ai). Adapted to our multiagent setting to accomodate reasoning about others’

strategies, a computational approximation to this VPI exploration employing naive sampling

approach involves the following steps:
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(a) A finite set of k models is sampled from the density PM .

(b) Each sampled MDP j is solved (using, say, value iteration) with respect to the density PS

over strategies, giving optimal Q-values qj(s, ai) for each ai ∈ Ai in that MDP.

(c) Then, the average Q-value Q(s, ai) over all k MDPs is calculated (as in Eq. 3.1).

(d) For each ai, we compute gains,ai
(qj(s, ai)) for each of the k MDPs (as in Eq. 3.3).

(e) We define EVPI(s, ai) to be the average of these k values (i.e., calculated as in Eq. 3.2).

(f) We define the value of ai to be Q(s, ai) + EVPI(s, ai) and execute the action with highest

value.

Naive sampling can be more computationally effective than one-step lookahead (which

requires sampling and solving MDPs from multiple belief states). The price paid is approxi-

mation inherent in the perfect information assumption: the execution of joint action a does not

come close to providing perfect information about Q(s, ai). Henceforth, we will refer to this

multiagent Bayesian VPI algorithm as BVPI.

3.5 Experimental Evaluation

We conducted a number of experiments with both repeated (single-state) and stochastic (multi-

state) games to evaluate the Bayesian approach. We focus on two-player cooperative (coor-

dination) games, largely to compare to existing methods for “encouraging” convergence to

optimal equilibria. The Bayesian methods examined are the one-step lookahead (BOL) and

naive sampling for estimating VPI (BVPI) algorithms described in Section 3.4. We want to

evaluate the online, sequential behaviour of agents while learning, wishing to demonstrate that

Bayesian agents address the tradeoff between accumulating short-term and long-term rewards

effectively. Thus, the main metric we use in our experiments was the (average) discounted ac-

cumulated reward (over multiple experimental runs), as this metric provides a suitable way to

measure both the cost being paid in the attempt to coordinate as well as the benefits of coordi-

nation (or lack thereof). Nevertheless, we also report on (average) undiscounted accumulated

reward and convergence to optimal equilibria, as appropriate. In all cases, convergence to a

policy was assumed if the policy remained unchanged for the last 5% of iterations in an exper-

imental run.
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In all experiments, the Bayesian agents use a simple fictitious play model to represent their

uncertainty over the other agent’s strategy. Thus at each iteration, a BA believes its opponent to

play an action with the empirical probability observed in the past (for multistate games, these

beliefs are independent at each state). BOL is used only for repeated games, since these allow

the immediate computation of expected values over the infinite horizon (Eqs. 3.12 and 3.13).

BVPI is used both in single-state and multi-state games, and in all cases five game models are

sampled to estimate the VPI of the agents’ actions.13

We compare our Bayesian methods against three methods that have guarantees for con-

vergence to equilibria in repeated (single-state) games: against the FMQ algorithm [KK02]

(which, as was explained in Section 3.2 above, biases exploration towards optimal equilibria,

and is tailored-made to tackle exactly these types of problems); and against model-based vari-

ants of the Combined Boltzmann Exploration (CBE) and Optimistic Boltzmann Exploration

(OBE) methods for JALs, described in [CB98]. These variants of JALs update Dirichlet mod-

els of rewards (in addition to having fictitious play beliefs regarding opponents’ strategies),

and use these models to update their Q-value tables appropriately. OBE agents take the op-

timistic view that others will act to match their choice of individual action (and thus play an

action that corresponds to the joint action with greatest expected value), while CBE agents take

into account the “potential” that an individual action has, by assessing the probability that this

action will be matched by a partner’s action to form a rewarding joint action [CB98]. Fur-

thermore, for both single-state and multi-state games, we compare our approach against the

Win or Learn Fast-Policy Hill Climbing (WoLF-PHC) algorithm presented in [BV01b]. As

was mentioned in Chapter 2, WoLF-PHC is a more generic, model-free learning algorithm,

which works with arbitrary, general-sum stochastic games, and has no special heuristics for

equilibrium selection (nor any theoretical guarantees for convergence to equilibria). In all ex-

periments, the various parameters of the aforementioned algorithms were empirically tuned to

give good performance.14 Finally, the two learning agents in any experiment are in each case of

the same type (i.e., the settings are homogeneous, with the participating agents using the same

algorithm).

13Assessing sample complexity would be worthwhile, but we don’t explore such issues in this dissertation.
14Specifically, CBE and OBE used a temperature parameter T that was initially equal to 10000 and was decayed

with a rate equal to 0.9, λ = 1, while ρ = 0.5 in the CBE case [CB98]. The parameters used for FMQ [KK02]
were c = 10, s = 0.006, Tmax = 500, λ = 0.9. For WoLF-PHC [BV01b], we used ε = 0.2 (with a decay rate
varying in [0.99, 0.99998] depending on the setting), δw = 0.016, δl = 0.032 and α = 1 with a 0.9991 decay rate.
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3.5.1 Single-State (Repeated) Games

We start by describing our experiments with single-state repeated games. The strategy pri-

ors for the BAs are provided by uninformative, uniform “prior counts” for the fictitious play

models. The agents’ priors regarding the stochastic reward model are similarly uninformative,

assigning uniform nonzero (expected) probability to every possible reward for each joint ac-

tion, regardless of whether this reward is truly feasible or not (except for two experiments, as

noted).

The Climbing Game

We first pitted our Baysian algorithms against FMQ, WoLF-PHC, OBE and CBE in the context

of the Climbing Game [CB98].15 The Climbing Game is depicted in Table 3.2 (where the

means of the stochastic rewards are depicted for each pair of actions—each joint action gives

rise to a number of distinct rewards). As in the case of the Penalty Game (Table 3.1), k is a

negative penalty, and is used to “scare away” the agents from playing the optimal equilibrium

〈a0, b0〉. The game takes its name from the fact that rational agents tracking each others’ moves

(and adjusting their policies to the opponent’s behaviour) will engage in a “climbing” process

that will see them play actions 〈a2, b2〉, 〈a2, b1〉 and 〈a1, b1〉 in their attempt to “reach” 〈a0, b0〉

[CB98]. As Claus and Boutilier [CB98] argue, if the penalties are too high, chances are that the

agents will never reach the optimal equilibrium, ending up playing the suboptimal equilibrium

〈a0, b0〉—and justifiably so.

a0 a1 a2
b0 20 k 0
b1 k 16 10
b2 0 0 4

Table 3.2: The Climbing Game

The experiments we conducted in this domain were composed of 30 experimental runs,

with 2000 iterations/run. In the first of our experiments, the penalty k was set to have an ex-

pected value of −20, and we set the discount factor γ to 0.95. Results in terms of (average)

discounted accumulated reward are shown in Figure 3.2.16 The Bayesian methods visibly out-

15Even though the Climbing Game and the Penalty Game are toy games, they provide strong intuitions regading
the dynamics of coordination, and, for that reason, they have provided the main experimental domains for several
papers in the past—mainly for non-stochastic rewards (such as [KK02, LR00]).

16When discounting is involved, we depict only the initial “interesting” segments of our graphs.
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perform the rest (BOL ranks first and BVPI second). It is interesting that WoLF ranks third,

even though the other (non-Bayesian) methods were tailored-made to tackle exactly this type

of repeated coordination games. In terms of convergence behaviour, all methods converge to

the optimal equilibrium quite often, with the exception of WoLF-PHC that mainly converges

to the suboptimal equilibrium (Table 3.3).
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Figure 3.2: Climbing Game Results, γ = 0.95, k = −20; y axis is discounted accumulated
reward (averaged over 30 runs).

BOL BVPI CBE OBE FMQ WoLF-PHC
OE 22 16 16 20 21 1
SE 8 2 14 10 8 29
NE 0 12 0 0 1 0

Table 3.3: Climbing game, γ = 0.95, k = −20: Number of runs converging to optimal equi-
librium (OE), suboptimal equilibrium (SE) or non-equilibrium (out of 30 runs). Convergence
to NE usually simply means the agents have not converged to playing some specific policy.

For interest, we repeated the experiment in this setting with a discount factor γ = 0.999,

expecting that a discount factor close to 1 would diminish the advantage of the Bayesian meth-

ods and make the “convergent” methods (i.e., CBE, OBE and FMQ) look better in terms of

discounted accumulated reward. The results were as shown in Fig. 3.3.
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Figure 3.3: Climbing Game Results, γ = 0.999, k = −20; y axis is discounted accumulated
reward (averaged over 30 runs).

Those results indeed present the convergent methods under a more favourable light. Nev-

ertheless, BOL still ranked first in terms of discounted accumulated reward in this experiment

(as it managed to converge to the optimal equilibrium 〈a0, b0〉 in 23/30 runs, and to the subop-

timal equilibrium 〈a1, b1〉 in 7/30 runs). BVPI, however, even though it outperforms the OBE

and CBE convergent methods in the initial stages of the experiment, it eventually ranks under

them (it did converge to the optimal equilibrium in 15/30 runs, but did not converge at all in

10 runs). In contrast, OBE’s and CBE’s performance improves dramatically once they start

converging to the optimal (20/30 times for OBE, 16/30 times for CBE; in the rest of the runs

they converge to the suboptimal equilibrium). WoLF-PHC converged to the suboptimal equi-

librium in all runs; even so, we can see in the graph that once WoLF agents stop exploring and

settle for the suboptimal policy, their performance improves significantly. WoLF outperforms

the FMQ method again, even though FMQ does converge to the optimal equilibrium in 21 of

the runs and to the suboptimal in 9 of them. The problem for FMQ is that, due to the setting’s

stochasticity, it takes the agents quite some time before they converge to equilibrium. We note

that the ranking of the methods remains the same after 2000 iterations: we show only 1000

iterations in the graph in order to clearly demonstrate the penalties suffered by the convergent

methods in the initial phases of the game.
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We conducted a third experiment in the Climbing Game setting, increasing the penalty k

to −100 and also increasing the reward stochasticity (by increasing the variance of the reward

received for each action). The discount factor was set to 0.95. To test one of the benefits

of model-based RL, we provided informative priors for BOL, BVPI, CBE and OBE agents,

giving the agents strong information about rewards by restricting the prior to assign (uniform)

nonzero probability only to the small range of truly feasible rewards for each action.

Specifically, we wanted to test the validity of the hypothesis that the model-based ap-

proaches could benefit from the informative priors—in the sense that informative priors would

help them overcome (to an extent, at least) the increased risks arising from increasing the

penalty’s value and the stochasticity of the domain. Nevertheless, we can see in Figure 3.4 that,

in terms of discounted accumulated reward, this hypothesis was valid only for the Bayesian

methods, which again top all others. Contrary to BVPI and BOL, and even though they em-

ploy informed priors, CBE and OBE again fall prey to the (increased) penalties, faring similarly

to FMQ and being outperformed by WoLF.
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Figure 3.4: Climbing Game Results, γ = 0.95, k = −100; y axis is discounted accumulated
reward (averaged over 30 runs).

Notice that, unlike the k = −20 case, BVPI now ranks first and BOL second. We attribute

this (at least partly) to the fact that BVPI provides a more cautious approach than BOL in

single-state games: in such games, BOL incorporates (rather optimistically) the myopic as-
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sumption that the action with the highest expected reward in the immediate successor belief

state will also be the best in all subsequent stages. However, this assumption is more likely to

be flawed under increased stochasticity.

BOL BVPI CBE OBE FMQ WoLF-PHC
OE 8 0 7 30 15 2
SE 22 30 23 0 12 28
NE 0 0 0 0 3 0

Table 3.4: Climbing game, γ = 0.95, k = −100: Number of runs converging to optimal equi-
librium (OE), suboptimal equilibrium (SE) or non-equilibrium (out of 30 runs). Convergence
to NE usually simply means the agents have not converged to playing some specific policy.

In terms of convergence behaviour, most of the methods find it hard to converge to the

optimal equilibrium, as shown in Table 3.4. However, the optimistic OBE agents do manage to

converge to the optimal equilibrium in all runs in this scenario. This is because their informed

priors allowed them to become confident in the high value of 〈a0, b0〉, and both agents play

under the—valid, in this case—assumption that the partner will match their choice of action.

FMQ and WoLF-PHC, being model-free approaches, cannot benefit from informed priors. We

can see however that WoLF’s behaviour is similar to its behaviour with the lower penalty, in

terms of convergence, while FMQ’s convergence behaviour has visibly deteriorated (due to the

increased penalty and the increased stochasticity of the domain). Still, it managed to converge

to the optimal equilibrium 15 times—compared to 0 for BVPI and 8 for BOL. We should note

here that BVPI agents top all others in terms of discounted accumulated reward, even though

they never converge to the optimal equilibrium.

To conclude, it is noteworthy that, in both cases, WoLF-PHC outperforms FMQ, CBE, and

OBE in terms of discounted accumulated reward—even though the later methods were all de-

signed to tackle this specific type of problems. It is also noteworthy that the Bayesian methods

managed to converge to the optimal equilibrium often, even though they come with no such

convergence guarantees. Notably, the Bayesian methods strongly outperform the convergent

methods in terms of accumulated discounted reward. The convergence of others comes at too

high a price. This is confirmed by the results in the rest of our experiments.

The Penalty Game

We also conducted experiments within the Penalty Game setting (described in Section 3.2, with

the game matrix given in Table 3.1). Again, the game is altered so that joint actions provide a
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stochastic reward, whose mean is the value shown in the game matrix.

The first set of experiments in this setting uses a penalty k set to −20, discount factors of

0.75 and 0.95, and uninformative priors (as explained earlier). Results appear in Figures 3.5(a)

and (b) showing the total discounted reward accumulated by the learning agents, averaged over

30 trials (with each trial composed of 5000 iterations).

The results show that both Bayesian methods perform significantly better than the methods

designed to force convergence to an optimal equilibrium. Indeed, OBE, CBE and FMQ con-

verge to an optimal equilibrium (e.g., playing one of the 〈a0, b0〉 or 〈a2, b2〉 joint actions) in

virtually all of their 30 runs (as shown in Tables 3.5 and 3.6), but clearly pay a high price.

WoLF-PHC does better than OBE, CBE and FMQ in both tests. In fact, this method out-

performs the BVPI agent in the case of γ = 0.75. In that case, WoLF agents always converge

to the optimal equilibria early on, while BVPI converges to a nonequilibrium—or fails to con-

verge to a specific policy—5 times and to the suboptimal equilibrium (playing the 〈a1, b1〉 joint

action) 4 times, as shown in Table 3.5. Nevertheless, the picture presented in Figure 3.5(a) re-

garding the performance of BVPI is a bit deceiving: in reality, the (average) behaviour of the

VPI agents improved considerably after the first 20 iterations, but this cannot be shown clearly

in Figure 3.5(a) due to the high discounting (0.75) used.17

The exact picture in this game was that in some (5) of the runs, the BVPI agents suffered

heavy penalization early on, and thus required more time to recover due to the small sampling

size; in 3 of those runs however the agents eventually managed to converge to the suboptimal

equilibrium—while in the other 2 they converged to playing a non-equilibrium strategy. Thus,

it is not the lack of convergence to optimal equiliria that has a dramatic impact on the agents

performance (this is verified by the rest of our experiments as well), but in the cases of ”unlukcy

samples” early on, the reward early in the trial is significantly less even if total reward over the

entire trial is not. With heavy discounting, underperformance for even small initial periods

cannot be overcome by good performance (with respect to total undiscounted reward) overall.

Notice that γ = 0.75 means a reward received five steps from now is worth less than 25% of the

same reward received now: this is heavy discounting, almost unrealistic for most environments.

We also conducted a third experiment in the Penalty Game setting, increasing the penalty k

to −100 and also increasing the reward stochasticity (by increasing the variance of the reward

17BVPI did not do dramatically worse than WoLF-PHC in terms of undiscounted accumulated rewards, even in
this case where several of the BVPI runs did not converge to the optimal or the suboptimal equilibrium. After 5000
iterations, BVPI agents accumulated a total (average over 30 runs) reward of 37, 794.4 (or, on average, a reward
of 7.56 per iteration), while the WoLF agents collected a total (average) reward of 43, 975.1 (or, on average, 8.79
per iteration).
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Figure 3.5: Penalty Game Results, k = −20; y axis is discounted accumulated reward (aver-
aged over 30 runs).
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BOL BVPI CBE OBE FMQ WoLF-PHC
OE 21 21 30 29 30 30
SE 9 5 0 0 0 0
NE 0 4 0 1 0 0

Table 3.5: Penalty game, k=-20, γ = 0.75: Number of runs converging to optimal equilibrium
(OE), suboptimal equilibrium (SE) or non-equilibrium (out of 30 runs). Convergence to NE
usually simply means the agents have not converged to playing some specific policy.

BOL BVPI CBE OBE FMQ WoLF-PHC
OE 14 25 30 29 30 30
SE 16 1 0 0 0 0
NE 0 4 0 1 0 0

Table 3.6: Penalty game, k=-20, γ = 0.95: Number of runs converging to optimal equilibrium
(OE), suboptimal equilibrium (SE) or non-equilibrium (out of 30 runs). Convergence to NE
usually simply means the agents have not converged to playing some policy.

received for each action). The discount factor was set to γ = 0.95. We provided informative

priors for BOL, BVPI, CBE and OBE agents, giving the agents strong information about re-

wards by restricting the prior to assign (uniform) nonzero probability only to the small range

of truly feasible rewards for each action. We wanted to test whether informative priors would

allow the agents to counter the effects of increasing penalty and stochasticity in this setting.

Results are shown in Figure 3.6 (averaged over 30 runs). For interest, we also plot the

results of the Bayesian methods with uninformed priors in the same graph. BVPI and BOL

outperform all other methods in term of dicounted reward; however, CBE and OBE failed to

take advantage of the informed priors, suffering big penalties in the initial learning stages, once

again ranking after WoLF. Not surprisingly, the BVPI and BOL agents with informative priors

do better than their “uninformed” counterparts; however, because of the high penalty (despite

the high discount factor), they converge to the suboptimal equilibrium most of the time (23 and

22 times, respectively, as shown in Table 3.7).

As seen in Table 3.7, none of the runs of the OBE or FMQ managed to converge in this

increased penalty/informed priors scenario. The model-based OBE agents are optimistic, and

also quite confident of the value of the joint actions (due to informed priors). Thus, they

alternated in choosing individual actions 0 or 2, without being able to coordinate in this game

that (unlike the Climbing Game) has multiple (2) optimal equilibria. This is due to the fact that

Optimistic Boltzmann exploration does not allow the agents to account for the strategy of the
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Figure 3.6: Penalty Game Results, k = −100, γ = 0.95, informed priors; y axis is discounted
accumulated reward (averaged over 30 runs).

BOL BVPI CBE OBE FMQ WoLF-PHC
OE 8 7 28 0 0 29
SE 22 23 2 0 0 1
NE 0 0 0 30 30 0

Table 3.7: Penalty game, k=-100: Number of runs converging to optimal equilibrium (OE),
suboptimal equilibrium (SE) or non-equilibrium (out of 30 runs). Convergence to NE usually
simply means the agents have not converged to playing some policy.
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other agent when estimating the value of their individual actions. As for the FMQ agents, they

fell prey to the increased penalty and increased stochasticity (higher rewards’ variance) of the

domain, while not being able to benefit from informed priors (as they do not employ a model).

Once again, it is worth noting that, in all cases, the agents employing the generic WoLF-PHC

algorithm outperform agents employing other non-Bayesian methods in terms of discounted

accumulated reward.

3.5.2 Multi-State Games

We also compared BVPI to WoLF-PHC in two multi-state coordination games. In both applica-

tion settings, the state transitions and rewards are stochastic, and the agents have uninformative,

uniform priors for the models describing state transitions, rewards and opponents’ strategies.

A Multiagent Chain World Domain

The first of our multi-state games is a version of the Chain World [DFA99] modified for mul-

tiagent coordination, and is illustrated in Figure 3.7(a).

The optimal joint policy is for the agents to do action a at each state, though these actions

have no payoff until state s5 is reached. Coordinating on b leads to an immediate, but smaller,

payoff, and resets the process.18 Unmatched actions 〈a, b〉 and 〈b, a〉 result in zero-reward self-

transitions (omitted from the diagram for clarity). Transitions are noisy, with a 10% chance

that an agent’s action has the “effect” of the opposite action. The original Chain World is

difficult for standard RL algorithms, and is made especially difficult here by the requirement

of coordination.

We compared BVPI to WoLF-PHC on this domain using two different discount factors,

plotting the total discounted reward (averaged over 30 runs) in Figure 3.7(b) and (c). There

were 50000 iterations per run. BVPI dominates Wolf-PHC in terms of online performance.

BVPI converged to the optimal policy in 7 (of 30) runs with γ = 0.99 and in 3 runs with

γ = 0.75, intuitively reflecting the increased risk aversion due to increased discounting. WoLF-

PHC rarely even managed to reach state s5, though in 2 (of 30) runs with γ = 0.75 it stumbled

across s5 early enough to converge to the optimal policy. It is obvious from the diagrams that

the Bayesian approach manages to encourage intelligent exploration of action space in a way

that trades off risks and predicted rewards; and we see increased exploration with the higher

18As mentioned, the rewards are stochastic, with means shown in the figure.
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Figure 3.7: Multiagent Chain World: Game and Results; y axis is discounted accumulated
reward (averaged over 30 runs).
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discount factor, as expected.

The Opt-In or Out Domain

The second multi-state game we experimented with is the “Opt-in or Out” game (Figure 3.1),

discussed in Section 3.2. The transitions are stochastic, with the action selected by an agent

having the “effect” of the opposite action with some probability. Two versions of the problem

were tested, one with low “noise” (probability 0.05 of an action effect being reversed), and one

with “medium” noise level (probability 0.11270167 of an action effect being reversed). With

low noise, the optimal policy is as if the domain were deterministic (the first agent opts in at

s1 and both play a coordinated choice at s2), while with medium noise, the “opt in” policy and

the “opt out” policy (where the safe move to s6 is adopted) have equal value.

BVPI is compared to WoLF-PHC under three different discount rates, with low noise results

shown in Figure 3.8 and Figure 3.9; and medium noise results in Figure 3.12 and Figure 3.13.

Once again, BVPI dominates WoLF-PHC, in terms of dicounted reward averaged over 30 runs

(with 5000 iterations per run).

The convergence results are presented in Figures 3.10(a) and 3.11(a). In the low noise

problem, BVPI converged to the optimal (“opt-in and coordinate”) policy in 18 (of 30) runs

with γ = 0.99, in 15 runs with γ = 0.75 and 12 times with γ = 0.5. The WoLF-PHC

agents converged in the optimal policy only once with γ = 0.99, but 17 times with γ = 0.75

and 10 with γ = 0.5 (probably because the lower discount factors helped them become more

confident in this policy earlier). Notice, however, that even in the γ = 0.75 and the γ =

0.5 cases—when WoLF-PHC achieved convergence to the optimal policy several times—the

average undiscounted accumulated reward was not significantly greater (or was even less) than

its reward at the 0.99 case (when it converged to the optimal policy only once), as shown in

Figure 3.10(b). This indicates that the WoLF-PHC agents encountered substantial difficulties

in their attempts to coordinate while learning to play the optimal policy.

With medium noise, BVPI chose the “opt in” policy in 10 (γ = 0.99), 13 (γ = 0.75) and 9

(γ = 0.5) runs, but learned to coordinate at s2 even when converging to the “opt out” policy.

Interestingly, WoLF-PHC always converged on the “opt out” policy (recall that both policies

are optimal with medium noise). Even in terms of undiscounted accumulated reward, BVPI

always substantially outperforms WoLF (as shown in Figures 3.10(b) and 3.11(b)).
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Figure 3.8: Opt-In or Out Results: Low Noise; y axis is discounted accumulated reward (aver-
aged over 30 runs).
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Figure 3.9: Opt-In or Out Results: Low Noise; γ = 0.99; y axis is discounted accumulated
reward (averaged over 30 runs).
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Figure 3.10: Opt-in or Out game, Low Noise; Convergence and Total Accumulated Reward.
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(b) Average (undiscounted) accumu-
lated reward (over 30 runs; 5000 itera-
tions/run).

Figure 3.11: Opt-in or Out game, Medium Noise; Convergence and Total Accumulated Re-
ward.
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Figure 3.12: Opt In or Out Results: Medium Noise; y axis is discounted accumulated reward
(averaged over 30 runs).
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Figure 3.13: Opt In or Out Results: Medium Noise; γ = 0.99; y axis is discounted accumulated
reward (averaged over 30 runs).

3.5.3 Discussion of Results

The experimental results presented demonstrate quite effectively that Bayesian exploration en-

ables agents to make the tradeoffs described. Our results show that this ability can enhance

online performance (reward accumulated while learning) of MARL agents in both single-state

and multi-state coordination problems, when compared to heuristic exploration techniques that

explicitly try to induce convergence to optimal equilibria. This implies that BAs run the risk of

converging on a suboptimal policy; but this risk is taken “willingly” through due consideration

of the learning process given the agent’s current beliefs about the domain.

Still we see that BAs often find optimal strategies in any case. Key to this is a BA’s will-

ingness to exploit what it knows before it is very confident in this knowledge—it simply needs

to be confident enough to be willing to sacrifice certain alternatives.19 Apart from dominat-

ing other methods in terms of discounted accumulated reward, our experiments show that BAs

perform well even in terms of undiscounted (total) accumulated reward, even when using un-

informative priors.

When comparing the performance of the Bayesian methods (BVPI and BOL) to eachother,

19We note that the behaviour of Bayesian agents in multiagent settings, as observed in our experiments, matches
their behaviour in single-agent settings—as reported in [DFR98, DFA99].
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we note that the BVPI method seems to be the more robust of the two in the face of in-

creased stochasticity (at least within the space of the single-state games, in which we pitted

them against eachother). This is indicated by the results in Figure 3.4 and Figure 3.6, where

BVPI is shown to outperform BOL (and all other methods). As mentioned earlier, we at-

tribute this to the fact that BOL’s myopic assumption (in single-state games), namely that the

action with the highest expected reward in the immediate successor belief state will be the

best action in all subsequent stages, is more likely to be flawed under increased stochasticity.

Further, it is worth noting that BVPI achieves good sequential performance while converg-

ing less frequently than BOL to optimal equilibria. Nevertheless, given adequate computa-

tional power, one would expect a multistage-lookahead approach to do better than any myopic

VPI-estimating algorithm—especially if the variance of the actual stochastic reward model is

high (in which case it is not very realistic to expect that VPI can be adequately approximated

with a small number of samples). On the other hand, of course, BVPI is the “computation-

ally cheaper” Bayesian solution (as it does not require dealing with multiple successor belief

states), and thus is a better candidate when computational power is an issue.

Though our results are definitely encouraging, our methods were only tested in domains

limited in size and nature (i.e., cooperative). It is important to test our approach in more

complex domains, including antagonistic ones, populated by large numbers of agents. When

dealing with more complex domains, exploring the use of more elaborate sampling techniques,

such as importance sampling and repair, would be definitely worthwhile—and the use of such

sampling techniques is expected to be essential for our methods to scale. Further, though

we did not explore this possibility here, it would certainly be of interest to assess sampling

complexity, and study how varying the number of samples used would affect the performance

of our algorithms. In general, we believe that efficient sampling is key to achieve scalability—

as sampling is required given the intractability of the POMDP solution, even when adopting

belief state lookahead approximations (since the number of successor belief states increases

with the number of joint actions, rewards, and actual states).

In Chapter 7 we elaborate a bit more on ways to improve and test the scalability of our

models and algorithms.

3.6 Conclusions

We have described a generic Bayesian approach to modeling MARL problems, that allows

agents to explicitly reason about their uncertainty regarding the underlying domain and the
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strategies of their counterparts. We have provided a formulation of optimal exploration under

this model and developed appropriate computational approximations for Bayesian exploration

in MARL. Further, our model-based Bayesian approach enables the agents to incorporate priors

in their reasoning, with the obvious benefits in flexibility—though initially erroneous priors

might lead to the inadequate exploration of the strategy space, and thus to convergence to

suboptimal policies. However, this is a necessary tradeoff in “optimal learning”, and key to

achieving satisfactory sequential performance.

In addition to models of the environment, the agents maintain models of their opponents.

Though we have experimented only with a simple opponent modeling technique—fictitious

play—in this chapter, our formulation allows for the incorporation of more sophisticated oppo-

nent modeling solutions. Fictitious play, though simple, is probably adequate for the restricted

class of repeated cooperative games we considered in our experiments here. However, more

elaborate techniques are required as the games played become more complicated. For exam-

ple, if a game in extensive form20 is assumed to being played, one could imagine maintaining a

prior over calculated equilibrium solutions corresponding to possible games potentially (given

their reward uncertainty) being played by the agents—though the efficient and accurate cal-

culation of such equilibria could be an issue. An agent could then sample that distribution to

come up with a probabilistic assessment of an opponent taking an action. Along similar lines,

assuming that the opponents’ strategies could be represented by finite state machines (FSMs),

each agent could maintain a prior over FSMs and use this to predict opponent behaviour. We

discuss this issue in some more detail in Chapter 7.

Our experiments, though limited, clearly indicate that the Bayesian approach leads to more

informed exploration for agents in multiagent settings. This results to better sequential perfor-

mance, with the Bayesian methods dominating the heuristic approaches they were compared

against in terms of discounted accumulated reward. Further, our Bayesian methods perform

reasonably well in terms of convergence to optimal equilibria, even though they come without

any such convergence guarantees.

In a nutshell, our work shows that Bayesian MARL methods allow the agents to learn how

to behave well, while behaving well while learning.

20In Chapter 5 we elaborate on games in extensive form and their equilibrium solutions.



Chapter 4

Bayesian Coalition Formation

In this chapter, we provide a Bayesian cooperative approach to coalition formation under un-

certainty. The creation of virtual organizations that have to interact under uncertainty regarding

the capabilities (types) of potential partners provides a motivation for our research, suggesting

potential applications in e-commerce: nowadays, there is an increasing need for open, de-

centralized computer systems that contain components representing distinct stakeholders with

different aims and objectives [DJP03]. Moreover, type uncertainty in the context of coalition

formation, which we coin here, poses interesting theoretical questions, such as the discovery of

analogs of the traditional concepts of coalitional stability. Traditional stability concepts do not

deal with the problem of uncertainty. In reality, however, uncertainty—regarding the types of

potential partners and the effects of actions that coalitions might take—influences the decisions

agents make in the coalition formation process, and the stability of the subsequently formed

coalitions.

Moreover, traditional cooperative coalition formation disregards—to a large extent—the

underlying bargaining process by which coalitions emerge. Nevertheless, increasingly, re-

search on dynamic coalition formation has tackled both the dynamics of the process by which

coalitions emerge, and the question of their stability. However, this research has not dealt ex-

tensively with the problem of uncertainty, either—and, perhaps surprisingly, it has not dealt

with type uncertainty at all.

To tackle those realistic and interesting issues, in Section 4.2 we define a Bayesian coali-

tion formation model that enables agents to have expected values about coalitions, given their

uncertainty regarding partners’ types. In this model agents must derive coalitional values by

reasoning about the types of other agents and the uncertainty inherent in the actions a coalition

may take (and the outcomes of those actions). To the best of our knowledge, ours is the first

86
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coalition formation model to deal with both those forms of uncertainty at the same time, and is

the first to deal with type uncertainty at all.

In Section 4.3 we define a stability concept under uncertainty, the Bayesian Core (BC), pre-

senting three versions of it: the weak, the strict and the strong BC—each one of them suitable

for describing a different notion of stability under uncertainty. Then, in Section 4.4, we deal

with the question of verifying the existence of stable coalitional configurations in our setting,

and we provide an algorithm to decide whether the BC is non-empty. In Section 4.5 we present

algorithms for dynamic coalition formation under uncertainty, thus linking the stability ques-

tion with the formation question (under uncertainty). We prove that one of these algorithms,

Best Reply with Experimentation (BRE), leads to stable (strong BC) structures.1 Finally, in

Section 4.6 we present some simple experiments used to verify the convergence properties of

our algorithms empirically.

Overall, we show that our framework and algorithms enable the agents to reach coali-

tional and payoff configurations that are stable given their beliefs regarding the types of others

and the values of coalitions. We believe that these ideas could be of value for e-commerce

and grid computing applications where trust among potential partners is an issue (see, e.g.,

[RRRJ07, TJJL06]), and also in general in environments where agents seek cooperative solu-

tions to problems of resource sharing and task allocation.

We start this chapter by providing a brief review of related work in Section 4.1. Parts of the

research described in this chapter appeared originally in [CB04] and [CMB07].

4.1 Related Work

In recent years, there has been extensive research covering many aspects of the coalition for-

mation problem. None has yet dealt with dynamic coalition formation under the “extreme”

uncertainty we tackle here—uncertainty regarding both the knowledge of the types of others

and the potential outcomes of coalitional actions. However, various coalition formation pro-

cesses and some types of uncertainty have been studied. Here we present briefly some related

work, upon which we draw.

Dieckmann and Schwalbe [DS98] recognize the need to deal with coalition formation in a

dynamic context, combining the study of questions of stability with the explicit monitoring of

the process by which the coalitions form. They describe a dynamic process of coalition forma-

1Some learning mechanism could prove to be valuable for tackling type uncertainty. However, we deal with
this issue in subsequent chapters.
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tion (a formation process that induces an underlying Markov process), but they do so under the

usual deterministic model, which assumes full information regarding coalitional values. This

process allows for exploration of suboptimal “coalition formation actions.” At each stage of

the process, assuming a given configuration of a coalition structure and associated allocations

of payoffs (or “demands”), with some specified small random probability γ, any player inde-

pendently may decide which of the existing coalitions to join, and states a (possibly different)

own payoff demand. A player will join a coalition if and only if it is in his best interest to do

so. These decisions are determined by a “non-cooperative best-reply rule”, given the coalition

structure and allocation prevailing in the beginning of the period: a player switches coalitions

if his expected payoff in the new coalition exceeds his current payoff; and he demands the most

he can get subject to feasibility. The players observe the coalitional structure and the demands

of the other agents in the beginning of the period, and expect the current coalition structure

and demand to prevail in the next period—which is not unrealistic if γ is small. (It is assumed

that formed coalitions do not abandon the process, but the agents continue to be present and

participate in the process until the end of all bargaining rounds. There are no explicit proposers

or responders: rather, the process evolves by the agents adjusting their coalitions and demands

as long as adjustments are feasible, given the configuration in place at each point in time.)

In some more detail, the process where all players adopt the best-reply rule corresponds to

a finite Markov chain with state space

Ω = {ω = (CS, d)|CS ∈ SC, d ∈ ×i∈NDi}

where SC is the space of all possible coalition structures and Di corresponds to a finite set of

demands2 for player i. Letting S(i) denote the coalition to which i belongs in any state ω, the

transition probability from ω to ω′ with corresponding (new) demand d′
i and coalition S ′(i) is

then

Pωω′ =
∏

i∈N

γβi(ω
′|ω)

where βi is defined by the best-reply rule as follows:

βi(ω
′|ω) > 0 iff

{ d′
i = di(ω), where di(ω) equals the maximum possible payoff for i given the other players’

2The demands are restricted to a finite set for reasons of computational tractability.
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demands:

di(ω) = max
S∈C∪{∅}

υ(S ∪ {i}) −
∑

j 6=i
j∈S

dj

s.t. di ∈ Di and S ′(i) is a coalition in which d′
i can be achieved given the demands of its

members }

In words, a state ω′ is reached if and only if all “adjusting” players make their maximum

feasible demands. This Markov process is shown to have at least one absorbing state. Now,

if the players are assumed to explore with myopically suboptimal actions, the process is trans-

formed to a related “best reply with experimentation” process.3 [DS98] prove that if the core

is non-empty, each core allocation corresponds to an absorbing state of this new process, and

each absorbing state of this process can be associated with a core allocation. Furthermore, the

process is proved to converge to a core allocation (i.e., an absorbing state) with certainty (if the

core is non-empty). However, Dieckmann and Schwalbe’s model does not explicitly allow for

the agents to suggest and agree on coalitional actions to perform. Their work is influenced by

the work of Agastya [Aga97], which is, unlike [DS98], confined to superadditive environments.

Konishi and Ray [KR02] study a somewhat related coalition formation process. Coalitions

move to a new state (to a new coalition structure, accompanied by a corresponding payoff

allocation) only if the move is profitable to all members of the coalition. The agents have

common beliefs about the probability with which the state transitions may occur. There is no

uncertainty regarding the payoff function or the partners’ types.

Suijs et al. [SBWT99, SB99] introduce stochastic cooperative games (SCGs), comprising

a set of agents, a set of coalitional actions, and a function assigning to each action a random

variable with finite expectation, representing the payoff to the coalition when this action is

taken. As was mentioned in Chapter 2, [SBWT99, SB99] use relative shares for the allocation

of the residual of the stochastic coalitional values, and make the—in some cases unrealistic—

assumption that agents have common expectations regarding expected coalitional values. These

papers provide strong theoretical foundations for games with this restricted form of uncertainty,

and describe classes of games for which the core of a SCG is non-empty—they basically focus

on proving theoretical results about the existence of the core of such games, without modeling

an explicit coalition formation process. Also, in contrast to our approach, no assumption of

incomplete information about partners’ types is made, and thus there is no direct translation

of type uncertainty into coalition value uncertainty. However, [SBWT99] discusses the effect

3We omit the details here, but we note that this dynamic process is intuitively similar to the BRE process that
we define later in this chapter—but with several important differences, as we will be explaining.
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that different types of agents’ risk behaviour might have concerning the existence of a core

allocation within a specific class of SCG games.

Yamamoto and Sycara [YS01] and Li and Sycara [LS02] have also proposed versions of a

core concept for use alongside coalition formation protocols enabling group buying and group

bidding activities in e-marketplaces under incomplete information. However, these core ver-

sions refer to stability based on payoff sharing within only a single coalition, and not across

coalitions. Nevertheless, Li et al. [LCRS03] propose a different core concept refering to sta-

bility across all coalitions in an e-marketplace where the buyers come together to profit from

group discounts. This core characterizes stability based on the reported utility of the coalitions’

members. This paper also interestingly presents a payoff division protocol (or “mechanism”)

that is empirically shown to maximize the social welfare while leading to stable outcomes and

incentivising the buyers to truthfully reveal their valuations.4 Though incomplete information

is assumed in all these three papers, there is also use of a central “group leader” agent or a

manager to which the agents report their preferences.

More recently, Blankenburg et al. [BKS03] has dealt with coalition formation in fuzzy co-

operative games, introducing the fuzzy kernel stability concept. However, this work makes the

assumption that all agents share the same understanding regarding the fuzziness of coalitional

values, and it does not deal with the more general notion of type uncertainty—nor does it deal

with the problem of coalitional action selection.

Finally, Yokoo et al. [YCS+05] have coined the anonymity-proof core and the core for

skills concepts, to be used in contexts where the skills (or, types) of agents are private informa-

tion. However, these concepts do not take into account the uncertainty or beliefs of the agents

regarding the type of others. Rather than ensuring that coalitions in the core are deviation-

proof, which is a central requirement from any core concept, these concepts rely on the agents

reporting their types to a special “mechanism designer” agent, whose task is to implement a

payoff allocation function that produces an outcome in the core. They then proceed to show

that such a function exists if a set of axioms is satisfied. This work does not deal with any sort

of decentralized coalition formation process.

4However, these results are empirical: as a matter of fact, the paper presents a negative, impossibility result on
the question of existence of an “incentive compatible” mechanism for such coalitional games.
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4.2 A Bayesian Coalition Formation Model

The need to address type uncertainty, reflecting an agent’s uncertainty about the abilities of

potential partners, is critical to the modeling of realistic coalition formation problems. For

instance, if a carpenter wants to find a plumber and electrician with whom to build a house,

his decision to propose (or join) such a partnership, to engage in a specific type of project,

and to accept a specific share of the surplus generated should all depend on his (probabilistic)

assessment of their abilities. To capture this, we start by introducing the problem of Bayesian

coalition formation under type uncertainty. We then show how this type uncertainty can be

translated into coalitional value uncertainty.

A Bayesian coalition formation problem (or game) is characterized by a set of agents, a set

of types, a set of coalitional actions, a set of outcomes or states, a reward function, and agent

beliefs over types:

Definition 3 (Bayesian coalition formation problem (BCFP)). A Bayesian coalition forma-

tion problem (BCFP) is a coalition formation problem that is characterized by a set of agents,

N ; a set of types Ti for each agent i ∈ N ; a set AC of coalitional actions for each coalition

C ⊆ N ; a set O of stochastic outcomes (or states); with transition dynamics Pr(s|αC, tC)

denoting the probability of an outcome s ∈ O given that coalition C with members type vector

tC takes coalitional action αC; a reward function R : O −→ <; and agent beliefs Bi for each

agent i ∈ N comprising a joint distribution over types T−i of potential partners.

We now describe each of the BCFP components in turn: We assume a set of agents N =

{1, . . . , n}, and for each agent i a finite set of possible types Ti. Each agent i has a specific

type t ∈ Ti, which intuitively captures i’s “abilities”. We let T = ×i∈NTi denote the set of

type profiles. For any coalition C ⊆ N , TC = ×i∈CTi, and for any i ∈ N , T−i = ×j 6=iTj .

Each i knows its own type ti, but not those of other agents. Agent i’s beliefs Bi comprise a

joint distribution over T−i, where Bi(t−i) is the probability i assigns to other agents having

type profile t−i. We use Bi(tC) to denote the marginal of Bi over any subset C of agents, and

for ease of notation, we let Bi(ti) refer to i “beliefs” about its own type (assigning probability

1 to its actual type and 0 to all others).

A coalition C has available to it a finite set of coalitional actions AC . We can think of

AC as the set of decisions available to C on how to deal with the underlying task at hand—or

even a decision on what task to deal with. When an action is taken, it results in some outcome

or state s ∈ O. The odds with which an outcome is realized depends on the types of the
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coalition members (e.g., the outcome of building a house will depend on the capabilities of the

team members). We let Pr(s|α, tC) denote the probability of outcome s given that coalition

C takes action α ∈ AC and member types are given by tC ∈ TC . Finally, we assume that

each stochastic state s results in some reward R(s). If s results from a coalitional action, the

members are assigned R(s), which is assumed to be divisible/transferable among the members.

We can also define a BCFP subgame as follows:

Definition 4 (Subgame of a Bayesian coalition formation problem). Let N be a set of agents,

and S ⊆ N . The S-agent subgame of a Bayesian coalition formation problem (game) with N

agents, is defined as the BCFP with agents S whose sets of types, beliefs, coalitional actions,

outcomes, transition dynamics and reward function are the restriction of their corresponding

elements in the N -agent problem.

Thus, for example, an agent i in the S-agent subgame has the same beliefs regarding po-

tential partners in S as it has in the N -agent game.

Now we turn to the problem of showing how the type (and action) uncertainty that is incor-

porated in a BCFP’s definition can be translated into coalitional value uncertainty. In a BCFP

setting, the value of coalition C with members of type tC is:

V (C|tC) = max
α∈AC

∑

s

Pr(s|α, tC)R(s) = max
α∈AC

Q(C, α|tC) (4.1)

where, intuitively, Q(C, α|tC) represents the value (or quality) of coalitional action α to coali-

tion C that is made up of members with types tC . V (C|~tC) therefore represents the (maximal)

payoff that coalition C can obtain by choosing the best coalitional action. Unfortunately, this

coalition value cannot be used in the coalition formation process if the agents are uncertain

about the types of their potential partners (since any potential partners may have one of several

types, any agent in any C would be uncertain about the type profile tC of its members, and

thus about the value V (C)). However, each agent i has beliefs about the value of any coalition

based on its expectation of this value with respect to other agents’s types:

Vi(C) = max
α∈AC

∑

tC∈TC

Bi(tC)Q(C, α|tC) = max
α∈AC

Qi(C, α) (4.2)

where, intuitively, Qi(C, α) represents the expected value (or, expected quality) of α to coali-

tion C, according to i’s beliefs. Note that Vi(C) is not simply the expectation of V (C) with

respect to i’s belief about types. The expectation Qi of action values (i.e., Q-values) cannot be
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moved outside the max operator: a single action must be chosen which is useful given i’s un-

certainty. Of course, i’s estimate of the value of a coalition, or any coalitional action, may not

conform with those of other agents (e.g, i may believe that k is extremely competent, while j

may believe that k is incompetent; thus, i will believe that coalition 〈i, j, k〉 has a much higher

value than j does). This leads to additional complexity when defining suitable stability con-

cepts. We turn to this issue in the next section. However, i is certain of its reservation value,

the amount it can attain by acting alone:

rv i = Vi({i}) = max
α∈A{i}

∑

s

Pr(s|α, ti)R(s)

4.3 The Bayesian Core

We define an analog of the traditional core concept for the Bayesian coalition formation sce-

nario. The notion of stability is made somewhat more difficult by the uncertainty associated

with actions: since the payoffs associated with coalitional actions are stochastic, allocations

must reflect this [SBWT99, SB99]. Stability is rendered more complex still by the fact that

different agents have potentially different beliefs about the types of other agents.

Because of the stochastic nature of payoffs, we assume that agents join a coalition with

certain relative payoff demands. Intuitively, since the agents cannot expect to have an accurate

estimate of the coalition payoffs (and, consequently, the payoff shares of coalition members),

it is more natural for them to take into consideration relative demands; these correspond to the

perceived “power structure” within the coalition and can be used for the allocation of unex-

pected gains or losses:5

Let d represent the payoff demand vector 〈d1, . . . , dn〉, and dC the demands of those agents

in coalition C, assuming that these (actual) demands are observable by all agents. For any agent

i ∈ C we define the relative demand of agent to be ri = di
P

j∈C dj
. If reward R is received by

coalition C as a result of its choice of action, each i receives payoff riR. This means that the

gains or losses deriving from the fact that the reward function is stochastic are expected to be

allocated to the agents in proportion to their agreed upon demands. As such, each agent has

beliefs about any other agent’s expected payoff given a coalition structure and demand vector.

Specifically, agent i’s beliefs about the (maximum) expected stochastic payoff of some agent

5Incidentally, it should be clear given this transferable utility-based model that it is not true that the agents
would prefer to participate in coalitions with skilled partners (since this would not necessarily increase their
individual payoffs).



CHAPTER 4. BAYESIAN COALITION FORMATION 94

j ∈ C is denoted

p̄i
j = rjVi(C)

with rj being the relative demand of agent j given the stated demands of the agents in C, and

Vi(C) the value that i expects C to have (recall that Vi(C) is defined as the maximum over

coalitional actions). Similarly, if i ∈ C, i believes its own (maximum) expected payoff to be

p̄i
i = riVi(C).

A difficulty with using Vi(C) in the above definition of expected stochastic payoff is that

i’s assessment of the best (expected reward-maximizing) action for C is not necessarily shared

by the rest of the agents: they most probably have their own views on the issue (for example, j

might believe that it is better for coalition C in which j and i belong to take action α1, while

i believes—because he has his own estimates regarding C’s members capabilities—that it is

better for C to perform α2). Therefore, we suppose instead that coalitions are formed using a

process by which some coalitional action α is agreed upon, much like demands. In this case,

i’s beliefs about j’s expected payoff is p̄i
j(α, C) = rjQi(C, α). Finally, we let p̄i

j(C, dC , α)

denote i’s beliefs about j’s expected payoff if it were a member of any C ⊆ N with demand

dC taking action α:

p̄i
j(C, dC , α) =

djQi(C, α)∑
k∈C dk

= rjQi(C, α) (4.3)

In the same way, we define:

p̄i
i(C, dC , α) =

diQi(C, α)∑
k∈C dk

= riQi(C, α) (4.4)

Intuitively, if a coalition structure and payoff allocation are stable, we would expect that

no agent believes it will receive a payoff (in expectation) that is less than its reservation value.

Further, Bayesian stability, given that beliefs may vary widely across the agents, may have

several dimensions, such as the following: (a) based on its beliefs, no agent will have an

incentive to suggest that the coalition structure (or its allocation or action choice) is changed—

specifically, there is no alternative coalition it could (reasonably) expect to join that offers it

a better payoff than it expects to receive given the action choice and allocation agreed upon

by the coalition to which it belongs, and (b) even if there exist agents that may believe that

deviation can pay off, (Bayesian) stability will still depend on the beliefs of their potential

partners.

Thus, we first define the weak Bayesian core (BC) of a BCFP as the set of coalitional

configurations—each consisting of a coalition structure, a demand (or a relative demand) vec-
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tor, and a coalitional action vector—that satisfy the above requirements in the following man-

ner:

Definition 5 (weak Bayesian core). Let 〈CS , d, α〉 be a coalition structure-demand vector-

action vector triplet, with Ci denoting the C ∈ CS of which i is a member (and let r be the

relative demand vector corresponding to d). Then, 〈CS , d, α〉 (or, equivalently, 〈CS , r, α〉) is

in the weak Bayesian core of a BCFP iff there is no coalition S ⊆ N , demand vector dS and

action β ∈ AS s.t. p̄i
i(S, dS, β) > p̄i

i(Ci, dCi
, αCi

), ∀i ∈ S, where dCi
, αCi

is the restriction of

d, α to the Ci coalition.

In words, there exists no coalition all of whose members each believe that they (personally)

can be better off in it (in terms of expected payoffs, given some choice of action) than they

currently are (within the current weak Bayesian core configuration). The agents’ beliefs, in

every C ∈ CS , “coincide” in the weak sense that there is a payoff allocation dC and some

coalitional action αC that is commonly believed to ensure a better payoff. This doesn’t mean

that dC and αC is what each agent believes to be best. But an agreement on dC and αC is

enough to keep any other coalition S from forming. Even if one agent proposed its formation,

others would disagree because they would not expect to become strictly better off themselves.

Notice that the (deterministic) core is a special case of the weak Bayesian core of a game,

where all the agents have perfect information regarding the types of others (and, therefore,

regarding coalitional values).

In BCFPs with continuous payoffs, the transferability of utility implies that if a new coali-

tion makes any agent strictly better off with respect to his beliefs without making other agents

worse off with respect to their own beliefs, then it can make all members strictly better off

(with respect to their beliefs) through a suitable adjustment of relative demands.6 However, if

we assume finite demands, this is no longer the case. We can then define a stronger version of

the Bayesian core, by demanding that there is no agent who believes that there exists a coali-

tional agreement that can make it strictly better off while not hurting the other members of the

coalition, according to their own beliefs:

Definition 6 (strict Bayesian core). Let 〈CS , d, α〉 be a coalition structure-demand vector-

action vector triplet, with Ci denoting the C ∈ CS of which i is a member (and let r be the

relative demand vector corresponding to d). Then, 〈CS , d, α〉 (or, equivalently, 〈CS , r, α〉) is

6Intuitively, if a new deal X makes a member of, say, a 4-agent coalition strictly better off by 4ε (where ε
small) than an old deal Y , without hurting the rest of the agents with respect to their beliefs, then there exists a
deal Z under which all 4 members can be strictly better off by ε each, rather than under the deal Y .
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in the strict Bayesian core of a BCFP iff there is no coalition S ⊆ N , demand vector dS and

action β ∈ AS s.t., for some i ∈ S,

p̄i
i(S, dS, β) > p̄i

i(Ci, dCi
, αCi

)

and

p̄j
j(S, dS, β) ≥ p̄j

j(Cj, dCj
, αCj

)

∀j ∈ S, j 6= i.

The stability condition is a bit different now: Intuitively, agents “allow” the formation of

coalitions in which they may be weakly better off. Of course, in the continuous demands case

the strict BC coincides with the weak BC—specifically, the p̄j
j(S, dS, β) ≥ p̄j

j(Cj, dCj
, αCj

)

condition above loses its significance. This is because, as was explained above, the continuity

of the payoffs ensures that there are always ways to make the partners of the strictly better off

agent strictly better off themselves, if they believe that the new deal will not hurt them. (This

results to points that would have been in the weak BC in the finite demands case to not belong

to the weak BC anymore in the continuous demands case—we will demonstrate this through

an example shortly.) But in the finite demands’ case, for which the strict BC is defined, these

concepts are distinct and this new core concept is stricter, because we now demand that there is

not even one agent that believes he will be better off in some S, with the others believing that

S is not harmful. The “strict” core is stricter in the sense that it is a subset of the weak core:

Observation 3. The strict Bayesian core is a subset of the weak Bayesian core.

To see an example of this, and highlight the differences between the strict and the weak

BC, consider the following scenario (in which we assume for simplicity that there exists only

one coalitional action possible for all coalitions):

Example 1. Assume a BCFP with finite demands, discretized by δ = 10%, with participating

agents a, b, y, z and coalitions C1 = 〈a, b〉, C2 = 〈y, z〉 and S = 〈a, b, y, z〉 with payoff

allocations dC1
, dC2

, dS such that:

pa
a(C1, dC1

) = 100, pb
b(C1, dC1

) = 100

py
y(C2, dC2

) = 200, pz
z(C2, dC2

) = 200

and

pa
a(S, dS) = 150, pb

b(S, dS) = 100, py
y(S, dS) = 200, pz

z(S, dS) = 200
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with dS = {10%, 10%, 40%, 40%} for a, b, y, z respectively, and dC1
= dC2

= {50%, 50%}

for their members; say that the corresponding beliefs of the agents for the values of these

coalitions are υa(C1) = υb(C1) = 200 (i.e., agents a and b share the same beliefs for the value

of C1), υy(C2) = υz(C2) = 400 (similarly, y and z both believe that υ(C2) = 400), while

υa(S) = 1500, υb(S) = 1000, υy(S) = 500 and υz(S) = 500; and say that for all other

potential coalitions the estimated pi
i values of any agent i are strictly less than those above

(say zero).

Then, configuration 〈{C1, C2}, dC1C2
= 〈dC1

◦ dC2
〉〉7 is in the weak BC: Even though

a believes that pa
a(S, dS) = 150, and has an incentive to propose S, not all agents in S

believe that they are strictly better off (all others expect to receive the same payoffs as in

〈{C1, C2}, dC1C2
〉). Thus, 〈{C1, C2}, dC1C2

〉 is stable in this sense—if S is proposed, others

will say “no” because they are not strictly better off.8 (Also, trivially, if a would suggest any

other payoff allocation in the coalition C1, instead of dC1
, in which he would be better off—i.e.,

would expect a higher share—b would have disagreed because he would actually expect to be

worse off in this two-agent coalition).

However, 〈{C1, C2}, dC1C2
〉 is not in the strict BC. This is because there exists one agent,

a, that believes he is strictly better off in S, and others believe they won’t be harmed in S (and

so, intuitively, assuming that a proposes S, it will form, given the stability requirement of the

“strict” BC concept—thus, 〈{C1, C2}, dC1C2
〉 is not stable).

It is trivial to show that configuration 〈{S}, dS〉 belongs in both the weak and the strict

BC. Thus, in this example the weak BC has two elements (as we assumed that all agents expect

strictly less payoff in every other coalition), and the strict BC has only one element (and is a

subset of the weak BC).

The definition of the strict BC allows us to get some interesting results for games with finite

demands. We present these results later in the current and next chapter of this dissertation.

We can also define a different stability concept, which we call the strong BC (and which is

defined both for finite and continuous demands). The strong BC requires that there is no agent

who believes there is an agreement that can make it better off and that it expects all partners

to accept based on (its subjective view of) their expected payoff. This differs inherently from

the weak and the strict core in that the agent assesses its own beliefs about the value of an

7Notation d ◦ x denotes a vector that is a union of disjoint vectors.
8Notice that if the demands were not discretized as they are, 〈{C1, C2},dC1C2

〉 would not have been in the
weak BC: there would have been a continuum of allocations for S that could have made all agents in S strictly
better off than in 〈{C1, C2},dC1C2

〉, given their beliefs on the coalitional values; for example, one such allocation
for S could have been the allocation {9.7%, 10.1%, 40.1%, 40.1%} for agents a, b, y, z respectively.
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agreement to its partners.

Definition 7 (strong Bayesian core). Let 〈CS , d, α〉 be a coalition structure-demand vector-

action vector triplet, with Ci denoting the C ∈ CS of which i is a member (and let r be the

relative demand vector corresponding to d). Then, 〈CS , d, α〉 (or, equivalently, the 〈CS , r, α〉

triplet) is in the strong Bayesian core iff there is no coalition S ⊆ N , demand vector dS and

action β ∈ AS s.t. for some i ∈ S

p̄i
i(S, dS, β) > p̄i

i(Ci, dCi
, αCi

)

and

p̄i
j(S, dS, β) ≥ p̄i

j(Cj, dCj
, αCj

)

∀j ∈ S, j 6= i.

The strong BC describes a notion of stability that is more tightly linked to the agents’ sub-

jective views on the potential acceptability of their proposals and is thus more “endogenous” in

nature. By comparison, stability in the strict BC concept (and weak BC) is somewhat distinct.

In an element of the strict BC, there may be an agent i who believes it would be strictly better

off in some other coalition, and who believes all of its proposed partners would be better off as

well; but the coalition may be considered unacceptable to some proposed partner j (who might

believe that it will be hurt—that is, that he will not be even weakly better off), since its beliefs

about the value of the coalition are different than those of i.

The following is an obvious fact (for the case of finite demands, for which the stict BC is

defined):

Observation 4. If the agents’ beliefs coincide, the strict and the strong Bayesian core coincide.

(In that case, the p̄i
j and p̄j

j estimates coincide, and the concepts’ definitions become exactly

identical.)

We can also make the following observation9:

Observation 5. Let 〈CSN , d, α〉 be an element of (any version of) the BC of a BCFP with

agents N . If S ∈ CSN , L = N \ S, CSL = CSN \ S and dL, αL is the restriction of d, α to

the agents in L, the tuple 〈CSL, dL, αL〉, which is contained in the 〈CSN , d, α〉 configuration,

is an element of the BC of the corresponding BCFP subgame with L agents.

9This observation will prove to be useful in Chapter 5 when proving a proposition linking bargaining equilibria
to the BC concept.
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Proof: Assume that the configuration in the L-agent subgame is such that 〈CS L, dL, αL〉

is not in the subgame BC. Then it is not possible that its extension configuration 〈CS N , d, α〉

is in the N -agent game BC (contradiction).

This is because if, for example, an agent i in the L = N \ S subset believed that he could

do better in some coalition other than his current Ci, he would have believed this when the S

coalition was present, as well; in that case, 〈CSN , d, α〉 couldn’t have been a BC element. 2

Notice that Observation 5 holds for all versions of the BC.

4.4 Existence of the Bayesian Core

Noting that the (deterministic) core is a special case of the (weak) Bayesian core, it is easy to

show that (any type of) the Bayesian core does not always exist:

Proposition 1. There exist BCFP for which the Bayesian core (weak, strict or strong) is empty.

Proof: If the beliefs of the agents regarding all coalition values coincide, then the strong

and the strict Bayesian core coincide (Observation 4), and they are a subset of the weak

Bayesian core (by Observation 3).10

With the beliefs of all agents coinciding, which is possible only if all agents know the true

types of other agents (since each agent knows its own true type), the BCFP is equivalent to

a characteristic function game and the weak Bayesian core coincides with the (deterministic)

core of the game. Since there exist characteristic function games with empty core, and any

such game can be recast as a BCFP with “perfect” beliefs, it follows that there exist BCFP for

which the Bayesian core is empty. 2

In deterministic settings, or in uncertain settings that at least make superadditivity and

some common knowledge assumptions (such as [SBWT99, SB99]), it is possible to provide

generic necessary and sufficient conditions for the existence of the core. Briefly, such con-

ditions specify the relationships between the various coalitional values of (any) given setting.

The satisfaction of those conditions can be provided as the solution to a linear programming

problem—in deterministic (and superadditive) environments—and it defines what is described

10This argument holds assuming finite demands. If continuous demands are assumed (in which case the strict
BC is not properly defined), it is easy to show (by contradiction) that “if the beliefs of the agents coincide, then
any point in the strong BC also lies within the weak BC”.
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by the term balancedness of a coalitional game. [Bon63] and [Sha67] used the duality theory

of linear programming to show that a deterministic coalitional game has a non-empty core iff

it is “balanced”.

Naturally, when dealing with type uncertainty, it would be impossible for one to provide

generic conditions for the existence of the Bayesian core without taking the beliefs of the vari-

ous agents into account—since the BC existence depends on them. It is unlikely, however, that

such generic conditions can be identified without making assumptions about some degree of

common knowledge,11 or about some form of coalitional value (super)additivity.12 The former

assumption is a concession that could significantly restrict the generality of any corresponding

coalition formation model.13 At the same time, there exists no obvious (at least to us) way to

define superadditivity in an uncertain environment without making any such concessions.

Nevertheless, it would be of interest to devise algorithmic methods to try and establish the

existence of the Bayesian core (or its non-existence) in specific games. This is of obvious

practical value, since if we manage to devise such an algorithmic method for specific classes

of games, or for games of specific sizes, we essentially achieve to compute the Bayesian core

stability solution without turning to exhaustive search.

Of course, even in a deterministic setting where there is no uncertainty, testing for the

nonemptiness of the core is an intractable problem. In fact, even in superadditive games,

where the coalition structure is simply the grand coalition N and we only need to find an

allocation of payoffs to the agents, there exist results that show that the problem is NP-hard

[Chv78, Tan91, DP94, CS03]. In the absence of superadditivity, as is our case, there are even

worse lower bounds on the complexity of the problem. Sandholm et al.[SLA+99] show that in

order to find an approximately optimal coalition structure14 (i.e., in order to be able to establish

a bound from the optimum), exponentially many (at least 2n−1, if n agents) coalition structures

have to be searched. All these suggest that an efficient algorithm for verification of the BC’s

11Or even, perhaps, about the presence of a “more informed” agent with the ability to act as as a central manager
assigning agents to coalitions, or as a trusted party disseminating information. However, such assumptions would
constitute serious departures from a decentralized coalition formation model such as ours.

12We note, however, that in Chapter 5 we establish a result that can be used for the theoretical verification of
the existence of the Bayesian core without making any such concessions. However, we established that result
(Corollary 1) in a particular bargaining setting, and under specific assumptions regarding the bargaining strategies
of the agents.

13The lack of superadditivity makes our framework more general, as we tackle the problem of forming re-
warding coalition structures in addition to deriving acceptable payoff allocations. Furthermore, letting agents
choose their coalitions makes our coalition formation model more easily applicable to a wide range of economic
problems, such as “local public good economies”, where participating individuals care about the number and
characteristics of people in their coalition [Woo99].

14This was in terms of social welfare.
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existence is unlikely.

Here we show that for a relatively small number of agents it is feasible to check for the

nonemptiness of the Bayesian core without employing a brute-force approach that simply

searches over all coalition structures. We formulate the problem as a constraint satisfaction

problem (CSP) where the constraints are polynomial equalities or inequalities (i.e., we formu-

late it as a polynomial constraint satisfaction program). One could then use existing algorithms

that solve such CSPs (we refer, e.g., to [BPR03] for algorithms with worst case analysis of

their running time and to [Stu02] for heuristic approaches). Moreover, this program offers a

concise way to describe existence conditions under the (realistic) uncertainty assumptions of

our model.

Before we present the polynomial program that solves our problem, we make some simpli-

fying assumptions. First, we assume that for each coalition there is a finite number d of possible

relative demand vectors that one could propose (i.e., there is a finite number of possible ways in

which the agents will split the payoff of the coalition). From a practical perspective, d should

be reasonably small. This is of course only a coarse discretization of demands; nevertheless,

such a discretization is not uncommon in realistic settings.15 Also, without loss of generality,

assume that each coalition has k available actions (these could have been coalition-specific, but

we consider them to be the same for each coalition for notational simplicity).

The CSP that we present below tests the nonemptiness of the weak Bayesian core and has

four types of variables. Similar CSPs can be written for the strict and the strong BC too. For

each coalition S, there is a binary indicator variable XS which indicates whether coalition

S will form in the coalition structure that we are looking for. We also have a variable ρi

for each agent i that indicates the share that i will have in the coalition to which he belongs.

Furthermore, let Qi(S, j) denote the payoff that coalition S gets if the jth action is taken (recall

there are k actions available). Then for each coalition S and action j, j = 1, ..., k we have an

indicator variable αS
j that indicates whether action j is taken or not (if coalition S forms).

Finally, for each possible deviation from the core, say 〈T, r, β〉, where r is a |T |-dimensional

relative demand vector 〈r1, ..., r|T |〉 and β is one of the k available actions to coalition T ,

we have an auxiliary variable ZT,r,β whose role is to ensure that it cannot be the case that

all agents gain more expected payoff if they deviate to T . When we write “∀T, r, β” in the

program below, we intend “∀T ⊆ N , ∀r = 〈r1, ..., r|T |〉, ∀β ∈ {1, ..., k}”.

15Consider, for example, the case of stakeholders controlling shares of a company: it is reasonable to assume
that each stakeholder controls an integer-valued percentage of the shares.
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XS(1 − XS) = 0 ∀S ⊆ N (4.5)

XS(1 −
∑

i∈S

ρi) = 0 ∀S ⊆ N (4.6)

ρi ≥ 0 ∀i ∈ N (4.7)
∑

S:i∈S

XS = 1 ∀ i ∈ N (4.8)

αS
j (1 − αS

j ) = 0 ∀S ⊆ N, j ∈ {1, ..., k} (4.9)

∏

i∈T

[ZT,r,β − (riQi(T, β) − ρi

∑

S:i∈S

XS

k∑

j=1

αS
j Qi(S, j))] = 0

∀T, r, β (4.10)

ZT,r,β ≤ riQi(T, β) − ρi

∑

S:i∈S

XS

k∑

j=1

αS
j Qi(S, j)

∀T, r, β, i ∈ T (4.11)

ZT,r,β ≤ 0 ∀T, r, β (4.12)

Proposition 2. The above program is feasible iff the weak BC of the corresponding game is

non-empty.

Proof. Suppose that the program is feasible and consider a solution. Then constraints (4.5)

and (4.9) ensure that the variables XS and αS
j are integer 0/1 variables. Hence we can see

them as indicator variables, indicating which coalitions were chosen by the solution and which

action was taken (if XS = 1 we consider that coalition S forms). The constraints (4.8) ensure

that the coalitions that form make up a coalition structure; each agent belongs to exactly one

of them. Constraints (4.6) and (4.7) ensure that for any coalition that forms, the shares ρi for

i ∈ S form a valid (relative) demand vector. The rest of the constraints ensure that there is no

coalition T , demand vector r and action β that would make all agents of T better off. For a

coalition T and an agent i ∈ T , let εi be the amount by which i’s payoff changes if he deviates

from the solution to the program to 〈T, r, β〉. The constraints (4.10) and (4.11) make sure that

the variable ZT,r,β is equal to mini εi because the expression ρi

∑
S:i∈S XS

∑k
j=1 αS

j Qi(S, j)

is equal to the expected payoff of agent i under the feasible solution of the program (recall that

only one of the variables XS with i ∈ S is set to 1 and the rest are 0). To elaborate, for any i—

and for any agreement 〈T, r, β〉—the variable ZT,r,β is less than or equal to (thus, the minimum
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of) the difference between what i could get from 〈T, r, β〉 and what his expected payoff in the

feasible solution is. Finally, the last constraint ensures that for any 〈T, r, β〉, miniεi ≤ 0,

which means that there is no coalitional agreement that can make all agents strictly better off.

Therefore, the feasible solution of the program consists of such values for the XS, αS
j and

ρi variables that a coalition structure CS is defined (made up from the S coalitions for which

XS = 1), along with corresponding actions αS and relative demand vectors 〈ρi〉 corresponding

to dS demands for each coalition. This configuration is such that there is no coalition T ⊆ N ,

demand vector dT and action β ∈ AT s.t. p̄i
i(S, dS, β) > p̄i

i(Ci, dCi
, αCi

), ∀i ∈ S. In words,

the feasible solution defines a configuration that is in the weak BC, and thus the weak BC is

non-empty.

The reverse direction is straightforward. Given a configuration in the weak BC, with a

corresponding configuration of XS, αS
j and ρi variables, the constraints of the above program

are satisfied (by the weak BC definition), and thus the program is feasible.

The number of variables in the program above is O(kd2n), where k is the number of ac-

tions, d the number of demand vectors, and n the number of agents. Moreover, the degree of the

polynomials above can be (at worst) n, due to constraint 4.10. Although the worst case running

time guarantees for such a program would be as high as nO(kd2n) according to [BPR96] (which

clearly is prohibitively high for most realistic settings), the program can be solved heuristi-

cally16 for small problem size [Stu02]; further, it might be possible to linearize the program

and solve it with an appropriate technique [Gro02]. Thus, in addition to providing a concise

presentation of the existence constraints, in the case of small games the program enables us to

solve the BC non-emptiness problem faster than a brute-force search approach.

We note, however, that in the next chapter we establish a result that can be used for the the-

oretical verification of the existence of the Bayesian core—but in a specific bargaining setting,

and under specific assumptions regarding the bargaining strategies of the agents.

16For example, the feasibility of the polynomial program can be tested using semidefinite programming (SDP)
techniques, such as the Dth SDP relaxation technique [Stu02]. This uses semidefinite programming (and ap-
propriate software tools, such as Matlab) to find an infeasibility witness of degree D such that a polynomial
identity—consisting of the system’s polynomials multiplied with polynomials that are sums of squares—equals
to zero. This technique is based on the Real Nullstellensatz theorem [Ste74].
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4.5 Dynamic Coalition Formation

We now propose a protocol for dynamic coalition formation under uncertainty. The protocol

is related to the one presented in [DS98], but with several important differences: it deals with

expected, rather than certain, coalitional values (translating type uncertainty into coalitional

value uncertainty); it requires the agents to explicitly state proposals and responses (since

the feasibility of the agents proposals is not common knowledge); it has to account for the

expected—rather than certain—feasibility of formation proposals, defined given each agent’s

beliefs; and it allows for the proposal of a coalitional action during formation.

We incorporate the proposal of coalitional actions in the dynamic formation process, since

the coalitions, once formed, will eventually have to act. Therefore it is natural that deciding

on the coalitional action to take should be part of the formation process. It is precisely for the

value derived by an anticipated action to be performed that an agent decides to join a coalition

in the first place. Moreover, since the agents have different views of the types of others and the

values of coalitions, there exists no obvious “optimal” action for a coalition to take, thus it has

to be agreed upon during negotiations. Finally, the incorporation of coalitional actions in the

dynamic formation process, links this process with the stochastic cooperative games introduced

by [SBWT99, SB99].

The process proceeds in stages. At any point in time, we suppose there exists a structure

CS , (actual) demand vector d, and a set of agreed upon coalitional actions αCS (with one

α ∈ AC for each C ∈ CS ).17 We assume that formed coalitions do not abandon negotiations,

but the agents continue to be present and participate in the process until the end of all bargaining

rounds. Therefore, we can define the state of the coalition formation game at time t as ω t =

(CSt, dCSt, αCSt). This state is assumed to be observable by all agents. With probability

γ = 1/|N |, agent i is given the opportunity to act as the proposer,18 that is, to propose a

change to the current structure. We permit i the following options: it can propose to stay in its

current coalition without any changes in his demand or the coalitional action; it can propose

to stay in its current coalition, but propose a new demand di and/or a new coalitional action;

or it can propose to join any other existing coalition with some demand di and a suggested

coalitional action.19 The second option includes the possibility that i “breaks away” into a

17We might initially start with singleton coalitions with the individually maximizing action, giving each agent
its reservation value.

18We only allow for one proposer per negotiation round. In [DS98], any number of players were allowed to
adjust their demands and/or join different coalitions at each round.

19Notice that he proposer is stating only his own actual demand di, and this is then “translated” into a relative
demand by each other agent, given the demand vector currently in place. Another possibility would have been to
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singleton coalition. Formally,

Definition 8. A proposal (or proposed coalitional agreement) by proposer i is a triplet 〈C ∪

{i}, di, α〉 made by i to coalition C ∈ CS ∪ ∅, with i stating a demand di for itself, and

proposing that C ∪ {i} takes action α ∈ AC∪{i}.

(Notice that C ∪ {i} above is not a disjoint union operator, that is, i is allowed to propose

to stay in a coalition C ∈ CS in which it was already a member.) If i proposes a change to the

current structure/demand/action, then the new arrangement will occur only if all “proposed-to”

coalition members (those j ∈ C) agree to the change. Otherwise, the current structure and

agreements remain in force. During the coalition formation process the beliefs of the various

agents are considered to be fixed.20

To reflect the rationality of the agents, we impose restrictions on the possible proposal

and acceptance decisions. Specifically, we require the proposer to suggest a new demand that

maximizes its payoff, while taking into consideration its beliefs about whether affected agents

will accept this demand. Thus for any coalition it proposes to join (or new demand it makes of

its own coalition), it will ask for the maximum demand that it believes affected members will

find acceptable.

Specifically, when proposing to join a coalition C ∈ CS , i should make the maximum

demand (di and α) that is expected to be feasible according to its beliefs, in other words, that it

believes the other agents will accept. More precisely:

Definition 9. The proposal 〈C ∪ {i}, di, α〉 made by i to coalition C ∈ CS (demanding di for

itself and proposing that C ∪ {i} takes action α) is expected to be feasible for i if:

∀j ∈ C,
djQi(C ∪ {i}, α)∑
k∈C∪{i},s.t.k 6=i dk + di

≥ p̄i
j(C, dC , αC)

In words, the definition above says that i expects that any j ∈ C will be at least weakly

better off accepting i’s proposal than currently is (according to what i believes about the ex-

pected payoff p̄i
j(C, dC , αC) of j in C—i does not know what the members of C believe, but

does have its own estimates of their current values p̄i
j(C, dC , αC)21). If 〈C ∪ {i}, di, α〉 is (ex-

have the proposer state a relative demand; in that case, however, he would have been obliged to state the whole
relative demand vector for the coalition (as just stating his own percentage share would have been ambiguous).
That would have been more demanding in terms of the inter-agent communication.

20We do study the problem of belief updating (after execution of either bargaining or coalitional actions) in
Chapters 5 and 6.

21This poses the compelling question of how best to model one agent’s beliefs about another’s beliefs in this
setting. We will return to this issue and the complications arising from it later on in Chapter 6 (Section 6.2).
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pected to be) feasible for i, then i expects the members of C to accept this demand. Agent i

can therefore directly calculate its maximum realistic demand with respect to C and action α:

Definition 10. The maximum expected feasible (or maximal realistic) demand dmax
i (C, α)

stated by agent i towards coalition C, along with a proposal to perform coalitional action

α, is given by the following formula:

dmax
i (C,α) = min

j∈C

djQi(C ∪ {i}, α) − p̄i
j

∑
k∈C∪{i},k 6=i dk

p̄i
j

where p̄i
j = p̄i

j(C, dC , αC).

Intuitively, i has to make such a demand that would satisfy even the tightest of the con-

straints imposed by the rationality of the agents in C (i.e., the constraints ∀j ∈ C, di ≤
djQi(C∪{i},α)−p̄i

j

P

k∈C∪{i},k 6=i dk

p̄i
j

implied by Def. 9 above.) This can be used to restrict the payoff

demand of i:

Assumption 1 ( Adapted to our setting from [DS98]). Let 0 < δ < 1 be a sufficiently small

smallest accounting unit. When any i makes a proposal 〈C, di, α〉 to coalition C, its payoff

demand di is restricted to the finite set Di(C, α) of all integral multiples of δ in the closed

interval [δ, dmax
i (C, α)].

(Notice that i can always “propose” any di ∈ Di(∅, α), with α being a maximizer of ex-

pected payoff in 〈i〉, to itself and thus attain his reservation value rvi.) For each state ω in the

game, agent i’s strategy set is denoted by:

Σi(ω) := {(Ci, di, α)|Ci = C ∪ {i}, C ∈ CS ∪ {∅}, α ∈ ACi
, di ∈ Di(C, α)}

.

The strategy space is finite, since the number of possible coalitions and coalition structures and

the number of possible demands are all finite.

With this model in place, we now define the following formation process, called the best

reply (BR) process. In the BR process, proposers are chosen randomly as described above, and

any proposer i is required to make its maximum expected to be feasible coalition formation

proposal, asking for the formation of a coalition performing such an action so that his expected

payoff is maximized:

max
C

max
α∈AC∪i

max
di∈Di(C,α)

p̄i
i(C ∪ {i}, dC∪{i} = dC ◦ di, α) (4.13)
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Notice that di is constrained to belong to Di(C, α): agent i considers only proposals that he

expects to be feasible—and makes the maximal of them. Notice also that the di ∈ Di(C, α)

maximizing p̄i
i(C ∪ {i}, dC∪{i} = dC ◦ di, α) is exactly dmax

i (C, α), the maximum expected

feasible demand for i in C ∪ {i} (assuming dmax
i is an integral multiple of δ above—we can

always choose a δ for the Di(C, α) interval so that this is the case).

Such a proposal is accepted only if all members of affected coalition are no worse off in

expectation (with respect to their own beliefs). We also impose the following tie-breaking rule

for proposals:

Assumption 2 (Tie-breaking rule for the BR process). If there are several maximum ex-

pected to be feasible proposals for proposer i, i chooses among them with equal probabil-

ity, if each of these proposals induces a coalitional agreement with a value greater than the

〈Si, dSi
, β〉 currently in place for i, and in which i’s demand is di; however, if the if these

proposals induce agreements that have the same value to i as the 〈Si, dSi
, β〉 already in place

(i.e., if 〈Si, di, β〉 is one of the maximum expected to be feasible proposals), then i will propose

〈Si, di, β〉 to reach this same agreement 〈Si, dSi
, β〉 again.

Thus, in the case of ties there is a preference for staying in the same coalition if the max-

imum expected to be feasible proposals do not strictly improve i’s payoff: the proposer only

makes a different proposal if it expects it to be strictly better than the agreement currently in

place for him. Notice that whenever the proposed agreement coincides with the one currently

in effect, the proposal will be trivially accepted (as it was already in effect, which implies that

the rest of the members in the coalition do not object to it).

Given the finite strategy space, a discrete-time finite-state Markov chain can be defined,

with state space

Ω = {ω = (CS, d, αCS)|CS ∈ SC, αCS ∈ ×C∈CSAC , d ∈ ×i∈NDi}

where SC is the space of all possible coalition structures. Let S ′(i) denote the coalition agent

i belongs to in any state ω′. We can formally define the Markov chain that corresponds to the

BR process as follows:

Definition 11 (Markov chain corresponding to the BR process). The BR process corre-

sponds to a Markov chain M with state space Ω and transition function P . Let S(i) denote the

coalition player i belongs to in any state ω. Then, the probability of a transition from state ω
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to (at time step t) to state ω′ (at time step t+1) with demand d′
i and coalition S ′(i) for i,22 with

S ′(i) having agreed on action α, is given as

Pωω′ =
∑

i∈N

γβi(ω
′|ω),

where βi is defined by the best-reply rule as follows:

(i) βi(ω
′|ω) = 1/ki

ω, if S ′(i) = C∪{i} and d′
i = dmax

i (C, α), with C and α being maximizers

of Eq. (4.13), C ∈ CS ∪ {∅} with CS(ω) the coalition structure in place at state ω, ties

resolved as in the rule above with ki
ω being the number of potential proposals actually

considered at state ω as expected payoff maximizers by i23, and the proposal to join S ′(i)

with d′
i, α being indeed feasible (i.e., is to be accepted24) given the private beliefs of

S ′(i)’s members;

(ii) βi(ω
′|ω) = 1, if S ′(i) = C ∪ {i} and d′

i = dmax
i (C, α), with C and α being maximizers

of Eq. (4.13), C ∈ CS ∪ {∅} with CS(ω) the coalition structure in place at state ω, ties

resolved as in the rule above25, but the proposal to join S ′(i) with d′
i, α not being indeed

feasible (i.e., it is to be rejected) given the private beliefs of S ′(i)’s members, and ω′ = ω;

and

(iii) βi(ω
′|ω) = 0 otherwise.

In order to discuss stability, we have to present the concept of ergodic sets in a Markov

chain:

Definition 12 ([KS76]). A set E ⊂ Ω is ergodic if for any ω ∈ E, ω ′ 6∈ E, Pωω′ = 0 and no

22A successor state ω′ that is different from ω is characterized by a specific i’s demand d′i being the only
potential change in the demand vector, when joining a specific S ′(i) performing α. Thus, a more appropriate
notation for ω′ could perhaps have been ω′(d′i, S

′(i), α), but we do not use this for simplicity and generality. Of
course, with P being a transition function, the sum of transition pobabilities over all successor states is 1.

23Notice that in accordance to the tie breaking rules, if there is more than one proposal maximizing i’s expected
payoff and one of them coincides with the configuration currently in effect for i, then i will propose exactly this
one (not considering the rest) and thus ki

ω = 1 and ω′ = ω.
24For one specific proposal of some agent i, there exists only one possible transition state ω ′; there might have

been several best replies, but for each there exists only one possible transition state ω ′. Further, notice that given
the rules of the process, the agent states his own demand only (and not the demands of others), so a proposal
〈S′(i), d′i, α〉 through which a specific ω′ can be reached from a specific ω at t is a proposal of a specific agent
only. Thus, if ω′ 6= ω, then βi(ω

′|ω) is non-zero for at most one i in
∑

i∈N γβi(ω
′|ω) above.

25In this case (ii), however, none of the expected payoff maximizing proposals coincides with the configura-
tion currently in effect for i, so he makes a distinctly different proposal (one of the many possible maximizers,
perhaps), and it is rejected.
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non-empty proper subset of E has this property. Singleton ergodic sets are called absorbing

states—ω ∈ Ω is absorbing if Pωω = 1.

Once the process has entered an ergodic set, it will remain in that set forever.

A stable coalition structure will result if the bargaining process defined above reaches an

absorbing state, where no agent has an incentive to propose a different coalitional agreement

given its beliefs and the existing coalition structure. The following lemma characterizes the

absorbing states of the best-reply process:

Lemma 1. Let Ci represent the coalition in which agent i belongs to in a state ω of the BR

process, and let αCi
be its adopted action. State ω = (CS , d, αCS ) is an absorbing state of the

BR process if and only if the following condition is met:

• For all i ∈ N , for any proposal 〈S ∪ {i}, di, β〉 of agent i such that S ∈ CS ∪ {∅},

β ∈ AS∪{i}, and di ∈ Di(S, β) are maximizers of Eq. (4.13), either of the following

conditions (or both) hold:

(i) p̄i
i(S ∪ {i}, dS ◦ di, β) ≤ p̄i

i(Ci, dCi
, αCi

)

(ii) ∃j ∈ S such that p̄j
j(S ∪ {i}, dS ◦ di, β) < p̄j

j(S, dS, αS)

Proof: First we prove the “if” direction.

The condition guarantees that either

(i) the proposing agent i does not have the incentive to switch coalitions or propose a dif-

ferent allocation to his current coalition (in one step of the process), because he does not

(realistically) expect this to be profitable, therefore he will not make such a proposal:

Consider a maximum expected to be feasible (in one step) proposal 〈S∪{i}, di, β〉 (with

S, di, β being maximizers of Eq. (4.13)), and being such that p̄i
i(S ∪ {i}, dS ◦ di, β) ≤

p̄i
i(Ci, dCi

, αCi
) holds. Given the tie-breaking rule above, even if p̄i

i(S∪{i}, dS ◦di, β) =

p̄i
i(Ci, dCi

, αCi
), i will still make the proposal 〈Ci, di, αCi

〉 which will be trivially ac-

cepted (since it was already in effect, and therefore is acceptable) and thus the state ω

will not left. (We remind also that the demands during the BR process are made subject to

expected feasibility: in one step, only the dmax
i demands are ever stated. Because of this,

for any possible 〈S∪{i}, di, β〉 proposal to j ∈ S stated by i, it is always guaranteed that

i expects the proposal to be feasible—i.e., that p̄i
j(S∪{i}, dS◦di, β) ≥ p̄i

j(Cj, dCj
, αCi

).)
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(ii) or if i has such an incentive (expecting his proposal to be profitable, and also feasible—

the latter is guaranteed by the process, as explained above), then it is the case that his

proposal 〈S ∪ {i}, di, β〉 will be denied, by condition (ii), because there always exists

some agent j who believes that he is worse off by accepting, since p̄j
j(S∪{i}, dS◦di, β) <

p̄j
j(S, dS, αS). Therefore, ω will not be left.

Therefore, if for any i ∈ N and any maximal expected to be feasible proposals 〈S ∪ {i}, di, β〉

stated by i either of conditions (i) or (ii) hold, then state ω will not be left, and thus it is

absorbing.

Now we prove the opposite direction: Say that ω is absorbing, but neither of conditions

(i) or (ii) hold. That is, ∃i and (maximal expected to be feasible) proposal 〈S ∪ {i}, di, β〉 s.t.

p̄i
i(S∪{i}, dS◦di, β) > p̄i

i(Ci, dCi
, αCi

) and @j ∈ S, s.t. p̄j
j(S∪{i}, dS◦di, β) < p̄j

j(S, dS, αS)

Then, the BR process guarantees that i will propose 〈S ∪ {i}, di, β〉 since it gives him the

maximum expected to be feasible (at this step) payoff, and every j in S will accept the proposal

(since no j believes that it makes him worse off). Thus, ω will be left, therefore it is not

absorbing, and we reached a contradiction.

Thus, we proved both directions of the lemma. 2

Notice that the lemma’s condition implicitly guarantees that an agent is getting at least his

reservation payoff in an absorbing state (if not, condition (i) does not hold—the agent can

always form a singleton coalition to guarantee his reservation value). In addition, notice that

the lemma’s condition is not only necessary but also sufficient for state ω to be absorbing: in

state ω, either no agent will put forward a different proposal, or if he does his proposal will be

denied.

We now make the following observation:

Observation 6. If the coalition structure-demand vector-action vector triplet 〈CS , d, αCS 〉 is

in the strong or the strict Bayesian core, the state described by this configuration must be an

absorbing state of the BR process.

Proof: Let ω = 〈CS , d, α〉 be a state in the strong Bayesian core, and let Ci be the

coalition in which i is a member in ω, with αCi
its adopted action. Since ω is in the strong BC,

there is no coalition K ⊆ N , demand vector dK and action βK ∈ AK s.t. for some i ∈ K

{p̄i
i(K, dK, βK) > p̄i

i(Ci, dCi
, αCi

) and p̄i
j(K, dK, βK) ≥ p̄i

j(Cj, dCj
, αCj

) ∀j ∈ K, j 6= i}.

Therefore, for any i ∈ N , there is no expected to be feasible for i proposal 〈S ∪ {i}, di, β〉

(and thus, not even a maximal expected to be feasible 〈S ∪ {i}, di, β〉—i.e., one with S, β, di

maximizers of Eq. (4.13)) such that p̄i
i(S ∪ {i}, dS ◦ di, β) > p̄i

i(Ci, dCi
, αCi

). Therefore, for
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any i and any maximal expected to be feasible proposal 〈S∪{i}, di, β〉, condition (i) of lemma

1 is satisfied, and thus ω is absorbing.

Now, let ω be a state in the strict BC. Since it is a state in the strict BC, there is no coalition

K ⊆ N , demand vector dK and action βK ∈ AS s.t., for some i ∈ K, {p̄i
i(K, dK , βK) >

p̄i
i(Ci, dCi

, αCi
) and p̄j

j(K, dK, βK) ≥ p̄j
j(Cj, dCj

, αCj
) ∀j ∈ K, j 6= i}. Therefore, for any

i ∈ N and any triplet 〈S ∪ {i}, di, β〉 (either expected to be feasible by i or not), it will be

either the case that {p̄i
i(S ∪ {i}, dS ◦ di, β) ≤ p̄i

i(Ci, dCi
, αCi

) or ∃j ∈ S ∪ {i}, j 6= i, s.t.

p̄j
j(S ∪ {i}, dS ◦ di, β) < p̄j

j(S, dS, αS). Therefore, for any i and any maximal expected to

be feasible proposal 〈S ∪ {i}, di, β〉 that he can make, at least one of the conditions (i), (ii) of

lemma 1 is satisfied, and thus ω is absorbing. 2

However, the converse of the observation is not true, as a game may have multiple absorbing

states, but an empty Bayesian core; or that a Bayesian core state may exist that is unreachable

under the rules of the game. Intuitively, it is possible that the process has converged to a

state that is absorbing given the rules governing the BR process—such as that an agent may

propose only to coalitions in the current CS (or to itself) at each step of the game; nevertheless,

the agents may well believe that there exist other better configurations, and it might well be

the case that if they find themselves in them they will be in a Bayesian core state—however,

these better configurations are unreachable under the rules of the game. Therefore, being in an

absorbing state does not necessarily mean that the process is a Bayesian core state.

We now turn to the problem of guaranteeing convergence to stable, BC states, through dy-

namic coalition formation. It is not very likely that, under type and action-related uncertainty,

one can identify a decentralized formation process26 (such as the one proposed above) that

could guarantee convergence to the weak or the strict Bayesian core (if the core is non-empty,

of course—otherwise there is no possibility of convergence to it anyway). This is because those

stability concepts allow agents that lie in stable core configurations to have private expectations

for higher payoffs in other states because they are not taking into account the expected feasi-

bility of their proposals, as discussed in Section 4.3.

To elaborate on this, what we would like is any decentralized process to be able to pro-

ceed and eventually converge to a core state (if it exists) based on the beliefs of each agent

separately, and this cannot happen if the agents state demands without examining the overall

degree of acceptability for the future configurations. For example, as long as some agent be-

26However, as we shall see in Chapter 5, one can identify equilibria that lead to the strict Bayesian core.
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lieves that he can gain from some future configuration X , he can always try to destabilize a

configuration by proposing something suboptimal to himself, in hopes of eventually reaching

such a configuration. However, if he keeps doing so without taking into account whether the

future configuration X is indeed desirable by others, convergence to a BC state is difficult to

guarantee (even if such a commonly desirable “core” configuration does exist—but it may not

be X).

The only way to guarantee convergence to such a strict or weak BC state is to adopt a

randomized proposals protocol that furthemore would have required the agents to perform a

test to see if convergence to a strict or weak BC state has been achieved, in order to stop

making further proposals. Unfortunately, this would have required them to have access to the

private beliefs of others, since the strict and weak BC stability conditions depend on the private

expectations of the agents regarding their own payoffs. Thus, this process couldn’t possibly

be decentralized. It could be possible, however, that we identify such a converging process for

the strong Bayesian core (which, as we saw, describes a more “endogenous” form of stability).

However, the BR process is not a process that could be guaranteed to converge to the strong

BC if it is non-empty:

To demonstrate this, suppose that the BR process has entered an absorbing state that is not

in the strong Bayesian core. Then, at least one agent will believe that there exists a better (and

feasible) configuration in a coalition that is not a member of the current CS. Unfortunately,

this cannot be reached by using the best-reply rule, given that the state is an absorbing state

of the BR process (where the agents are already receiving their maximum possible expected

payoff under the current CS or any CS ′ reachable by the best-reply rule—see Lemma 1—and

they are forbidden to adopt a suboptimal strategy in order to destabilize the prevailing CS).27

In order to overcome this obstacle, we consider a slight modification of the BR process, the

best reply with experimentation (BRE) process. It proceeds similarly to BR with the following

exception: if proposer i believes there is a coalition S which will be beneficial to it (i.e.,

its expected value is such that it can provide him with strictly better expected payoff—we

elaborate in the definition below), but which may not be derived starting from the existing CS ,

it can propose an arbitrarily small feasible demand in order to destabilize the current state in

hopes of reaching a better structure.

The BRE process advocates that the best reply is chosen with probability 1 − ε, while

some other proposal from the space of proposals expected to be feasible for i is chosen with

27Notice that we can use similar arguments to show that the BR process cannot guarantee convergence to the
strict or the weak BC.
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probability ε. Specifically, such another feasible proposal 〈C ′, di, α〉 is chosen with probability

ε/|ΣBRE
i (ω)| = ε · (1/|Ci|) · (1/AC′) · (1/d

dmax
i (C, α)

δ
e)

where Ci denotes the set of all C ∪ {i} (with C ∈ CS ∪ {∅}) coalitions in which i can partici-

pate, and ΣBRE
i (ω) denotes i’s strategy set for ω:

ΣBRE
i (ω) := {(Ci, di, α)|Ci = C ∪ {i}, C ∈ CS ∪ {∅}, α ∈ ACi

, di ∈ DBRE
i (C, α)}

where DBRE
i (C, α) is the finite set of all integral multiples of δ in the interval [0, dmax

i (C, α)].

This can be viewed as explicit experimentation on behalf of the agents. Furthermore, any

agent j that is part of a proposed-to coalition will choose to accept a demand from i that lowers

its payoff with probability ε iff j believes there exists some potentially more rewarding coalition

S and corresponding action αS , with i, j ∈ S, such that there is hope for improving his expected

payoff without harming the other members of S (i.e., Qj(S, αS) >
∑

k∈S p̄j
k(C

k
CS

, dk
CS

, αk
CS

),

where Ck
CS

is the coalition of k in CS and dk
CS

, αk
CS

its corresponding demand vector and

selected action).

Equivalently, we can provide the following definition for the BRE process:

Definition 13 ( Best Reply Process with Experimentation (BRE process)). : In any state

ω = (CS, dCS , αCS), let Ck
CS

denote the coalition in which agent k belongs to in CS , and let

dk
CS , αk

CS be its respective demand vector and selected action. The BRE proceeds like the BR

process, with the following differences:

Whenever there exists a coalition S ′ /∈ CS with some action αS′ such that Qi(S
′, αS′) >

∑
k∈S′ p̄i

k(C
k
CS

, dk
CS , αk

CS), each agent i that believes it can be a member in such an S ′ chooses

a “best reply” with probability 1 − ε, and takes each strategy (Si, di, α) ∈ ΣBRE
i (ω) with

probability ε/|ΣBRE
i (ω)| when he gets the opportunity to revise his strategy.

In addition, an agent j who has to reply to some proposer’s i proposal, and that believes

that an S ′ /∈ CS exists, such that Qj(S
′, αS′) >

∑
k∈S′ p̄

j
k(C

k
CS

, dk
CS , αk

CS), with j ∈ S ′, i ∈ S ′

chooses to accept only if he is not worse off in expectation (based on his beliefs) with probability

1 − ε, and chooses to (unconditionally) “accept”28 with (some small) probability ε.

The BRE process has some reasonable properties. First we note that the absorbing states

28Notice that we allow for “random unconditional acceptance” only if the agent believes that both itself and the
proposer can be members of the S ′ coalition. This will be enough to ensure convergence to the strong BC if it is
not empty, in Proposition 4 that follows.



CHAPTER 4. BAYESIAN COALITION FORMATION 114

of the process coincide with strong Bayesian core allocations.

Proposition 3. The set of demand vectors associated with an absorbing state of the BRE pro-

cess coincides with the set of strong Bayesian core allocations. Specifically, ω = 〈CS , dCS , αCS 〉

is an absorbing state of the BRE process iff 〈CS , dCS , αCS 〉 ∈ strong BC.

Proof: If a state ω is in the strong BC, no agent believes that he can gain either by switching

coalitions or by changing his demand. That is, no agent i believes that there exists S ′, dS′ and

β ∈ AS′ s.t. p̄i
i(S

′, dS′, β) > p̄i
i(C

i
CS

, di
CS , αi

CS
) and p̄i

j(S
′, dS′ , β) ≥ p̄i

j(C
j
CS

, dj
CS

, αj
CS

),

which implies that no agent i believes that there exists a coalition S ′ and action β such that

Qi(S
′, β) >

∑
k∈S′ p̄i

k(C
k
CS

, dk
CS , αk

CS
). If the latter was the case, then there could have always

been an allocation in S ′ such that, according to i’s beliefs, i is strictly better off in expectation

and the others weakly better off. Therefore, no proposing agent experiments and no responding

agent accepts a proposal unconditionally: the process follows the BR rules, and any proposing

agent proposes the agreement already in place (given the tie-breaking rule, and the fact that

this agreement is one of the agreements maximizing his expected feasible payoff, as there is

no other agreement s.t. p̄i
i(S

′, dS′, β) > p̄i
i(C

i
CS

, di
CS

, αi
CS

)), and the agreement is trivially

accepted by all responders (it was already in place, therefore it is an acceptable agreement, as

it does not make the responders worse-off), and thus state ω is never left, so it is absorbing.

Suppose now that ω = (CS , ~dCS , αCS ) is an absorbing state of the BRE process that is

not in the strong BC. Since it is not in the strong BC, then there is an i that believes there

exists S ′, dS′ and β ∈ AS′ s.t. p̄i
i(S

′, dS′, β) > p̄i
i(C

i
CS

, di
CS

, αi
CS

) and p̄i
j(S

′, dS′, β) ≥

p̄i
j(C

j
CS

, dj
CS

, αj
CS

), which means that i believes that Qi(S
′, β) >

∑
k∈S′ p̄i

k(C
k
CS

, dk
CS

, αk
CS

).

Consequently, with probability ε, at least i will experiment, potentially asking for zero payoff29

(having the opportunity to form a singleton, subject to no-one else’s acceptance). Thus, there

exists a positive probability that ω will be left, and therefore ω cannot be absorbing (contradic-

tion). 2

Proposition 3 does not guarantee that a BC allocation will actually be reached by the BRE

29Asking for less than i’s reservation value is allowed in order to cover the possibility that the non-BC absorbing
state already contained i in a singleton coalition, having a demand equal to his reservation value. In contrast to
what is true for the deterministic full information case [DS98], such an absorbing state may exist, since the demand
of i may be such that is unacceptable to others to form a coalition with him (i.e., it’s not certain that if i believes
that there exists a better S, others in S will agree to form a coalition with i given the currently observed demand
vectors; therefore, for i to be certain to destabilize the current structure effectively, it has to be allowed to ask for
less than its reservation value, thus “luring” others into forming a coalition with him in the future). If this was not
possible, then a non-BC state might not be ever left—being absorbing without being in the strong BC.
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process. However, we guarantee the following:

Proposition 4. If the strong Bayesian core is non-empty, the BRE process will converge to an

absorbing state with probability one.

Proof: The proof is analogous to the proof for the deterministic coalition formation model

[DS98]. The basic idea is that when the strong BC is not empty, all ergodic sets reached by the

BRE process are singletons, therefore the BRE process will converge to an absorbing state.

Thus, we shall take the following steps to show that all ergodic sets are singletons. Suppose

that there exists an ergodic set E ⊂ Ω with |E| ≥ 2. We will establish a contradiction by

showing that E contains a state from which there is a path to an absorbing state.

Proposition 3 ensures that none of the states in E involve a strong BC30 configuration.

This follows from the fact that all strong BC configurations are absorbing states, and ergodic

sets are minimal—they cannot contain other ergodic sets. As a consequence, for each state

ω = (CS, dE, αE) ∈ E there exists at least one agent i that believes that ∃S 3 i, with S /∈ CS,

some demand vector dS , and some action αS ∈ AS s.t. p̄i
i(S, dS, αS) > p̄i

i(C
i
CS

, di
CS

, αi
CS

)

and p̄i
j(S, dS, αS) ≥ p̄i

j(C
j
CS

, dj
CS

, αj
CS

), where C i
CS

, Cj
CS

are i and j’s coalitions in CS , and

di
CS

, d
j
CS

, αi
CS

and αj
CS

are their respective demand vectors and selected actions.

So, there exists at least one agent i31 whose beliefs are such that they imply Qi(S, αS) >
∑

k∈S p̄i
k(C

k
CS

, dk
CS

, αk
CS

). Therefore, any such agent i will experiment with suboptimal strate-

gies if he gets a chance to be the proposer. There is a positive probability that any such agent

gets the chance to propose. Moreover, there is a positive probability that all those agents

who experiment form the singleton coalition and demand zero payoff, picking the strategy

〈{i}, 0, αi〉—where αi is some action available to i’s singleton coalition. Thus, all states that

can be defined from any ω ∈ E by replacing coalition S(i)—the coalition containing i—with

S \ {i} and adding {i} in CS, and replacing dE
i with 0 for all agents i who experiment with

the singleton coalition can be reached with positive probability from ω. Denote the set of all

such states by Reach(ω). It follows that
⋃

ω∈E Reach(ω) ⊂ E, since all states in that set are

reached with positive probability.

By the same argument as above, elements of Reach(ω) cannot involve BC allocations.

Repeating the same procedure as above, replacing E by Reach(ω) for each ω ∈ E in the

argument, we get a set Reach2(ω) for each ω ∈ E. Again,
⋃

ω∈E Reach2(ω) ⊂ E.

30Henceforth in this chapter, whenever we refer to “BC”, we actually refer to the strong BC.
31If there is exactly one such agent, the non-empty BC will contain him as a singleton—otherwise the BC

would have to be empty.



CHAPTER 4. BAYESIAN COALITION FORMATION 116

Continuing in the same way, after repeating this procedure a finite k number of times,

the set
⋃

ω∈E Reachk(ω) contains the state where either (a) each agent forms the singleton

coalition or (b) some agents form singleton coalitions, and those who do not form singleton

coalitions are playing best replies and do not experiment. More precisely, E contains a state

ω′ = (CS ′, d′, α′) with the following property: Either S ′(i) = {i} and d′
i = 0 for all i ∈ N ,

or, if there are coalitions S ′ ∈ CS ′ with |S ′| ≥ 2, then there exists an absorbing state ωBC =

(CSBC , dBC , αBC) such that S ′ = SBC for some SBC ∈ CSBC , αS′ = αSBC and d′
i = dBC

i

for all i ∈ S ′, for all S ′ with |S ′| ≥ 2. (As the BC is non-empty, an absorbing state exists.

Further, as members of S ′ play best replies and do not experiment, their demands must be part

of a BC allocation.)

Starting from ω′, an absorbing state ωBC = (CSBC , dBC , αBC) will eventually be reached:

Assuming that the reservation value of each agent is greater than zero, we establish that in state

ω′, each agent who forms a singleton coalition demanding zero payoff believes that there exists

a potentially better coalition; thus, each agent i with S(i) = {i} experiments with probability

ε when it is his chance to move. Further, all agents who are in non-singleton coalitions in ω ′

do not experiment. Let T BC ∈ CSBC represent a coalition in which several agents that are

“single” in ω′ will eventually find themselves into when in CSBC . For each T BC ∈ CSBC ,

all agents that will belong in T BC , progressively join each other starting from ω ′, making

such demands (and proposing such coalitional actions) that their proposals are accepted and

that the demands vector resulting eventually will coincide with the BC demands’ vector—

∀T BC ∈ CSBC , ∀j ∈ T BC : dj = dBC
j . There exists a positive probability that this will

occur, since there exists a positive probability for the acceptance of each proposal that leads

to an existing BC—given that agents can propose to join coalitions demanding suboptimal

payoffs, and given that“random unconditional acceptance” is possible under the best-reply with

experimentation process, for agents that believe there exists a potentially better (and expected

to be feasible) coalition not in the current CS.32

Therefore, there exists a positive probability that the absorbing state ωBC is reached when

starting from ω′. This is a contradiction to ω′ being an element of the ergodic set E. It fol-

lows that all ergodic sets reached by the best-reply with experimentation process are singletons,

when the strong BC is non-empty. This completes the proof. 2

Propositions 3 and 4 together ensure that if the strong BC is not empty then the BRE process

32It may be possible to remove the concept of “random unconditional acceptance” from the BRE process. In
that case, however, one should probably employ some concept of superadditivity for the agents’ beliefs.
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will eventually reach a strong BC allocation, no matter what the initial coalition structure.

4.6 Some Simple Experiments

We report here on some simple experiments conducted in order to test the validity of our

approach and verify the BRE’s (and the BR’s) convergence behaviour towards the strong BC

empirically.

First, we examine the BR and BRE process in several “standard” coalitional games. The

agents share common and correct beliefs about the coalitional values to mimic a standard char-

acteristic function game (and there is only one action at hand for the agents).

One of them is the 3-player majority game [Mye91, DS98], where any majority of the

3 players (i.e., any pair of players) can get a coalitional payoff equal to that of the grand

coalition. Specifically, in this game, the set of agents is N = {a, b, c}, rvi = 0 for all i ∈ N ,

and υ(S) = 10 for |S| ≥ 2. The core of the game is empty, because no matter what deal two of

the players have striken between them, the third player, say b, can always lure one of them, say

c, into a deal that can be at least equally profitable for c (and therefore, the bargaining process

could last for ever, if unlimited time is supposed). However, any state ω = 〈{N}, d〉 with
∑

i∈N di = 10—that is, any state ω in which the grand coalition has formed—is absorbing

for the BR process (this is because if the grand coalition has formed, no agent can reach a

coalition that gives him a strictly better payoff in just one step, since there is no such coalition

to which it can propose and it will not propose to itself even if he gets 0 in the grand coalition,

because of the tie-breaking rule of the BR process). Nevertheless, any such ω is unreachable

for the BR process if it is started in a state where any of the players (in a 2-agent coalition)

receives the entire payoff of 10. If that is the case, the process should exhibit non-singleton

ergodic sets, with the players constantly changing allegiances and forming 2-agent coalitions

with eachother.

The findings of our experiments confirmed these hypotheses. Specifically, in our experi-

ment (which consisted of 30 runs of 1000 negotiation rounds each) we started the BR process

in state 〈CS = {〈a, b〉, 〈c〉}, d = 〈da = 10, db = 0, dc = 0〉〉. We observed that neither the BR

nor the BRE process ever converged to any kind of stable configuration or to , but, rather, the

agents kept regrouping into 2-agent coalitions.

Another game we experimented with was a game presented by [DS98], where υ(S) = 2 for

coalitions of size |S| = 1, υ(S) = 5 for |S| = 2 and υ(S) = 8 for |S| = 3. The set of agents

in the game is N = {a, b, c}. We started the process in state 〈CS = {〈a, b, c〉}, d = 〈4, 2, 2〉〉
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which is absorbing for the best reply (BR) process, but is not a core (or BC) configuration, since

agents b and c would be better off in coalition 〈b, c〉, which is unreachable given the rules of

the BR process. Unsurprisingly, the BR process never left the absorbing state, while the BRE

process always (that is, in 30/30 runs, each consisting of 1000 negotiation steps) converges to a

configuration in the BC (i.e., in some configuration where the grand coalition forms, with two

of its members receiving a payoff of 3 and the third receiving a payoff of 2). In 19 of those

runs, the process converged in fewer than 50 rounds (typically less than 25).

We also tested a game having a non-empty BC, in which the beliefs of the three partici-

pating agents a, b and c differed, and each coalition had three actions (α, β and γ) available

to it. The agents’ beliefs regarding the Q-values of coalition-action pairs are as shown in ta-

ble B.1 in Appendix B. Typical configurations in the Bayesian core for this game include

〈{〈a, b〉, 〈c〉}, {rab = 〈79%, 21%〉, 〈rc = 100%〉}, {aab = α, ac = α}〉, 〈{〈a, b〉, 〈c〉}, {rab =

〈75%, 25%〉, 〈rc = 100%〉}, {aab = α, ac = α}〉, and others like these—that is, agents a

and b form coalition 〈a, b〉 (and perform action α), with a getting the biggest share (around

75%) of the payoff, and c is in a singleton (performing action α also). The initial coali-

tion structure in our experiments was {〈a, c〉, 〈b〉}, with both coalitions in the structure per-

forming action γ, and the initial payoff allocation (actual demand allocation) was given as

〈da = 250, db = 200, dc = 350〉.

The BRE process managed to reach a BC configuration in all 30 runs tested (with 1000

bargaining rounds each). The greatest number of negotiation rounds to convergence was 292.

However, a BC configuration was typically reached in less than 100 rounds. In 5 of the 30 runs,

the agents reached a BC configuration almost instantaneously (in less than five rounds). The BR

process, on the other hand, converged to a BC configuration in only 19/30 runs. Interestingly,

in all runs it did reach a coalition structure in the BC (typically the {〈a, b〉, 〈c〉} structure), but

not always with an appropriate payoff allocation.

For interest, in order to further support the rational behind the BRE and the BR process,

we also tested a different formation process in this same setting (i.e., the 3-agent, 3-actions

setting with beliefs that differ and expected values as in table B.1 in Appendix B). This new

process is a randomized process which assumes that the agents always make random proposals

if they believe that there exists a better configuration (i.e., proposals are as in the BRE, but

with ε = 1), and always unconditionally accept a proposal. Intuitively, this process allows the

agents to make and accept random proposals as long as the Bayesian core has not been formed.

Even though this process should allow the eventual creation of the Bayesian core (if it exists),

it is clear that this would require a great number of bargaining rounds. Our results confirm
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this hypothesis, even for this small problem: in 30 runs (each consisting of 1000 iterations), all

of them converged to a BC configuration, but this typically required more than 200 iterations

in comparison to BRE’s fewer than 100 iterations (to be more specific, the average number

of iterations to convergence for the completely randomized process was 270, with only 9 runs

converging in less than 100 rounds).

As a final note, running time was not an issue with these small experiments. One experi-

ment with 1000 negotiation rounds runs just within 0.06 seconds.33 These processes provide

an automated way to form stable coalitions, without the need of any human intervention.

4.7 Conclusions

In this chapter, we mainly dealt with the question of coalitional stability under uncertainty.

To do so, we presented a Bayesian coalition formation model, the first ever to tackle type

uncertainty; the model also accomodates action-related uncertainty, as well. We introduced the

concept of the Bayesian core, and defined three versions of it, each corresponding to a different

notion of stability. We dealt with the question of the non-emptiness of the Bayesian core, and

provided an algorithm to decide the problem in small games. Then, we linked the stability

question and the formation question by presenting two dynamic coalition formation processes,

one of which was shown, both theoretically and empirically, to converge to the strong Bayesian

core if it is non-empty.

Our framework and algorithms enable the agents to reach configurations that are stable,

given their beliefs. We believe that this is a natural, reasonable way to approach the question

of coalition formation and stability under uncertainty.

33In addition, one would expect that these processes can be decomposed and be run in parallel, with each agent
residing on a different machine.



Chapter 5

Coalitional Bargaining under Uncertainty

In this chapter we provide a Bayesian non-cooperative approach to coalition formation under

(type) uncertainty. Non-cooperative coalition formation research deals primarily with the bar-

gaining process by which coalitions emerge, and the equilibrium solution concepts that char-

acterize rational agents’ behaviour. Discounted coalitional bargaining (e.g., [CDS93, Oka96])

provides a formation setting which emphasizes the need for strategic considerations, and makes

the sequential decision making needed during formation more apparent. To the best of our

knowledge, there exists no formal study of this problem under uncertainty. The introduction,

in particular, of type uncertainty influences the decisions agents make during negotiations (and

the stability of formed coalitions, as discussed in the previous chapter). Furthermore, it presents

the opportunity to learn about the capabilities of others based on their behaviour during nego-

tiations and by observing their performance in settings where coalitions form repeatedly.

Although the dynamic coalition formation processes discussed in the previous chapter were

non-cooperative, driven by the agents’ wish to maximize their individual payoffs, the emphasis

was on the processes’ properties regarding convergence to stable structures. Since the agents

had the common understanding that the bargaining horizon was infinite, and that, importantly,

the values to be gained were undiscounted and they would have the chance to participate in

all bargaining rounds, the setting posed no emphatic need on studying sequential strategic

considerations or equilibrium concepts. This is no longer the case if discounted coalitional

bargaining is assumed.

After a review of related work in Section 5.1, in Section 5.2 of this chapter we define a

Bayesian model for discounted coalitional bargaining under type uncertainty, formally defining

the class of Bayesian coalitional bargaining games (BCBGs). We proceed in Section 5.3 to

describe the Perfect Bayesian Equilibrium (PBE) solution for coalitional bargaining under type

120
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uncertainty. We then show that computing the PBE is intractable in practice. In that section

we also define an equilibrium solution for BCBGs that assumes fixed beliefs of the agents

during bargaining; this concept is an extension of the SPE (subgame perfect equilibrium) and

a restriction of the PBE concept.

To combat PBE intractability, in Section 5.4 we present an algorithm that uses iterative

coalition formation to heuristically approximate the equilibrium bargaining behaviour of the

agents: the algorithm calculates the agents’ strategies in each bargaining round assuming that

the beliefs of the agents are to be held fixed for the remainder of the game (and making other

relevant assumptions, such as using bounded lookahead when solving the game tree). Criti-

cally, however, the algorithm does use belief updates following every stage of bargaining (and

thus facilitates learning of the potential partners’ types). When used in an actual repeated coali-

tion formation setting, we can combine this algorithm with RL-style belief updates following

the execution of coalitional actions after each episode of coalition formation.

We then proceed in Section 5.5 to provide a non-cooperative justification of the Bayesian

core (BC) stability concept: in the spirit of what others have done for non-stochastic models, we

relate a cooperative stability concept under uncertainty with non-cooperative equilibrium play

in (Bayesian) coalitional bargaining games. We achieve this by linking the (non-cooperative)

equilibrium solution of the BCBG with the BC (cooperative) solution concept for Bayesian

coalition formation, proving results that tie them to each other. Specifically, we prove that if

the (strict) BC of a coalitional game is non-empty, then there exists an equilibrium of the corre-

sponding bargaining game that produces a BC element; and also that if there exists a coalitional

bargaining equilibrium (with certain properties), then it induces a (weak) BC configuration. In

addition, as a corollary to this latter finding, we establish a sufficient condition for the existence

of the (weak) Bayesian core.

Then, in Section 5.6 we experimentally evaluate our heuristic algorithm for Bayesian coali-

tional bargaining, demonstrating its advantages over a method that does not employ Bayesian

rationality. As we shall see, Bayesian coalitional bargaining enables the agents to take reward-

ing, sequentially rational decisions while bargaining. We conclude the chapter by summarizing

our findings in Section 5.7.

We note that parts of the research described in this chapter appeared originally in [CB07]

and [CMB07].
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5.1 Related Work

Much work can be found on coalitional bargaining, both in the economics and the AI literature.

However, not much of this work assumes any form of uncertainty, or exploits the opportunity

to combine learning with coalitional bargaining.

Okada [Oka96] suggests a form of discounted coalitional bargaining in the usual determin-

istic characteristic function games setting, where a random proposer chosen out of the set of

participating agents puts forward a coalition and payoff allocation proposal at each round. If

the proposal is accepted, the coalition abandons negotiations. Okada basically characterizes the

subgame-perfect equilibria (SPE) of the discounted coalitional bargaining game he introduces,

showing that if they are assumed to be stationary and the proposer is chosen randomly at each

round, then there is no delay of agreement in equilibrium (i.e., any proposal made at round one

is agreed upon by the interested agents immediately). The stationarity of the SPE means that

the agents choose identical equilibrium strategies in subgames involving the same set of active

agents—the proposals and responses of the agents in the t-th round of the game depends only

on the set of players active at that round, and not on past history. The equilibrium proposals

and responses of the players are given as solutions to a payoff maximization problem, assuming

SPE stationarity, and that coalitional values are given and commonly known.

Chatterjee et al. [CDS93], unlike Okada, present a discounted bargaining model with a

fixed proposer order, which results in a delay of agreement. Specifically, the basic result of their

work was showing that—unlike what Rubinstein’s [Rub82] seminal work on the alternating-

offers model of bargaining has shown for two-person bargaining and multi-person unanimous

bargaining—delay of agreement can occur in multi-person coalitional bargaining. Neither

Chatterjee et al.’s nor Okada’s model deals with type uncertainty or the selection of coalitional

actions. Instead, both papers focus on calculating subgame-perfect equilibria. Furthermore,

these results hold only in superadditive environments. We make no superadditivity assumption

(in fact, no additivity assumption whatsoever) in our work. However, like [Oka96], our bar-

gaining model assumes that the proposer in every round of negotiations is randomly chosen by

nature.

Kraus, Wilkenfeld and Zlotkin [KWZ95] looked at the infinite horizon alternating offers

model of bargaining where agents take the passage of time into account, and examined a case

where agents need to negotiate about sharing a resource, and have incomplete information

about each other. Thus, in order to decide on accepting or rejecting offers, the agents update

beliefs regarding their opponents’ type, given the opponents’ response to previous offers. A
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finite set of agent types is assumed, each type having a different utility function which depends

on its resource usage. However, the negotiation in any given period is bilateral, since the

assumption is made that no more than two agents need to share the same resource in a period.1

Thus, there is no true coalitional bargaining by this model.

Two recent papers by Kraus, Shehory and Taase [KST03, KST04] deal with coalition for-

mation in the “Request for Proposal” domain. In this domain, the agents come together to

perform tasks comprised of subtasks; each substask should be performed by a different agent.

The agents may not know the value of a subtask to another agent—they may not know the

costs incured by performing it—but they do know the overall payoff associated with perform-

ing a task and the capabilities of the other agents, so “incomplete information” has a rather

restricted meaning in this work. Also, these papers deal with coalitional-value uncertainty

rather than partners’ type uncertainty. Moreover, the bargaining algorithm used for formation,

even though fitting for their specific framework, is somewhat unrealistic for more generic en-

vironments, as it employs an oracle-like agent which eventually decides on the coalitions to be

created, making the most fitting (i.e., rewarding) matches among agents—even though this is

done based on their suggestions. In addition, [KST03] assumes that all agents in a coalition

will divide the gained surplus equally among them—an assumption that may violate individual

rationality. However, [KST04] presents some other allocation strategies as well: allocation

that is proportional to the agents’ costs; allocation that is “kernel-stable” (i.e., in the kernel

of the coalitional game); or combining these strategies with the use of compromise (i.e., the

agents are willing to receive less payoff as long as they do get to form the coalition). Still, the

focus is on maximizing social welfare rather than satisfying the agents’ individual rationality.

Nevertheless, later in this chapter, we will be comparing our heuristic algorithm with a (mod-

ified) version of their “kernel-stable allocation using compromise” approach. This is because,

despite of its deficiencies and the fact that is better tailored to social-welfare maximization

settings, it is a rare example of a successfully tested discounted coalitional bargaining method

under some restricted form of uncertainty, which combines heuristics with principled game

theoretic techniques.

As was mentioned in Section 2.3, in recent years much work ([PR94, MW95, HMC96,

Eva97, SV97, Yan03]) has focused on the problem of providing a non-cooperative justification

of the (deterministic) core, by establishing results linking the outcomes arising from equilib-

rium play in coalitional bargaining games to the core of the underlying coalition formation

1The agents play two different roles: one of them already has access to the resource and is using it during the
negotiation process (gaining over time), while the other one is waiting to use the resource (it is losing over time).
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problem. In establishing similar types of results for the Bayesian core, not only do we deal

with uncertainty related to agent types (or abilities) and coalitional action effects, we do so

without making additivity assumptions w.r.t. coalition value. Our model is thus richer and

more realistic than those adopted in most previous work on this problem.

Of that work, the one that is most relevant to ours is that of Moldovanu and Winter [MW95].

They study bargaining games in extensive form, under the usual assumption of deterministic

and commonly known coalitional values, but assuming non-transferable rather than transfer-

able utility. The order of proposers in the game depends on the responders’ replies: the first

responder to refuse a proposal becomes the next initiator, and can propose a coalition and a

payoff vector (out of a set of available payoff vectors) to its members—or, it can pass the ini-

tiative to another player. When all potential members accept a proposal, the formed coalition

abandons the game. There is no assumption of any discounting of coalitional values over time.

In this bargaining setting, the authors’ focus of attention is on stationary, pure-strategy sub-

game perfect equilibria. They show that if a bargaining strategy profile is an order independent

equilibrium (OIE) (an SPE that remains an equilibrium and leads to the same payoff allocation

for any choice of proposer in a sequential coalitional bargaining game), then the resulting pay-

offs must be in the core—and conversely, if the coalition formation game has subgames with

nonempty cores, then for each payoff vector there exists an OIE with the same payoff. The

model of [MW95] differs from ours: it is deterministic, does not assume random proposers,

and assumes superadditive, non-transferable utility. However, we do use a form of OIE in our

work, generalized to incorporate an agent’s (uncertain) beliefs about the abilities (or types) of

potential partners and the lack of superadditivity.

5.2 Bayesian Coalitional Bargaining

While coalition structures and allocations can sometimes be computed centrally, in many sit-

uations they emerge as the result of some coalitional bargaining process among the agents,

who propose, accept and reject partnership agreements. Once again, in order to address type

uncertainty (which is inherent in many realistic situations), we assume the Bayesian coalition

formation model introduced in Chapter 4 to be in place. Therefore, we assume an underly-

ing Bayesian coalition formation problem. Recall that a BCFP, defined as in Section 4.2, is

characterized by a set of agents, a set of types Ti per agent i, coalitional actions AC per coali-

tion C, outcomes o ∈ O corresponding transition dynamics Pr(o|α, tC), a reward function

R : O −→ <, and beliefs µi of each agent regarding the types of potential partners. The agents
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do not know, but have beliefs about the types of their partners, and reason about the value of

potential coalitional agreements given their beliefs about types.

We will now introduce a Bayesian coalitional bargaining game (or, a BCBG) that focuses

on the strategic interactions of the rational agents while negotiating to address the BCFP. In

other words, this bargaining game provides a non-cooperative view of the BCFP.2

The Bargaining Game

When the game starts each agent has knowledge of its own type only (we can assume that

nature, announces each agent’s type only to the agent itself—the type chosen among the types

Ti according to a prior which is assumed to be common knowledge). Thus, the type profile

t of the agents is specified, but any agent i observes only its own ti ∈ t. The game then

proceeds in stages, with a randomly chosen agent proposing a coalition, a coalitional action

and an allocation of payments to partners, who then accept or reject the proposal. The value of

any potential coalitional agreement is discounted by δ ∈ (0, 1] over time (at each stage); this

encourages agreement in earlier rather than later stages.

A set of bargaining actions is available to the agents. A bargaining action corresponds to

either:

(a) some proposal π = 〈C, dC , αC〉 to form a coalition C with a specific payoff configura-

tion dC (specifying payoff shares3 di ∈ [0, 1] to each i ∈ C) and a suggested coalitional

action αC for C to perform; or

(b) the acceptance or rejection of such a proposal.

We make the assumption that for each coalition there is a finite number of possible demand

vectors that one could propose—thus, the set of bargaining actions above is finite. Initially, all

agents are active (i.e., capable of participating in the negotiations). At the beginning of stage s,

one of the (say n) active agents i is chosen randomly with probability γ = 1
n

to make a proposal

π = 〈C, dC , αC〉 (with i ∈ C). Each other j ∈ C either accepts or rejects this proposal. If

all j ∈ C accept, the agents in C are made inactive and removed from the game. Value

Vs(tC) = δs−1Q(C, αC|tC) is realized by C at s, and shared among the agents according to

dC . If any j ∈ C rejects the proposal, the agents remain active (no coalition is formed). At the

2Actually, to be more precise, the agents face a different BCFP in each round of the bargaining game we will
be defining, since the the agents’ beliefs evolve over time.

3We use d to denote relative payoff demands in this chapter because we will be using r to denote “rejection”
later on.
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Figure 5.1: A BCBG game. Dashed lines join nodes that belong in the same information set
(i.e., the agents have observed the same history of moves so far—see Definition 16). After each
observed move in the game, any active agent has (updated) beliefs µ and also some (expected)
value Q (from the continuation of the game). Actually, the µh shown here immediately after
the nature’s first choice of a proposer in the game correspond to the agents’ prior. π denotes a
proposal to some C—only the j responder is visible here.

end of a stage, the responses are observed by all participants, and the agents update their beliefs

regarding others using Bayes rule. The game is finite-horizon: at the end of the final stage F ,

any i not in any coalition receives its discounted reservation value δF−1rvi = δF−1V ({i}|ti)—

i.e., discounted singleton coalition value.4 (If an infinite horizon is assumed, then, due to

discounting, any such agent’s payoff will be zero in the long run). Figure 5.1 depicts a BCBG

game (showing the first levels of the game tree).We will provide a formal definition of the game

shortly.

The coalitional bargaining game described above is a Bayesian extensive form game with

4Henceforth, whenever needed, we will be using V (ti) instead of V ({i}|ti).
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observable actions [OR94] (where the actions correspond to bargaining actions as defined

above). Briefly, an extensive form game is a tree-like representation of a multi-stage game,

depicting the sequence of players’ actions in the course of the game. The nodes of the tree

correspond to decision-making points for the agents, and the branches correspond to players’

actions [OR94, MCWG95]. When all players are fully informed regarding every move that has

occured in the game, it is a game with perfect information. A Bayesian extensive form game

with observable actions [OR94] “models a situation in which the only uncertainty is about an

initial move of chance that distributes payoff-relevant personal information among the player,

in such a way that the information received by each player does not reveal any information

about any of the other players”—chance selects types for the players; however, the players are

subsequently fully cognizant at all points of all moves taken previously. Formally,

Definition 14 (Bayesian extensive game with observable actions [OR94]). A Bayesian ex-

tensive game with observable actions is a tuple 〈Γ, (Ti), (pi), (ui)〉 where

• Γ = 〈N, H, P 〉 is an extensive form game with perfect information, where N is a finite

set of players, H is the set of action histories (a history is an actions’ sequence, each

component of a history being an action taken by a player), and P is a function that

assigns to each nonterminal history (to each member of H\Z, Z being the set of terminal

histories) a member of N ∪ {c}. (P is the player function, P (h) being the player who

takes an action after the history h. If P (h) = c then chance (or, “the nature”) determines

the action taken after the history h.) The finite set of actions available after a nonterminal

history h is denoted A(h) = {a : (h, a) ∈ H}. The empty sequence ∅ is a member of H .

and for each player i ∈ N

• Ti is the set of possible types (determined by nature) for player i.

• pi is a probability measure on Ti for which pi(ti) > 0 for all ti ∈ Ti, and the measures

pi are stochastically independent. (pi(ti) is the probability that player i is selected to be

of type ti.)

• ui : T × Z → < is a utility function—ui(t, h) is player i’s payoff when the profile of

types is t and the terminal history of Γ is h.5

We can now formally define a BCBG as follows:

5In our scenario, this payoff corresponds to the coalition payoff share an agent receives after a coalitional
agreement that involves him has been reached.
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Definition 15 (Bayesian Coalitional Bargaining Game). A Bayesian coalitional bargaining

game (BCBG) with discount factor δ ∈ (0, 1] and a finite number F of stages (or rounds)

can be represented as a Bayesian extensive game with observable actions G, whose Γ =

〈N, H, P 〉, (Ti), (pi) are as in Defn. 14. Further,

• The prior from which the players’ types are drawn is common knowledge.

• All players in G are said to be active unless they have formed a coalition and abandoned

the game.

• The nature chooses a player to become a proposer at each round of the game with prob-

ability γ = 1/n, where n is the number of active players at that round.

• A history h in the bargaining game consists of a series of bargaining actions, encom-

passing proposals by proposers and responses (acceptances or rejections of proposals)

by responders.

• Whenever n > 0 players are active after some history h in the game, these players face

a BCFP (see Defn. 3) with n players, in which every coalition C possible to be formed

has coalitional actions AC in its disposal, leading to stochastic outcomes o ∈ O; and in

which every player i has beliefs µi(h) following h, comprising a joint distribution over

types T−i of potential partners.

• Whenever a history h of bargaining actions has a proposal π = 〈C, dC , αC〉 ∈ h as a

member which is followed by acceptances by all players j ∈ C, coalition C forms and

abandons the bargaining game, and h is said to be terminal. Further, any history h that

ends in the final round F of the game with the rejection of a proposal is also said to be

terminal.

• The payoff ui of player i following terminal history h that terminates in round s with

the formation of coalition C with member types profile tC , and in which i is a mem-

ber and receives agreed (relative) payoff share di ∈ [0, 1], is given as ui(tC , h) =

diδ
s−1Q(C, αC|tC) = diδ

s−1
∑

o∈O Pr(o|α, tC)R(o). Finally, any active agent i of type

ti (i.e., an agent that has not formed a coalition) after the end of any terminal his-

tory in the last round of the game receives his discounted reservation value δF−1rvi =

δF−1V (ti).
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5.3 Equilibria for Bayesian Coalitional Bargaining Games

Here we will define equilibria concepts for BCBGs. However, we have to lay the ground for

this by first introducing some basic background concepts for games in extensive form.

When the extensive form game is, as in our case, Bayesian with observable actions, the

players have perfect information about the actions of others (since they can observe them),

but, as we saw above, there is uncertainty about an initial move of chance (or “nature”) that

distributes payoff-relevant private information among the players (and, thus, defines the agents’

“type”). In such a game, after every action of any agent j in the game, an information set of

game nodes is defined for every agent i (of some nature-specified type) that has to act, at which

the agent is uncertain as to which node exactly the game has reached (as he is uncertain about

the initial assignment of types—see Figure 5.1). We define information sets as follows:

Definition 16 (Information set). An information set Ii(h) of some player i in an extensive

form game is a set of decision nodes reached after history h, such that:

• Every node in the set belongs to only one player, i, who is the player who has to move

after h.

• When play reaches information set Ii(h), player i does not know with certainty which

node in the set has been reached, but has probabilistic beliefs about this.

In the case of an extensive form game with observable actions, the beliefs of any agent k

after some history h which is followed by some action (say some bargaining action π in the

case of BCBGs) of some agent i, are updated by the Bayes rule and depend only on k’s initial

beliefs, the (observed, apart from nature’s move) history h before i’s action and the action of

i (e.g., see Figure 5.1). It is common in such a game to assume that each agent will adopt a

suitable behavioural strategy [OR94], associating with each information set in the game tree at

which it must make a decision a distribution over action choices (for each of its possible types):

Definition 17 (Behavioural strategy). A behavioural strategy of player i of type ti is a collec-

tion (σti
i (Ii))Ii∈I of independent probability measures, where σti

i (Ii) is a probability measure

over A(Ii), with A(Ii) being the set of actions available to i at each information set Ii within

the set I of i’s information sets in the game.

A strategy of a player in an extensive form game needs not be behavioural, but it does have

to specify a complete contingent plan of actions for the player [MCWG95]:
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Definition 18 (Strategy in an extensive form game). A strategy of player i in an extensive

form game is a function that assigns an action in A(h) to each nonterminal history h ∈ H at

which it is i’s turn to move—H being the set of action histories and A(h) the set of actions

available to i at h.

Thus, a strategy in an extensive form game can be pure (assigning one specific action to

each nonterminal h), behavioural, or mixed. While a behavioural strategy specifies a probabil-

ity measure over the actions available to i at each one of his information sets, a mixed strategy

for i is a probability measure over player i’s set of pure strategies.6

When an extensive form game is assumed to be a game of perfect information, the appro-

priate solution concept is that of a subgame-perfect equilibrium (SPE) [OR94, MCWG95]: an

SPE is a strategy profile whose restriction to any subgame following any history in the game is

a Nash equilibrium of the subgame. In other words, in SPE the agents play best responses to

each other’s strategies following any history in the game—the strategies specified in the SPE

profile define an equilibrium in any subgame of the game. (Intuitively, a subgame of an exten-

sive form game is the portion of the game tree that follows some history h of actions.) Thus, an

SPE defines a sequentially rational behaviour for the agents.7 To formally define the SPE, we

first have to define the notion of a subgame formally (for any generic extensive form game):

Definition 19 (Subgame of an extensive form game [MCWG95]). A subgame of an extensive

form game ΓE is a subset of the game having the following properties:

i It begins with an information set containing a single decision node, contains all the decision

nodes that are successors (both immediate and later) of this node, and contains only these

nodes.

ii If decision node x is in the subgame, then every x′ ∈ H(x) is also, where H(x) is the

information set that contains node x. (That is, there are no “broken” information sets in a

subgame.)

We now define the SPE concept as follows:

6In games of perfect information, behavioural and mixed strategies are outcome equivalent[OR94].
7The SPE notion helps to remove the possibility of having equilibria describing “incredible threats” by some

agents. When the sequential nature of deliberations and future rationality and “optimality” of current and future
behaviour is taken into account (as is the case in SPE), then the possibility of incredible threats is removed
[OR94, MCWG95].
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Definition 20 (Subgame-Perfect Nash Equilibrium [MCWG95]). A profile of strategies σ =

〈σ1, · · · , σN〉 in a N -player extensive form game ΓE is a subgame perfect Nash equilibrium

(SPE) if it induces a Nash equilibrium in every subgame of ΓE .

However, when uncertainty is assumed and beliefs are introduced in the game, the SPE

concept has to be extended to account for these changes. Thus, the preferred solution concept

for a Bayesian extensive form game (and, thus, for a BCBG game as well) is that of a perfect

Bayesian equilibrium (PBE) [OR94]. A PBE comprises a profile of behavioural strategies for

each agent as well as a system of beliefs dictating what each agent believes about the types of its

counterparts at each decision node in the game tree. The standard rationality requirements must

also hold: the strategy for each agent maximizes its expected utility given its beliefs; and each

agent’s beliefs are updated from stage to stage using Bayes rule, given the specific strategies

being played. In other words, the agents’ strategies are interdependent with their beliefs: in

equilibrium, each agent’s strategy is a best response to the strategies of others, given that agent’s

beliefs; and each agent’s beliefs (viewed at all decision nodes, after each update following an

equilibrium action) have to be such that they support the (sequential) equilibrium strategies.

Somewhat informally and intuitively, the PBE concept combines the SPE and Bayes-Nash (see

Section 2.2.2) equilibrium concepts, by requiring that the agents’ strategies are sequential best

responses given the agents’ beliefs after any possible history and appropriate update of beliefs.

Before defining the PBE formally, we define the concept of sequential rationality for a

strategy profile in a Bayesian extensive form game with observable actions. First, however, we

formally define a system of beliefs for a generic extensive form game:

Definition 21 (System of beliefs [MCWG95]). A system of beliefs µ in extensive form game

ΓE is a specification of a probability µ(x) ∈ [0, 1] for each decision node x in ΓE such that
∑

x∈H µ(x) = 1 for all information sets H .

Thus, such a system specifies, for each information set, a probabilistic assessment by the

player who moves at that set of the likelihood of being at each decision node in the set, con-

ditional upon play having reached that information set. In the case of a Bayesian extensive

form game with observable actions, when the uncertainty is about the initial move of chance

specifying the players’ types, the system of beliefs can be thought of as specifying, for each

player i, after any observed history h, the probability µi(h)(tj) assigned by i to any other j

being of type tj ∈ Tj , s.t.
∑

tj
µi(h)(tj) = 1. Now we define sequential rationality:

Definition 22 (Sequential rationality [MCWG95]). Let µ denote a system of beliefs specify-

ing all players’ beliefs at each one of their decision nodes after any history h in the game. Con-
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sider an information set Ii(h) controlled by player i that moves after h; let E[υi|Ii(h), µ, σi(I), σ−i(I)]

denote player i’s expected utility starting at Ii(h) if his beliefs regarding the types of others at

Ii(h) are given by µi(h) ∈ µ, he follows (behavioural) strategy σi(I) and other players use

(behavioural) strategies σ−i(I) starting at Ii(h).

A (behavioural) strategy profile σ = 〈σ1, · · · , σN 〉 in a N -player Bayesian extensive form

game with observable actions is sequentially rational for player i at information set Ii(h) given

the system of beliefs µ if,

E[υi|Ii(h), µ, σi(I), σ−i(I)] ≥ E[υi|Ii(h), µ, σ̃i(I), σ−i(I)]

for all σ̃i(I) in the set of i’s (behavioural) strategies starting at Ii(h).

If strategy profile σ satisfies the condition for any player at any of his information sets (i.e.,

if the condition is satisfied for all information sets in the game), then σ is sequentially rational

given belief system µ.

In words, a strategy profile is sequentially rational if no player finds it worthwhile once one

of his information sets has been reached to revise his strategy given his beliefs (as embodied in

µ) about what the others’ types are and the strategies of others.

We can now formally define the PBE for a Bayesian extensive form game with observable

actions as follows:

Definition 23 (Perfect Bayesian Equilibrium [OR94, MCWG95]). A profile of (behavioural)

strategies and system of beliefs (σ, µ) is a Perfect Bayesian Equilibrium in the Bayesian exten-

sive form game Γ if it has the following properties:

(i) The strategy profile σ is sequentially rational given system of beliefs µ.

(ii) The system of beliefs µ is derived from the strategy profile σ through Bayes’ rule whenever

possible. That is, if i acts after history h, and his action a = ai is in the support of

σi(ti)(h) for some ti in the support of any µj(h) (any other player j’s beliefs after h),

then for any t′i ∈ Ti we have

µj(h ∪ a)(t′i) =
σi(t

′
i)(h)(ai)µj(h)(t′i)∑

ti∈Ti
σi(ti)(h)(ai)µj(h)(ti)

Now, if the assumption is made that the BCBG is to be played without the agents revising

their beliefs in the course of the game, that is, under an assumption of fixed beliefs, the PBE
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solution concept has to be revised. The appropriate solution concept for such a BCBG is a

sequential equilibrium under fixed beliefs. Before defining the SEFB, we define a fixed system

of beliefs for a BCBG:

Definition 24 (Fixed system of beliefs). A fixed system of beliefs µ for a BCBG Γ is a system of

beliefs that specifies, for each player i, after any observed history h, the probability µi(h)(tj)

assigned by i to any other j being of type tj ∈ Tj, s.t., independently of h, µi(h)(tj) is fixed to

some value µi(tj) ∈ [0, 1]. That is, at any h in Γ, µi(h)(tj) = µi(tj) (and
∑

tj
µi(tj) = 1).

Now we define the SEFB concept:

Definition 25 (Sequential Equilibrium under Fixed Beliefs). Let G be a BCBG. Then, a

profile of (behavioural) bargaining strategies, one for each player in N , is a sequential equi-

librium under fixed beliefs (SEFB) for G, if, for each i ∈ N and each history h, i’s strategy

continuation after h is optimal, given the bargaining strategies of other players and assumed

fixed beliefs µi for any i in the game, provided to each agent by its own prior.

Equivalently, the strategy profile σ is an SEFB for G if it is sequentially rational given a

fixed system of beliefs µ (corresponding to the agents’ priors).

When the strategies above are pure we are talking about an SEFB in pure strategies.

The SEFB is therefore defined as an extension of SPE and a restriction of PBE equilib-

ria. Unlike the SPE solution, SEFB incorporates beliefs (and the fact that different agents can

have widely varying beliefs about the value of any coalition in our coalitional bargaining set-

ting, given their own priors regarding the types of partners); the beliefs are merely held fixed

throughout the bargaining process (unlike what the PBE solution assumes).

Notice that the SEFB may be a more appropriate equilibrium concept for bargaining games

where the agents do not have full observability of the bargaining actions of all of their oppo-

nents, and are thus unable to continuously update their beliefs regarding all of them. For ex-

ample, in many realistic settings the bargaining players may not be allowed to observe others’

responses to proposals. Further, the fixed-beliefs assumption can be useful when one wishes

to deal with approximating the game’s bargaining equilibria, while the SEFB concept can be

of use when—as we shall do—one tries to relate a stability concept for the formation problem

to a bargaining equilibrium: in Section 5.5 we will argue that it is not possible for a static con-

cept such as the Bayesian core to account for the belief dynamics present in bargaining game:

stability can only be defined with respect to beliefs that have “settled” to specific values.

Nevertheless, it is still possible to formulate the exact PBE solution of the problem. We

now proceed to do just that.
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5.3.1 Formulation of the PBE solution

Here we formulate the constraints that must hold on both strategies and beliefs in order to form

a PBE. We note that, to the best of our knowledge, no similar equilibrium formulation has been

provided in the literature for any model of coalitional bargaining under any type of uncertainty.

Let σi denote a behavioural strategy for i, mapping information sets (or observable histories

h) in the game tree at which i must act into distributions over admissible actions A(h). If i is a

proposer at h (at stage s), let A(h) = P , the finite set of proposals available at h. Then σh,ti
i (π)

denotes the (behavioural strategy) probability that i makes proposal π ∈ P at h given its type is

ti. If i is a responder at h, then σh,ti
i (y) is the probability with which i accepts the proposal on

the table (says yes) at h (and σh,ti
i (n) = 1− σh,ti

i (y) is the probability i says no). Let µi denote

i’s beliefs with µh,ti
i (t−i) being i’s beliefs about the types of others at h given its own type is

ti. Throughout, Vs(tC) is the (discounted) value to coalition with specific agents’ types tC , if

it forms at bargaining stage s (and performs a coalitional action as prescribed by the accepted

proposal).

We define the PBE constraints for the game by first defining the values to (generic) agent i

at each node and information set in the game tree, given a fixed strategy for other agents, and

the rationality constraints on his strategies and beliefs. We proceed in stages.

(1) Let ξ be a proposal node for i at history h at stage s. Since the only uncertainty in

information set h involves the types of other agents, each ξ ∈ h corresponds to one such type

vector t−i ∈ T−i; let h(t−i) denote this node in h. The value to i of a proposal π = 〈C, dC , αC〉

at h(t−i) is:

q
h(t−i),ti
i (π) = ph(t−i)

acc
(π)diVs(tC) +

∑

r

ph(t−i)(π, r)q
ξ/π/r,ti
i (5.1)

where: p
h(t−i)
acc (π) is the probability that all j ∈ C (other than i) accept π (this is easily defined

in terms of their fixed strategies); di is i’s payoff share in dC ; r ranges over response vectors

in which at least one j ∈ C refuses the proposal; ph(t−i)(π, r) denotes the probability of such

a response; (note that it is critical to account for this probability explicitly, as the precise vec-

tor of responses affects future beliefs, and thus continuation payoff); and q
ξ/π/r,ti
i denotes the

continuation payoff for i at stage s + 1 at the node ξ/π/r (following n after proposal π and

responses r). This continuation payoff is defined (recursively) below. The value of π at history

h (as opposed to a node) is determined by taking the expectation w.r.t. possible types:

qh,ti
i (π) =

∑

t−i

µh,ti
i (t−i)q

h(t−i),ti
i (π) (5.2)
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(2) Suppose i is a responder at node ξ = h(t−i) in history h at stage s. As above, ξ

corresponds to specific t−i in h. W.l.o.g. we can assume i is the first responder (since all

responses are simultaneous). Let p
h(t−i)
acc (π) denote the probability that all other responders

accept π. We then define the value to i of accepting π at ξ as:

q
h(t−i),ti
i (y) = ph(t−i)

acc (π)diVs(tC) +
∑

r

ph(t−i)(π, r)q
ξ/y/r,ti
i (5.3)

where again r ranges over response vectors in which at least one j ∈ C, j 6= i, refuses π;

ph(t−i)(π, r) is the probability of such a response; and q
ξ/y/r,ti
i is the continuation payoff for i

at stage s + 1 after responses r by its counterparts. The value of accepting at h is given by the

expectation over type vectors tC w.r.t. i’s beliefs µh,ti
i as above.

The value of rejecting π at ξ = h(t−i) is the expected continuation payoff at stage s + 1:

q
h(t−i),ti
i (n) =

∑

r

ph(t−i)(π, r)q
ξ/n/r,ti
i (5.4)

(where r ranges over all responses, including pure positive responses, of the others).

(3) We have defined the value for i taking a specific action at any of its information sets. It

is now straightforward to define the value to i of reaching any other stage s node controlled by

j 6= i or by nature (i.e., chance nodes where a random proposer is chosen).

For an information set hj where j makes a proposal, consider a node ξ = hj(tj) where

j is assumed to be of type tj . Then, j’s strategy σ
hj ,tj
j specifies a distribution over pro-

posals π (determined given the values q
hj ,tj
j (π) which can be calculated as above, and j’s

type tj). Agent i’s value q
ti,hj(tj)
i at this node is given by the expectation (w.r.t. this strat-

egy distribution) of its accept or reject values (or if it is not involved in a proposal, its ex-

pected continuation value at stage s + 1 given the responses of others). Its value at hj is then

Qti
i (hj) =

∑
tj

µ
hj ,ti
i (tj)q

ti,hj(tj)
i . We define Qti

i (hi) (where i is the proposer) as the value of

his best possible proposal at this information set, calculated as in Case 1 above.

Finally, i’s value at information set h that defines the stage s continuation game (i.e., where

nature chooses proposer) is

qh,ti
i =

1

m

∑

j≤m

Qti
i (hj) (5.5)

where m is the number of active agents, and hj is the information set following h in which j is

the proposer.

(4) We are now able to define the rationality constraints. We require that the payoff from the
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equilibrium behavioural strategy σ exceeds the payoffs of using pure strategies. Specifically,

in PBE, for all i, ti ∈ Ti, all h corresponding to i’s information sets Ii(h) ∈ I, and all actions

b ∈ A(h), we have:

∑

t−i

µh
i (t−i)

∑

a∈A(h)

σh,ti
i (a)q

h(t−i),ti
i (a) ≥

∑

t−i

µh
i (t−i)q

h(t−i),ti
i (b) (5.6)

We also add constraints for the Bayesian update of belief variables for any agent i regarding

type tj agent j performing aj at any h (for all i, ti ∈ Ti, all h and all aj):

µ
h∪aj ,ti
i (tj) = µh,ti

i (tj)σ
h,tj
j (aj)/

∑

tkj ∈Tj

µh,ti
i (tkj )σ

h,tkj
j (aj) (5.7)

Finally, we add the obvious constraints specifying the domain of the various variables denoting

behavioural strategies or beliefs: they take values in [0, 1] and sum up to 1 as appropriate.

This ends the PBE formulation. Note that this formulation constitutes a polynomial con-

straint satisfaction program (CSP), made up of the set of equalities and inequality constraints

described above. This CSP encompasses µ-variables and σ-variables describing the beliefs and

behavioural strategies of the agents; auxiliary q-variables (defined recursively through equa-

tions 5.1— 5.5) and denoting the value of bargaining actions; auxiliary p-variables used in

the q-values definitions and denoting the probability of acceptance or rejection of proposals,

and defined basically as products of behavioural strategies of responders (e.g., if π was ad-

dressed to C by i, and j, k of assumed types tj, tk respectively are the other members of

C, p
h(tj ,tk)
acc (π) = σ

h,tj
j (y)σh,tk

k (y)); and constants denoting relative demands (e.g., di), types

(e.g., tk) and pure bargaining actions (e.g., aj) of the agents. Figure 5.2 summarizes the CSP

formulation of the PBE.

Unfortunately, solving realistic versions of this program is, as we shall now demonstrate,

practically impossible.

5.3.2 Complexity of the PBE Solution

The calculation of the PBE is rendered practically intractable because of a variety of combi-

natorial interactions evident in the constraints above. In several points in the program—which

assumes random choice of proposer in each of several bargaining rounds—variables describing

the strategies of an agent depend on the yet unknown strategies of others, which in turn de-

pend on (updated) beliefs that themselves depend on strategies (see for example constraints 5.6
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∑

t
−i

µh
i (t−i)

∑

a∈A(h)

σh,ti

i (a)q
h(t

−i),ti

i (a) ≥
∑

t
−i

µh
i (t−i)q

h(t
−i),ti

i (b)

∀i ∈ N, ti ∈ Ti, h : P (h) = i, b ∈ A(h)
(5.8)

µ
h∪aj ,ti

i (tj) = µh,ti

i (tj)σ
h,tj

j (aj)/
∑

tk
j
∈Tj

µh,ti

i (tkj )σ
h,tk

j

j (aj)

∀i ∈ N, ti ∈ Ti;

∀h ∈ H : P (h) = j, j ∈ N, aj ∈ A(h), tj ∈ Tj

(5.9)

0 ≤ µh,ti

i (tj) ≤ 1 ∀i ∈ N, ti ∈ Ti, h ∈ H, tj ∈ Tj (5.10)
∑

tj∈Tj

µh,ti

i (tj) = 1 ∀i ∈ N, ti ∈ Ti, h ∈ H (5.11)

0 ≤ σh,ti

i (ai) ≤ 1 ∀i ∈ N, ti ∈ Ti, h ∈ H : P (h) = i, ai ∈ A(h) (5.12)
∑

ai∈A(h)

σh,ti

i (ai) = 1 ∀i ∈ N, ti ∈ Ti, h ∈ H : P (h) = i (5.13)

and q-variables defined recursively as in Eq. 5.1— 5.5.

Figure 5.2: The CSP formulation for the PBE solution of a Bayesian coalitional bargaining
game.

and 5.5). More specifically, many problems arise due to the fact that the agents have to calculate

their future expected continuation payoff, which depends on the future actions of opponents,

which in turn depend on beliefs updated in the future, given the yet uncalculated strategies in

this and next rounds. Further, the program is not convex:

Proposition 5. The constraint satisfaction program describing the PBE solution for a coali-

tional bargaining game is non-convex.

(We provide a proof for this proposition in Appendix A.)

Nevertheless, the program is decidable: it is equivalent to deciding whether a system of

polynomial equations and inequalities has a solution [BPR96]. The problem is decidable, but

is intractable. [BPR96], for example, have provided an algorithm with exponential complexity

for deciding this problem. Specifically, the complexity of deciding whether a system of s

polynomials, each of degree at most d in k variables has a solution is sk+1dO(k). To the best of

our knowledge, this is the fastest algorithm to decide this problem—and is exponential to k.

In our case, assuming a random choice of proposer at each of F rounds, we can show

that if α is the number of pure strategies, N the number of agents, T the number of types,
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then s = O((Nα(N − 1))F ∗ N ∗ T ), d = NF and k = O((Nα(N − 1))F ∗ N ∗ T ∗ α).

This is due to a variety of combinatorial interactions evident in the constraints above, creat-

ing as they do interdependencies between belief and strategy variables. More specifically, the

degree of a round F polynomial is N (due to the need to multiply variables denoting accep-

tance probabilities of various agents together to come up with various pacc(π) probabilities of

all agents accepting a proposal π), but the degree of a round one polynomial constraint will

be NF (due to the need to take continuation payoffs into account when specifying the con-

straints). The number of constraints needed if a single stage of bargaining was to be used is

O(αNT ).8 However, there exist F rounds, and at each one the proposer is chosen randomly:

this necessitates that all appropriate constraints have to be specified for any possible choice

of proposer at every stage. This requirement increases the number of polynomial constraints

needed in the system by a factor of NF . In fact, the number of all information sets in the game

is O((Nα(N − 1))F ∗ N ∗ T )—the approximate number of information sets (observed histo-

ries) for each agent of each potential type9 times the number of agents times the number of

types—and we need to define constraints at each one of them. Finally, the number of variables

k in the system is O((Nα(N − 1))F ∗ N ∗ T ∗ α), because of the need to define at most α

behavioural σ-variables at each information set—the number of µ-variables needed is less than

that by a factor of at least NF ∗ α since agents need not update beliefs when nature selects a

proposer (and the additional factor α above is not relevant here either). Therefore, solving the

system can be guaranteed, but this can take

O(((Nα(N − 1))F NT )O((Nα(N−1))F NTα)+1(NF )O((Nα(N−1))F NTα))

time, which is obviously prohibitively high.

Notwithstanding the complexity of tackling the problem, there exist off-the-shelf (e.g., im-

plemented in the MATLAB optimization toolbox) iterative techniques for solving non-linear

optimization problems, such as those described in [JKP72]. Some of these techniques, com-

monly referred to as Sequential Quadratic Programming methods, might even guarantee super-

8Roughly, in a single stage, with a fixed proposer we need O(α) constraints for one specific type of the
proposer, and O(αT ) for all its possible types; we need O(αT2(N − 1)) constraints for the responders; and
O((N − 1)Tα) constraints to describe the Bayes rule updates of beliefs for each one of the N − 1 responders
after each possible proposal.

9The (N − 1) factor is an approximation: it corresponds to potentially N − 1 responders responding to
a proposal; we use N − 1 instead of 2N−1 since we assume simultaneous responders’ moves: therefore, the
responders do not respond after observing others’ responses, and we can assume that any subsequent proposer
observes the vector of N − 1 responses.
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linear convergence to a solution point, in terms of the number of iterations involved in order

to optimize the solution. Unfortunately, this does not necessarily guarantee that the process

of calculating an intermediate solution is efficient in terms of time taken; in addition, these

methods require certain conditions to hold, such as the requirement that the polynomials par-

ticipating in the constraints are convex functions. (Unfortunately, as mentioned above, it is

easy to show that our polynomial program is non-convex.) Despite these drawbacks, however,

these methods might work well for restricted versions of our problem.

In summary, the formulation above characterizes the PBE solution of our coalitional bar-

gaining game as a solution of a polynomial program. However, it does not seem possible that

this solution can be efficiently computed in general. Nevertheless, this PBE formulation may

prove useful for the computation of a PBE in a bargaining setting with a limited number of

agents, types, proposals and bargaining stages. Perhaps more importantly, it is the first attempt

to describe the equilibrium solution of a coalitional bargaining problem under uncertainty.

5.4 Coalitional Bargaining Heuristics

The calculation of the PBE solution is extremely complex due to both the size of the strat-

egy space (as a function of the size of the game tree, which grows exponentially with the

problem horizon), and the dependence between variables representing strategies and beliefs,

as explained above. We present a heuristic algorithm that circumvents these issues to some

degree by:

(a) performing only a small lookahead in the game tree in order to decide on a action at any

stage of the game; and

(b) fixing the beliefs of each agent during this process.

This latter approach, in particular, allows us to solve the game tree by backward induction, es-

sentially approximating heuristically the computatation of an SEFB equilibrium for this fixed-

beliefs game. Note that while beliefs are held fixed during the lookahead (while computing an

immediate action), they do get updated once the bargaining action (i.e., proposal or response)

is selected and executed, and thus the beliefs do evolve based on the actions of others dur-

ing bargaining. Furthermore, we allow sampling of type vectors in the computation to further

reduce the tree size.

We now describe the algorithm in detail. Initially, the agents’ types are assumed to be

drawn from a common prior, known to all the agents. At any stage of the game, with a particular
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collection of active agents (each with their own beliefs), the steps of the algorithm (summarized

in Figure 5.3) are as follows:

1. Each agent constructs a game tree consisting of the next l rounds of bargaining, for some

small lookahead l. This tree represents the game for the next l rounds, given the chosen

proposer at the current round. (If less than l rounds remain, the tree is suitably truncated.)

All active agents are assumed to have fixed beliefs at each node in this tree, corresponding

to their beliefs at the current stage. Each agent computes its best response action for the

current round using backward induction to approximate an SEFB equilibrium of this

limited depth BCBG under fixed beliefs game. (We elaborate below.) Moreover, by

solving the game tree, each agent estimates the current round best response action for

each possible type of every other active agent. Furthermore, the agents sample partners’

types when calculating the values of coalitions and proposals.

2. The proposer and each responding player execute the actions they computed as best in

this reduced tree for the current round of bargaining. If a coalition is formed, it breaks

away, leaving the remaining players as active.

3. All active agents update their beliefs, given the actual observed actions of others in the

current round, and their expected best responses, using Bayesian updating (as in Eq. 5.7).

Further, each agent keeps track of the belief updates that any other agent of a specific type

would perform at this point.

4. The next bargaining round is implemented by repeating these steps until a complete

coalition structure is determined or the maximum number of bargaining rounds is reached.

We note also that the algorithm can be combined with belief updates after observing the

results of coalitional actions (in RL style).

We stress that this heuristic best-response algorithm does not approximate the PBE solu-

tion; getting any good bounds for a true PBE approximation would only be likely by assuming

belief updating at every node of the game tree mentioned in Step 1. However, if our algorith-

mic assumptions are shared by all agents, each agent—using the method mentioned in Step

1 above—can determine their best responses to others’ approximately optimal play, and thus

their play resembles an SEFB equilibrium of the fixed-beliefs game. The use of this heuristic

SEFB approximation algorithm in Step 1 above can be further motivated by the fact that—as

we show in the next section of this chapter—SEFB play by the agents leads to stable (BC)
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F : number of rounds;
l: lookahead<< F ;
L: current round (1 ≤ L ≤ F );
N : set of active agents;
µ: agent types prior (common knowledge)
∀i : ti ∈ Ti is private information

1. Nature selects proposer ψ; agents solve an l-rounds BCBG (if L > F − l+ 1, then l = F −L+ 1),
using sampling of partners’ types, and assuming fixed beliefs at the game tree nodes. Thus,

• Each agent computes its best response action for the current round (i.e., the first level of the
l-rounds BCBG tree).

• Each agent i estimates the current round best response action for each possible type of every
other active agent.

2. Bargaining actions executed: agent ψ states calculated best response proposal π to C and all other
ζ ∈ C respond with their calculated best responses to π.

• if all ζ ∈ C accept, C is formed and breaks away; N = N \ C

3. Any active agent i update their beliefs after observing agent j’s bargaining action β; further, any
agent i keeps track of beliefs µtι

of any other active agent ι of type tι (µi
tι

denote those beliefs as
updated by i):

∀i, ι ∈ N ; ∀tι ∈ Tι; ∀tj ∈ Tj : µi
tι

(tj |β) = µi
tι

(tj)σ
tj

j (β)/
∑

tk
j
∈Tj

µi
tι

(tkj )σ
tk
j

j (β)

4. L = L+ 1; Repeat steps 1–3 until a complete CS is determined or round F is over.

Figure 5.3: A heuristic best-response coalitional bargaining algorithm with belief updates.

coalitional configurations. Nevertheless, we note that it is not possible to get any good approx-

imation bounds for this (Step 1) algorithm: it is only a heuristic method to approximate SEFB

play (but it does behave well in practice). We will come back to this point after describing the

method in some detail.

We assume that the agents proceed to negotiations that will last l rounds (corresponding

to the algorithm’s lookahead value l) under the assumption that all beliefs will remain fixed to

their present values throughout the (Step 1) process. We will present the deliberations of agent

i during negotiations. For fixed types t−i of possible partners, drawn according to µi, i will

reason about the game tree and assume fixed beliefs of other agents. (Agents will track of the

updates of other agents’ beliefs after this stage of bargaining; see Step 2 above). Then, i can

calculate the optimal action of any tj agent (including himself) at any information set by taking

expectations over the corresponding tree nodes.

We begin our analysis at the last round l of negotiations. Consider any node ξ after history

h where i of type ti is a responder to proposal π ∈ P (see node h(t−i) in Figure 5.4). At any
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Figure 5.4: Evaluation of potential decisions for responder i ∈ C of type ti at information set h
after proposal π proposed to C at the last round of negotiations. h(t−i) denotes a node in this in-
formation set (following history h) where i assumes his opponents to have a specific type vector
t−i. The value of acceptance to i, at information set h, is qh

i (y) =
∑

t−i∈tC
µh,ti

i (t−i)q
h(t−i),ti
i (y).

(The value of refusal (saying “no”—action n) is, trivially, qh
i (n) = Vl(ti), with Vl(ti) denoting

the discounted reservation value for i of type ti at this last round l of negotiations.)

such ξ, i assumes a specific type vector for partners, and he expects a value for accepting (i.e.,

saying “yes”—action y) that is different to his (discounted) reservation value Vl(ti) only if all

other responders accept the proposal as well:

q
h(t−i),ti
i (y) =

{
diVl(tC) if all t−i ∈ tC accept

Vl(ti) otherwise
(5.14)

(where di ∈ dC is the share for i specified by the proposer as part of proposal π). However,

to evaluate this acceptance condition, i would need to know the other responders’ strategies

(which in turn depend on i’s strategy). Therefore, i will make the simplifying assumption that
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all other responders j evaluate their response to π10 by assuming that the rest of the agents

(including i) will accept the proposal. Thus, any j with tj ∈ t−i is assumed by i to accept if he

(i.e., j) evaluates his expected payoff from acceptance as being greater than his (discounted)

reservation payoff:11

dj

∑

t−j∈tC

µj(t−j)Vl({tj, t−j}) ≥ Vl(tj) (5.15)

With this assumption, i is able to evaluate the acceptance condition in Eq. 5.14 above, and so

calculate a specific q
h(t−i),ti
i (y) value.

At node ξ = h(t−i), i can also evaluate his refusal value as q
h(t−i),ti
i (n) = Vl(ti) in this

last round. Then, responder i’s actual strategy at h—that is, his best response at information

set h, containing all possible h(ti), h(t−i) decision nodes—can be evaluated as the strategy

maximizing i’s expected value given µh,ti
i :

σh,ti
i = arg max

r∈{y,n}
{
∑

t−i∈tC

µh,ti
i (t−i)q

h(t−i),ti
i (r)}

If i is a proposer of type ti deliberating at ξ = h(t−i), the value of making proposal π is:

q
h(t−i),ti
i (π) =

{
diVl(tC) if σ

h,tj
j = y, ∀j

Vl(ti) otherwise
(5.16)

(i.e., i will get his reservation value unless all the responders of the specific type configuration

agree to this proposal). Furthermore, i’s expected value qh,ti
i (π) from making proposal π to

coalition C at h can be determined given µh,ti
i . Thus, the best proposal that i of type ti can

make to coalition C is the one with maximum expected payoff: σC;h,ti
i = arg maxπ qh,ti

i (π)

with expected payoff qC;h,ti
i .

However, i can also propose to other coalitions at h as well. Therefore, the coalition C ∗ to

which i should propose is the one that guarantees him the maximum expected payoff: C ∗ =

arg maxC{q
C;h,ti
i }. If P ∗ is the payoff allocation associated with that proposal, then the optimal

coalition-allocation pair that ti can propose in this subgame (that starts with i proposing at h)

10Recall that proposal π = 〈C,dC , αC〉 calls for the formation of a coalition C with a specific payoff shares
configuration dC and a coalitional action αC . For notational simplicity, we do not explicitly link value notation
or the shares di to their corresponding proposal here, nor do we explicitly refer to proposed coalitional actions.
Instead, we use V (tC) as a shorthand denoting the value of a coalition assuming a type vector tC for its members
and a choice of coalitional action “as prescribed by proposal π”.

11Note that j does not actually evaluate his acceptance value as in Eq. 5.15, but as in Eq. 5.14: agents do
not evaluate their acceptance value by assuming that others will accept for sure. However, in order to evaluate
Eq. 5.14, any agent assumes that others decide to accept or not using Eq. 5.15.
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is: σ∗;h,ti
i = {C∗, P ∗} with maximum expected payoff qC∗;h,ti

i . Finally, if there exists more

than one optimal proposal for i, i randomly selects any of them (this is taken into account in

agents’ deliberations accordingly).

Of course, when the subgame starts, an agent i does not know who the proposer in this

subgame will be; and i has only probabilistic beliefs about the types of his potential partners.

Thus, i has to calculate his continuation payoff q l:ξ,ti
i at stage l (that starts at node ξ) with

m participants, in the way explained in the previous section. This is straightforward, as i can

calculate his expected payoffs from participating in any subgame where some j proposes, given

that any i can calculate the optimal strategies (and associated payoffs) for any j in this round l

subgame.

Now consider play in a subgame starting in period l − 1, again with the participation of m

agents. The analysis for this round can be performed in a way completely similar to the one

performed for the last round of negotiations. However, there is one main difference: the payoffs

in the case of a rejection are now the continuation payoffs (for agents of specific type) from

the last round subgame. We have to incorporate this difference in our calculations. Other than

that, we can employ a similar line of argument to the one used for identifying the equilibrium

strategies in the last period. Proceeding in this way, we define the continuation payoffs and

players’ strategies for each prior round, and finally determine the first round actions for any

proposer i of type ti or any responder j of type tj responding to any proposal—employing

backward induction.

Though this heuristic fixed-beliefs algorithm is intuitive and—as our experiments in Sec-

tion 5.6 will demonstrate—does help the agents perform well in practice, it does not come with

good approximation bounds for the SEFB solution: Using standard Chernoff bounds analysis,

one can show that sampling is not harmful when agents calculate coalitional values in the last

round (i.e., round l) of negotiations (under fixed beliefs). However, due to the varying agents’

beliefs, even small differences in the calculation of the coalitional values (differences which are

inescapable due to the use of sampling), when propagated up the tree may result to the adop-

tion of strategies by the opponents that are totally different to the ones expected. This problem

is mainly encountered when the values of coalitional agreements are very close to each other.

Thus, the adoption of the strategy calculated by the algorithm cannot guarantee to an agent a

value that is close to his actual equilibrium one. One possible “remedy” to this problem, would

perhaps be to assume that all agents use the same samples—i.e., that they play according to a
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(centrally computed) “common copy” of the algorithm.12 However, we believe that this would

not be a realistic assumption to make in this setting. Even though we cannot guarantee good

theoretical bounds for the algorithm, we note that the algorithm is expected to (and does) have

good behaviour in practice (as in many realistic situations the values of the various agreements

are not expected to be very close to each other).

Finally, we note that the complexity of this heuristic fixed-beliefs algorithm is essen-

tially the complexity of using backward induction to traverse a game tree with depth bound

l: the tree branching factor is approximately NαN , with each of the N proposers chosen

randomly at each round to propose one of α bargaining actions to (in the worst case) N re-

sponders (which respond simultaneously). Since nature decides on one of the |T | type pro-

files in the beginning of the game, the complexity of this heuristic algorithm is approximately

O((αN2)
l
|T |). The complexity of the heuristic best-response bargaining algorithm in Fig-

ure 5.3 is then O(F (αN 2)
l
|T |), assuming F rounds of bargaining. This running time can

of course become very demanding, but it can also be kept within reasonable limits with the

appropriate choice of the sampling size (when sampling type vectors), and lookahead value

l.13 Furthermore, in practice, as agents form coalitions and abandon the game the number α

of bargaining actions is reduced (as there are fewer coalitions to which the agents can make

proposals), with the subsequent benefits to running time.

5.5 A Non-Cooperative Justification of the Bayesian Core

As was pointed out earlier in this thesis, the core occupies a central position as a cooperative

solution concept in coalition formation. Nevertheless, the core cannot itself capture the non-

cooperative dynamics and player interactions that lead to its creation. These interactions are

naturally described by equilibria notions that justify the choices of rational players.

It is natural, then, to raise the question of equivalence of these different solution concepts.

As we saw in Section 5.1, there exists a corpus of literature that tries to analyze the non-

cooperative underpinnings of the core, and relate it to the equilibria solution concepts of the

bargaining games that lead to it. The aim of such research is to show that the non-cooperative

(commonly SPE) equilibria of the bargaining game produce outcomes that lie in the core.

12For example, Kearns, Mansour and Singh [KMS00] use this assumption when computing near-Nash equilib-
ria in stochastic games.

13As we mention in Chapter 7 of this dissertation, the development of less demanding algorithms based on this
heuristic is also possible—but of course this would come at a price regarding the accuracy of the approximation.
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To date, none of this work has taken type uncertainty (or any other form of uncertainty)

into account. We, on the other hand, do take type uncertainty into account, and investigate the

relationship between the equilibria outcomes of a Bayesian coalitional bargaining game and

the Bayesian core configurations of its underlying Bayesian coalition formation game.

Of course, the Bayesian core—being a stability concept—implicitly assumes that the agents’

beliefs are fixed to specific values in its definition. Certainly, the fact that an agent i makes a

specific proposal to a set of other agents (or accepts or rejects a particular proposal) can influ-

ence j’s beliefs about i’s type, and thus j’s behaviour at future rounds of the BCBG. However,

the belief dynamics present in a multi-round Bayesian bargaining game cannot possibly be re-

flected in a static cooperative solution concept. Therefore, we make the simplifying assumption

that agents’ beliefs remain fixed throughout bargaining.

By making this restriction to BCBGs played under fixed beliefs14, we can then prove that

if the (strict or the weak) BC of the coalitional game is non-empty (and so are its subgames,

which are), then there exists an SEFB profile of the bargaining game that produces an element

of the Bayesian core (if we also assume that the BCs of the subgames have one element with

some reasonable properties); and conversely, we can show that if there exists an SEFB bar-

gaining equilibrium profile with certain properties (to be elaborated below), then it leads to

a configuration that has to be in the (weak) BC of the coalitional game. Thus, we show that

the existence of stable coalition structures in a coalition formation problem under uncertainty

implies the existence of an equilibrium bargaining profile that leads to their formation; and

also that, even under uncertainty, bargaining according to an equilibrium strategy profile leads

to stable coalitions. We are thus able to describe some notion of equivalence between the co-

operative and non-cooperative Bayesian coalition formation solution concepts, and provide a

non-cooperative justification for the use of the Bayesian core as a coalitional stability concept

under uncertainty.

We start by proving our first relevant proposition. Note that throughout our proofs, we will

assume an infinite horizon for bargaining. We first define a subclass of bargaining games that

we will be interested in in this proof.

Definition 26. Let C be the class of N -player BCFPs with the following properties:

14One could envisage dropping the fixed beliefs assumption, and trying to show that equilibrium play leads to
stable BC outcomes with respect to settled beliefs of the agents “at the end of the game”. However, we do not
think that this could be possible, given that agents who form coalitions abandon the game, and thus are unable to
update beliefs anymore: At which point (of the several possible ones) does a coalition actually abandon the game?
Which is the set of beliefs that one could consider as “settled” in order to define a BC outcome? It does no seem
possible to provide a clear answer to those questions.
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1. All subgames have a nonempty strict BC.

2. For every member BN = 〈CSN , dN , aN 〉 of the strict BC, where CSN is of the form

{S1, ..., Sk}, every subgame with set of players T ⊆ N has an element in its strict BC

in which the coalition structure is of the form {T ∩ S1, ..., T ∩ Sk} and also the demand

vector is the projection of dN to the corresponding coalition.

In the above definition we ignore the empty sets that may arise if T does not intersect any

of the Sj’s. Note that by Observation 5, the properties of Definition 26 are already satisfied by

subgames in which the set of players is a union of some of the coalitions of CS N . Hence the

definition simply imposes the same properties for other subsets of N as well.15 We are now

ready to prove the following:

Proposition 6. Let P ∈ C be an N -player BCFP. Then, for every member BN = 〈CSN , dN , aN〉

of the strict BC of P , there exists an SEFB equilibrium σ∗ = σ∗(BN) in pure strategies, of the

corresponding BCBG G (under fixed beliefs) with N players and random proposers, such that,

the coalition structure induced by σ∗ is exactly 〈CSN , dN , aN〉.

Proof. Let BN = 〈CSN , dN , aN 〉 be an arbitrary element of the BC of P and let BCS represent

the strict BC of the subgame where the set of agents is S. Let CSN = {S1, S2, ..., Sk} for some

k, where ∪Si = N and Si ∩ Sj = ∅ for every i, j. For each S we choose an element BS =

〈CSS, dS, aS〉 ∈ BCS . In particular, we choose such an element according to Definition 26.

For example if S is the union of some of the Si’s, i.e., if it consists precisely of some of

the coalitions of CSN , then we let BS be the restriction of 〈CSN , dN , aN 〉 to S, which by

Observation 5 lies in BCS . Our way of choosing these core elements for each subgame ensures

the following, easy to verify, fact:

Fact 1. Let T ⊆ N and suppose the coalition structure in BT is {T1, ..., Tl}. Then for the

subgame where the set of players is S = T \ T1, the structure in the corresponding core

element BS is {T2, ..., Tl} and the demand and action vectors are the same as in T .

15We have to make this assumption about this property of the subgames’ BC in order to guarantee subgame
perfection for the equilibrium strategy of some agent in any subgame, regardless of any preceding history—even
in the case of subgames where the equilibrium strategy profile was not followed in the preceding subgame, due to
any random reason. However, this assumption is in essence a technicality, and is redundant in all the parts of the
game tree where the actual equilibrium strategy profile is followed: the equilibrium strategy profile actions taken
there are actually best responses, without the need of this assumption. However, subgame perfection has to be
guaranteed for an equilibrium strategy even if some player’s “hand was trembling” and the equilibrium was not
followed in the preceding history (a solution concept that tries to capture and combat those issues is the trembling
hand equilibrium—see, e.g., [MCWG95]).
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Given a triplet 〈C, dC , αC〉, with i ∈ C, we will denote by p̄i
i(C, dC , αC) the expected

payoff of i from the formation of coalition C, according to i’s beliefs. We will also use p̄i
i(BS)

to denote p̄i
i(Ci, dCi

, αCi
), where Ci is the coalition in the coalition structure of BS that i

belongs to.

Consider now the following strategy σ∗
i for a player i:

(i) If i is the proposer in some round of the game, and the set of agents still present is S, let

C denote i’s coalition in the coalition structure of BS , and let dC , αC be its corresponding

demand vector and action, i.e., we look at the projection of BS to coalition C that contains i.

Then, i proposes 〈C, dC , αC〉 to the rest of the agents in C16.

(ii) If i is a responder, the subset of agents still present is S, and the standing proposal is

〈T, dT , αT 〉 (with i ∈ T ), then i accepts iff p̄i
i(〈T, dT , αT 〉) ≥ p̄i

i(BS).

Let σ∗ be the profile of the strategies of all players. It is clear that, no matter what the na-

ture’s choice of proposers in the game is, if σ∗ is played then the outcome of the game is exactly

BN . To see this, suppose that the first random proposer at round 1, say i, belongs to S1 (re-

call BN = 〈CSN , dN , aN 〉 and CSN = {S1, S2, ..., Sk}). Then i will propose 〈S1, dS1
, αS1

〉,

with dS1
, αS1

being the projection of dN , aN to S1. By the definition of σ∗ all other members

of S1 will accept and the game will go to round 2 with the remaining players L = N \ S1.

Suppose agent j is now the proposer and j ∈ S2. By the way we defined BL, we know that

CSL = {S2, ..., Sk}, (because L consists of a collection of coalitions of CSN ) therefore j will

propose 〈S2, dS2
, αS2

〉 with dS2
, αS2

being the projection of dN , aN on S2. The other members

of S2 will accept the proposal and the game will continue in the same manner. Hence after k

rounds the game will end and the outcome will be BN .

It remains to show that σ∗ is an SEFB equilibrium.

Assume i is a proposer at some round of the game, the set of active players is S and

all players apart from i will play according to σ∗ from this point of the game onwards. Let

〈C, dC , αC〉 be the triplet of BS with i ∈ C. We want to show that i cannot gain by deviating

from σ∗. Suppose i deviates by proposing 〈T, dT , βT 〉, different from 〈C, dC , αC〉, where C is

the coalition of BS that i belongs to. Consider first the case that p̄i
i(T, dT , βT ) > p̄i

i(BS). Note

that in this case T cannot be a singleton since that would contradict the fact that BS ∈ BCS .

Hence |T | ≥ 2. Then the proposal is accepted only if for all agents j ∈ T ,j 6= i, it is the

case that p̄j
j(T, dT , βT ) ≥ p̄j

j(BS) (since they follow σ∗). However, if this is the case, then we

have found a coalition, namely T , along with a demand vector and an action such that agent i

16We must assume the non-emptiness of BCS in order to define this strategy at any bargaining round.
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believes he is strictly better off and no other agent believes that he is worse off. This contradicts

the fact that BS ∈ BCS , hence the proposal is never accepted and i cannot gain from such a

deviation.

Consider now the case that p̄i
i(T, dT , βT ) ≤ p̄i

i(BS). Agent i cannot gain from such a

deviation either. If the proposal is accepted he does not gain more than his payoff under σ∗
i . If

the proposal is rejected, then the game moves to the next round without any coalition forming.

In the next round, if the proposer is some other member of C, then the proposal for i will

be 〈C, dC , αC〉, which does not give him a better payoff than p̄i
i(BS). If i is chosen to be a

proposer again, then we already know that he cannot propose a coalition that gives him better

payoff. Now suppose the chosen proposer, say j, does not belong to C and let Cj ⊆ S be the

coalition of BS that j belongs to. Since every player apart from i follows σ∗, j will propose Cj

which will be accepted and the game will move to the next round where the set of players is

S \Cj . By Fact 1 the core element BS\Cj
for this subgame still contains 〈C, dC , αC〉. Hence by

repeating the above arguments, i cannot gain more than p̄i
i(BS). Therefore, whenever nature i

becomes a proposer, i cannot gain a better payoff than the payoff he obtains if he follows σ∗.

Assume now that i is a responder to some offer 〈T, dT , βT 〉 and the current set of active

players is S. Suppose that all the agents in T that responded before i have already accepted the

proposal and let U be the set of agents who are to decide after agent i.

Case 1: p̄i
i(T, dT , βT ) ≥ p̄i

i(BS). Then according to σ∗ agent i should accept the proposal. If i

deviates from σ∗ and rejects the proposal then there are two subcases to consider. If all agents

in U are going to accept the proposal then i would receive a payoff of at least p̄i
i(BS) had he

followed σ∗. Since he rejected the proposal, no coalition forms and the game goes to the next

round. In the next round either he is the proposer, in which case we know by the previous

arguments that he cannot gain more than p̄i
i(BS) or someone else is the proposer in which case

again, using Fact 1, he cannot gain more than p̄i
i(BS) because all other agents follow σ∗. If

on the other hand some agent in U will reject the proposal then it does not matter whether i

accepts or rejects. The game moves to the next round and agent i cannot obtain a payoff better

than the payoff under σ∗.

Case 2: p̄i
i(T, dT , βT ) < p̄i

i(BS). Then according to σ∗ agent i should reject the proposal. If

i deviates from σ∗ and accepts the proposal then if all agents in U also accept, the coalition T

forms and agent i receives a payoff which is less than p̄i
i(BS). However, if he had followed σ∗,

the proposal would have been rejected and in the future he would have obtained p̄i
i(BS).17 If

17Notice that this argument holds only for δ = 1.
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some agent in U will reject the proposal then as in Case 1, i cannot profit by the deviation from

σ∗.

Overall, agent i cannot benefit by any deviation from σ∗
i and, thus, σ∗ is a SEFB of the

corresponding coalitional bargaining game G.

Observation 7. Proposition 6 remains true if we use the weak BC instead of the strict one.

In that case, we only have to modify the strategy σ∗ accordingly. Specifically, the strategy

σ∗
i for a responder i has to become: “i accepts iff: either 〈T, dT , αT 〉 ∈ BS or p̄i

i(〈T, dT , αT 〉) >

p̄i
i(BS)”. The proof then is completely similar with the one above (and thus we omit it).

Now, for the reverse direction (i.e., “can an SEFB give rise to a configuration that belongs

to the Bayesian core?”), we cannot hope to always have a positive answer since the Bayesian

core does not always exist. However we can provide a positive answer if the bargaining game

possesses equilibria whose outcomes do not depend on the random choice of the proposers.

The following definition is a generalization of the one given in [MW95].

Definition 27. An SEFB equilibrium in pure strategies is order independent if, whenever it is

played, it leads to the same outcome 〈CS , d, a〉 regardless of the choice of proposers at any

round.

Note that the equilibrium defined in the proof of Proposition 6 is also order independent.

In the following result, we show that order independent equilibria lead to outcomes that belong

to the weak BC. Intuitively, the order independence property is important for this result to hold

because, if no order independent equilibrium exists then it is implied that a change in the order

of proposers can lead to outcomes among which the payoff to any agent varies substantially—

due to the difference in values of coalitions formed in each outcome, and due to discounting.

Thus it cannot be guaranteed that there exists a specific outcome that makes all agents better

off: indeed, in that case there might exist sets of agents that are better off in different equilibria

outcomes, and the core will be empty. However, assuming order independence we can prove

the following18:

Proposition 7. Let σ∗ be an order independent SEFB equilibrium strategy profile in pure

strategies for a BCBG G with random proposers and discount factor δ. Then, the outcome

of σ∗, 〈CS , d, a〉 must be in the weak Bayesian core of the corresponding BCFP.

18We are not aware at the moment if this second result is true for the strict or the strong BC.
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Proof: Let 〈CS , d, a〉 be the outcome of the game if the equilibrium σ∗ is played. Assume,

contrary to the proposition, that 〈CS , d, a〉 is not in the weak Bayesian core. Let p̄i
i(σ

∗; t = 1)

denote i’s expected payoff under σ∗ (i.e., if everybody follows σ∗ right from the first round).

Since 〈CS , d, a〉 derived by σ∗ is not in the weak Bayesian core, there exists a coalition S ⊆ N ,

a demand vector dS and an action αS such that:

p̄j
j(S, dS, αS) > p̄j

j(σ
∗; t = 1) ∀j ∈ S (5.17)

Consider now an agent i ∈ S, and consider the following strategy for i:

(i) If i is chosen by nature to be the first proposer, then i proposes 〈S, dS, αS〉.

(ii) In all other cases, i follows σ∗
i .

We will show that this deviation from σ∗ benefits agent i ∈ S in expectation when the other

agents play according to σ∗, and therefore σ∗ cannot be an SEFB equilibrium.

Assume that i was chosen by nature to be the first proposer. Then, i proposes 〈S, dS, αS〉

with the above property. Note that |S| ≥ 2, otherwise we would already have a contradiction

to σ∗ being an equilibrium.

All other agents j ∈ S follow their σ∗-equilibrium strategies. Consider a responder j ∈ S

and consider the subgame that starts at the node where j is to decide whether to accept or

reject the proposal and assume every other agent in S \ {i, j} has accepted. Note that from this

point onwards every agent (including i) plays according to σ∗, which is an equilibrium for this

subgame (since σ∗ is a sequential equilibrium). We will show that it is optimal for j to accept.

If j rejects the proposal, then the game moves to round 2 where all agents are present and

from then on they all play σ∗. Since σ∗ is order independent, the configuration 〈CS, d, a〉 will

form and therefore agent j can get a payoff of at most p̄j
j(σ

∗; t = 1) (possibly discounted). On

the other hand if j accepts the proposal he obtains a better payoff by (5.17). Hence rejecting

the proposal cannot be optimal for j. By backward induction, the proposal of agent i must be

accepted by all agents of S, therefore the coalition S will form and i will obtain a better payoff.

This implies that σ∗ is not an equilibrium, a contradiction. 2

Remark 1. Note that in Proposition 7 we allow the bargaining game to have an arbitrary

discount factor δ ≤ 1, whereas in the game defined in the proof of Proposition 6 we did not

allow any discounting (δ = 1).

A consequence of Proposition 7 is the following:
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Corollary 1 (Sufficient condition for the existence of the weak Bayesian core). If an order

independent SEFB equilibrium strategy profile exists, then the weak BC cannot be empty.

Thus, as a corollary to Proposition 7, we managed to provide a condition for the existence

of the weak Bayesian core.

In summary, in this section we established strong connections between the Bayesian core, a

cooperative solution concept for coalition formation under type uncertainty, and non-cooperative

equilibrium solutions of the corresponding bargaining games. We proved that if the BC of a

coalitional game is non-empty, then there exists an equilibrium of the corresponding bargaining

game that induces an element of the BC; and we showed that if an order independent coali-

tional bargaining equilibrium exists, then it leads to a BC configuration. Those results imply

that the use of the Bayesian core as a cooperative stability concept for coalition formation under

uncertainty is further justified from a non-cooperative point of view.

5.6 Experimental Evaluation

To evaluate our approach, we conducted several experiments in three settings, two of them

with 5 agents and one of them with 8 agents. Agents repeatedly engage in repeated coalition

formation activities: that is, they repeatedly engage in episodes of coalitional bargaining, each

episode consisting of a number of negotiation rounds. When an episode ends, the agents break

away from their formed coalitions and the process is repeated: one experimental run consists

of several episodes.

In a nutshell, the purpose of our experiments was to demonstrate that updating beliefs

during bargaining, and reasoning about the potential strategies of others—as our algorithm

does—is potentially beneficial to the agents. The iterative bargaining settings we use help

demonstrate that our algorithm helps the agents take rewarding decisions, by facilitating learn-

ing of the partners’ types during negotiations, and that it can be combined with belief updates

after observing the results of coalitional actions (in reinforcement learning style). Below, we

elaborate further on the conclusions drawn from our experiments.

During an episode, agents progressively build a coalition structure and agree on a payment

allocation. The action executed by a coalition at the end of an episode results in one of three

possible stochastic outcomes o ∈ O = {0, 1, 2}, each of differing value (or reward). The

probability of each outcome occuring depends on the coalitional type vector tC and the coali-

tional action αC taken: Pr(o|αC, tC), according to the Bayesian coalition formation model
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suggested in Section 4.2. For simplicity, in our experiments each agent’s type determines its

“quality points”, and the “quality” q(tC) of a coalition with members of types tC is dictated

by the quality points of those members (we elaborate on the particulars of each setting below).

Coalition quality then determines the odds of realizing a specific outcome (higher quality coali-

tions having higher probability of achieving more valuable outcomes).

As described in Section 4.2, the value of a coalition given member types is the expected

value w.r.t. the distribution over outcomes (Eq. 4.1; and is estimated by each agent under uncer-

tainty by Eq. 4.2). In some of our experiments, agents are allowed to observe the outcomes of

the coalitional actions αC taken by each formed coalition C, and then update their beliefs using

Bayes rule, as follows: µ′
i(tC) = µi(tC |o, αC) = zPr(o|α, tC)µi(tC); µi represent the beliefs

of agent i regarding types tC of agents in C, with z being a normalizing factor. However,

since the focus here was not on choosing a coalitional action but on focusing on the bargain-

ing dynamics, in these experiments we considered only one coalitional action per coalition (for

simplicity—we note, however, that we do deal with the problem of choosing coalitional actions

more explicitly in the next chapter of this thesis).

We compare our heuristic Bayesian bargaining equilibrium approximation method (BE)

with KST, an algorithm inspired by a method presented by Kraus et al. in [KST04] (we briefly

presented the method in Section 5.1). Though it is better tailored to other settings, focusing on

social welfare maximization, it is a rare example of a successfully tested discounted coalitional

bargaining method under some restricted form of uncertainty, which combines heuristics with

principled game theoretic techniques. It essentially calculates an approximation of a Kernel-

STable allocation for coalitions that form in each negotiation round with agents intentionally

compromising part of their payoff in order to form coalitions. Like [KST04], our KST uses a

compromise factor of 0.8, but we assume no central authority, only one agent proposing per

round, and coalition values estimated given type uncertainty.

As we will see, BE agents manage to do a better job in selecting partners than KST. Inter-

estingly, though the BE focus is on individual rationality (i.e., on serving the goal of each agent

to maximize its individual gains through bargaining), it does well in terms of team rationality

also. BE agents form more rewarding coalitions than KST agents, and, in addition, the way they

divide the payoffs better reflects the “power structure” within each setup: “stronger” agents do

not tend to be outwitted by less powerful agents (“a player’s power is his ability to help or

hurt any set of players by agreeing to cooperate with them or refusing to do so” [Mye91]).

Further, using RL-style updates of beliefs (following the observation of the results of coali-

tional actions), usually proves to be helpful to the agents (even if not in all settings, since the
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stochasticity underlying the observed outcomes can sometimes be, understandably, mislead-

ing). Finally, we will demonstrate that BE agents tend to strike a better balance when dealing

with the exploration-exploitation problem while bargaining: they sometimes choose to settle

with suboptimal coalitions when they believe that it is too risky to try and form more rewarding

ones. By doing so, they avoid being exploited, and overall manage to make decisions that are

better (both for the individual and for the team) than those taken by KST agents—even though

the latter do employ compromise explicitly in their deliberations.

5.6.1 Experiments with 5 Agents

Here, we present two experimental settings, each with 5 participating agents and 5 possible

types per agent. The quality points of the agents’ types is as shown in Table 5.1(a).The quality

of the coalition is given as the sum of the quality points of its members.

In the first setting, singleton coalitions receive a penalty of -1 quality points. The parameters

of this setting are as follows. Outcome state probabilities are:

• P (o = 2|q(tC)) = 0.01q(tC);

• P (o = 1|q(tC)) = 0.03q(tC); and

• P (o = 0|q(tC)) = 1 − P (o = 2|q(tC)) − P (o = 1|q(tC)).

The rewards corresponding to outcome states are: R(o = 2) = 1000; R(o = 1) = 100;

R(o = 0) = 1. Note that agent 0 (of type 0) is detrimental to any coalition.

In our first setting, singleton coalitions receive a penalty of -1 quality points (e.g., 〈4〉 has a

quality of 3). We compare BE and KST under various learning models by measuring average

total reward garnered by all coalitions in 30 runs of 500 formation episodes each, with a limit

of 10 bargaining rounds per episode and a bargaining discount factor of δ = 0.9. We also

compare average reward to the reward that can be attained using the optimal, fixed “kernel-

stable” coalition structure {〈1, 2, 3, 4〉, 〈0〉}.

We compared BE and KST with agents either updating their prior regarding types’ of part-

ners after observing the coalitional actions—thus learning by reinforcement (RL versions) after

each episode—or not (No RL). In all cases, BE agents update their beliefs after observing the

bargaining actions of others during each negotiation round. There are 388 proposals a BE agent

considers when negotiating in a stage with all five agents present (fewer in other cases).

Table 5.1(b), showing performance when each agent has a uniform prior regarding the types

of others, indicates that the BE algorithm consistently outperforms KST, even though KST is



CHAPTER 5. COALITIONAL BARGAINING UNDER UNCERTAINTY 155

Agent Type Qual
0 0 −1
1 1 1
2 2 2
3 3 3
4 4 4

(a) The 5 participants,
their types and quality
points

Method Reward
“Optimal” CS 65800 (expected)
KST-Uni-NoRL 32521.3(49.4%)
KST-Uni-RL 44274.4(67.3%)
BE-Uni-NoRL SS=20, LA=3 60037.7(91.2%)
BE-Uni-RL SS=20, LA=3 57775.4(87.8%)
BE-Uni-NoRL SS=10, LA=2 61444.3(93.4%)
BE–Uni-RL SS=10, LA=2 60086.7(91.3%)
BE-Uni-NoRL SS=3, LA=2 61269(93.1%)
BE-Uni-RL SS=3, LA=2 60301.1(91.6%)

(b) Setting A

Method Reward
“Optimal” CS 33890 (expected)
KST-Uni-NoRL 20201.4(59.6%)
KST-Uni-RL 20157.7(59.5%)
BE-Uni-NoRL 31762.1(93.7%)
BE-Uni-RL 32275.9(95.2%)
KST-Mis-NoRL 20193.2(59.6%)
KST-Mis-RL 21642.5(63.9%)
BE-Mis-NoRL 31716.6(93.5%)
BE-Mis-RL 32293.7(95.3%)
KST-Inf-NoRL 22241.5(65.6%)
KST-Inf-RL 24748.1(73%)
BE-Inf-NoRL 31688.3(93.3%)
BE-Inf-RL 32401(95.6%)

(c) Setting B; (BE uses SS=10, LA=2)

Table 5.1: Total accumulated reward (averaged over 30 runs). “SS”:sample size used;
“LA”:lookahead; “Uni”: uniform, “Mis”: misinformed, “Inf”: informed prior.
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designed to promote social welfare (i.e., well aligned with total reward criterion) rather than

individual rationality. With respect to individual rationality, KST agents without RL always

converge to the coalition structure {〈4〉, 〈3〉, 〈2〉, 〈0, 1〉}; this is due to the fact that they are

discouraged from cooperating due to the lack of information about their counterparts. When

KST agents learn from observed actions after each episode (KST-Uni-RL) they form the coali-

tions {〈2, 3, 4〉, 〈0〉, 〈1〉} in the last episode of 16/30 runs. BE agents, in contrast, form coali-

tions based on their evolving beliefs about others, and do not form the optimal kernel-stable

structure {〈1, 2, 3, 4〉, 〈0〉}.19 Rather they tend to form coalitions of 2 or 3 members which

exclude agent 0 from being their partner. In addition, payoff division for BE agents is more

aligned with individual rationality than it is with KST. The shares of (averaged) total payoff

of KST-Uni-RL agents 0–4 are 0.8%, 0.7%, 28.8%, 29.6%, 40.1%, respectively, while for BE-

Uni-RL (SS:10, LA:2) they are 1.3%, 13.4%, 18.8%, 29.5%, 37%; this more accurately reflects

the power [Mye91] of the agents. Moreover, BE results are reasonably robust with changing

sample size and lookahead value (at least in this environment with 3125 possible type vectors

in a 5-agent coalition).

We attribute the poor performance of KST agents to the fact that they make their proposals

without in any way taking into consideration the changing beliefs of others. With the beliefs

of the agents varying, negotiations drag (up to the maximum of 10 rounds) due to refusals,

resulting in reduced payoffs. BE agents do not suffer from this problem, since they keep track

of all possible partners’ updated beliefs, and use them during negotiation. Thus, they typically

form a coalition structure within the first four rounds of an episode.

We also experimented with a second setting where the rewards and transition parameters are

as in the first, but in which singleton coalitions receive a penalty of -2 quality points (rather than

-1 above), and where q(tC) =
∑

ti∈tC
q(ti)/|C| (as coalitions get bigger they get penalized

to reflect coordination difficulties). This setting makes the quality of coalitions a bit more

difficult to distinguish. Here, a near-optimal (kernel-stable) configuration contains the structure

{〈4, 3〉, 〈2, 1〉, 〈0〉}. We use three different priors: uniform, misinformed (agents have an initial

belief of 0.8 that an agent with type t has type t + 2 ), and informed (belief 0.8 in the true type

of each other agent).

The results (Table 5.1(c)) indicate that KST agents again do not do very well, engaging

in long negotiations due to unaccounted for differences in beliefs among the various agents.

KST-Uni-RL agents for example typically use all ten bargaining rounds available; in contrast,

19Nor should they, as this is not necessarily in their best interests, given the bargaining horizon and discount
factor—the kernel and other stability concepts do not take the bargaining dynamics into account.
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BE-Uni-RL usually form structures within 3 rounds. Even when KST uses informed priors

(which resembles most the situations dealt with in [KST04]), the fact that the expected value

of coalitions is not common knowledge (as was the assumption in [KST04]) takes its toll. BE

agents, on the other hand, derive the true types of their partners with certainty in all experi-

ments, and typically form profitable configurations with structures such as {〈4, 3〉, 〈2, 1〉, 〈0〉}

or {〈4, 2〉, 〈3, 1〉, 〈0〉}. We can also see in this setting that RL is, at least slightly, enhancing the

performance of BE agents, helping them differentiate among the quality of the various partners:

while it may sometimes be possible that RL blurs the picture a bit due to occassional unlikely

payoffs received,20 if it is relatively easier to distinguish the agents’ types during bargaining

(as was in the first setting), it is otherwise helpful, as demonstrated by Setting B results.

5.6.2 A Coalitional Climbing Game

We also developed a third experimental setting which helps us better demonstrate how BE

agents are more qualified to deal with the exploration-exploitation tradeoff when bargaining

under uncertainty. Specifically, we aimed at demonstrating that BE agents are rational, cautious

negotiators while bargaining to form coalitions: if they are uncertain, or do not “believe” that

they will have the time to become certain about others (i.e., if the bargaining discount factor is

low and thus the agreements’ value drops fast) they will opt to accept suboptimal agreements.

In order to make the point, we developed an experimental setting that, as we will see, bears

many resemblances to the climbing game examined in Section 3.5: the setting makes discovery

of opponent types difficult, and thus rational agents should settle for suboptimal agreements

(but, hopefully, they will be using knowledge gained to achieve better ones in the future).

Though our agents often opt for suboptimal coalitional configurations, they still (once again)

manage to outperform—both in terms of total coalitional accumulated reward (social welfare)

and individual rationality—agents that do not update beliefs about others or do not take into

account others’ beliefs while negotiating.

20In bargaining, agents act (negotiate) exactly according to their type. Thus, belief updates based only on
observed negotiation behaviour can work well. However, when belief updates follow the results of coalitional
actions, the picture may in fact be clouded due to unlikely outcomes observed. Thus, RL is not always neces-
sarily helpful when combined with belief updating during bargaining (or, at least, it may not always help make a
difference).
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The Setting Specifics

We now present the setting in detail. The general setup characteristics are as follows: There are

8 agents, with 2 types per agent (there are 255 possible coalitions with 8 agents present; from

an agent’s perspective, there are 128 expected possible type vectors in a 8-agent coalition—

since agents do not know types of opponents or how many opponents are of each type); and

there are 2841 bargaining actions available to proposer when all 8 agents present. Four of the

agents are of type A, and four are of type B; therefore, the agents in the setting can form 24

possible coalitions of “distinct quality”. Each experimental run consists of 250 episodes, with

8 bargaining rounds per episode. The lookahead value (LA) used was 2, and the sample size

(SS) was 5. We experimented with uniform and informed priors, both when using RL style

updates of beliefs or not (NoRL), and we also tried various values for the bargaining discount

factor (0.95, 0.75 and 0.5).

We assumed 2 possible types per agent: type A, with “quality” qA = 2 (the “strong” type),

and type B with qB = 1 (the “weak” type). The “coalitional quality” q(tC) of any coalition

C (with type vector tC ) in this setting is, then, defined as described in Table 5.2. The rewards

associated with the outcome states o ∈ O = {0, 1, 2} were R(o = 2) = 100, R(o = 1) = 10

and R(o = 0) = 1, while the probabilities of reaching those states following the execution

of the (single) coalitional action were Pr(o = 2|q(tC)) = 0.01 ∗ q(tC), Pr(o = 1|q(tC)) =

0.02 ∗ q(tC) and Pr(o = 0|q(tC)) = 1 − Pr(o = 2|q(tC)) − Pr(o = 1|q(tC)); unless

q(t) = 30, in which case Pr(o = 2|q(tC) = 30) = 0.65, Pr(o = 1|q(tC) = 30) = 0.35, and

Pr(o = 0|q(tC) = 30) = 0.

Coalitions q(tC)

Both types A and B present q(tC) = 0
unless C = 〈AABB〉: then q(tC) = 30

or C = 〈AAB〉: then q(tC) = 26
or C = 〈AB〉: then q(tC) = 5

Only X = A or X = B present in non-singleton q(tC) = (|C| − 1) +
∑

i∈C qX

Singleton coalitions q(tC) = 0

Table 5.2: Coalitional quality functions for the coalitional climbing game. Coalition C =
〈AABB〉 is the coalition with the maximum quality. The quality points for the rest of the
coalitions are such that they can serve as “stepping stones” for the agents to progressively
discover the better coalitions, and encourage cooperation of agents of different types.

The use of the above coalitional quality, reward, and outcome transition functions, has the

following implications (after the necessary calculations):
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• The expected value of a coalition C of type A agents is given by the function V (Ct:A) =

3.51|C| − 0.17; the expected value of an agent participating in such a coalition is given

by the function V (Ct:A) = 3.51 − (0.17/|C|).

• The expected value of a coalition C of type B agents is given by the function V (Ct:B) =

2.34|C| − 0.17; the expected value of an agent participating in such a coalition is given

by the function V (Ct:B) = 2.34 − (0.17/|C|).

• The singleton (reservation) value of an agent is 1.

• The expected value of coalition 〈AAAA〉 (with quality 11) is 13.87 and the expected

value of each of its members is 3.4675.

• The expected value of coalition 〈BBBB〉 (with quality 7) is 9.19 and the expected value

of each of its members is 2.2975.

• Thus, the relative power of agent types A/B is 3.4675/2.2975, meaning that agent A

is approximately 1.5 times stronger than agent B. (An A agent would expect to do 1.5

times better than a B agent, by cooperating only with A agents.)

• The expected value of 〈AABB〉 is 41.5. This is the most rewarding coalition in this

setting. (Actually, assuming fully informed agents, 〈18.4525, 18.4525, 2.2975, 2.2975〉 is

a core payoff allocation for this coalition: the core configuration is forming the coalition

structure {〈AABB〉, 〈AABB〉}, with the above payoff allocation for each coalition.)

• The expected value of coalition 〈AAB〉 is 31.42. This coalition is quite rewarding, but

not as much as the 〈AABB〉. However, since it has 3 members instead of 4, 〈AAB〉 is

easier for the agents to “discover”. In 〈AAB〉, the allocation most prefered by the two

type A agents—without them outweighing one another—is 〈14.5612, 14.5612, 2.2975〉.

• The expected value of coalition 〈AB〉 is 6.85.

Expected Behaviour of the Agents

The setup encourages agents to discover the types of others in order to form rewarding coali-

tions. However, rational agents ought to be cautious, since, in the presence of uncertainty,

seeking the most beneficial agreement may result in receiving a payoff that is even less than

the singleton reservation value. If agents are uncertain about others, then they should try to
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form (suboptimal) coalitions that appear to be successful and stick to them in order to avoid

the “implicit” penalties.

We expected BE agents to exhibit this “cautious” behaviour when negotiating, until they

become more informed about others. This should be even more obvious as the bargain-

ing discount factor drops. (If the bargaining discount factor is low, meaning that the value

of coalitional agreements decreases rapidly, agents are forced to take decisions early.) BE

agents should form suboptimal coalitions such as 〈AB〉, 〈AAB〉, 〈AAAA〉, 〈BBBB〉, or other

“single-type” coalitions—if they come to have strong beliefs about the types of the correspond-

ing agents. The coalition 〈AAB〉 is particularly likely to be formed, since it is easier for an

agent to come to hold strong beliefs about two other agents (rather than three or more others)—

this is a small and quite rewarding coalition to form.

In contrast, we expected KST agents to fall prey to the penalties, doing worse both in terms

of social welfare and individual rationality. This is because KST agents would attempt to form

the coalitions they consider rewarding, but since the agents’ estimates for the values differ,

negotiations are expected to drag. Even if “informed” priors are to be used, this will be posing

a problem, and, since the best tool KST has to resolve disagreements in the face of uncertainty

is “compromise”, the individual earnings of the agents will suffer.21

The use of RL (i.e., belief updates after observing the outcomes of the actions of formed

coalitions) was not expected to make a huge difference in this setting. This is because the

expected values of the various coalitions, apart from the two most rewarding ones, are not so

different from each other.

Results

The results for this setting are shown in Tables 5.3 and 5.4. We remind the reader that NoRL

means that no belief updates are performed after the execution of coalitional actions (but belief

updates are performed after observing other agents taking bargaining actions during negotia-

tions).

The metrics we used, and which we report on, were the following: first, the total reward

accumulated by coalitions (averaged over all runs); second, the frequency of appearance of an

“optimal coalitional structure” or of other profitable structures; third, the expected value of

Q of formation decisions: this is a metric of bargaining decision quality, and also reflects the

21There would not be much point in trying to use KST without compromise, since in that case negotiations
would be certain to last even longer, resulting to very low team and individual payoff.
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Method Reward Q =
∑

C fCV (C) A/B

KST-NoRL-0.95 2960.59 2.15383 1.17
BE-NoRL-0.95 4793.87 3.7698 1.71
KST-NoRL-0.75 1654.86 2.52944 1.42
BE-NoRL-0.75 2846.4 5.21792 2.07
KST-NoRL-0.5 2808.56 6.88 4.26
BE-NoRL-0.5 1450.88 8.4 1.5
KST-RL-0.95 2999.89 2.20384 2.25
BE-RL-0.95 5321.04 4.83322 1.7
KST-RL-0.75 1776.29 2.46283 5.62
BE-RL-0.75 2725.96 4.68843 2.01
KST-RL-0.5 1467.72 2.96 3.15
BE-RL-0.5 1916.95 9.96 1.43

Table 5.3: Setting C results - Uniform Priors; BE uses SS=5, LA=2.

convergence of beliefs. It is given by

Q =
∑

C

fCV (C)

where fC is the average frequency with which C forms in the experimental runs (or, more

intuitively, its frequency of appearance in an “average run”), and V (C) is the (expected, since

the outcomes are stochastic) value of the coalition; and, finally, the observed relative power of

type A over B (the actual payoff of A’s over B’s). We use this last metric as a further measure

of individual rationality, as we explain here:

The relative power A/B is the expected payoff of A in coalitions excluding B, over the

expected payoff of B in coalitions without A—as mentioned above, its value is approximately

1.5. Agents that enter negotiations without much knowledge about opponents should be ob-

served to be doing close to that value, so that it is not the case that one type “exploits” the

other. However, as agents gain knowledge, and manage to take coalition formation decisions

which are closer to the the optimal ones, the significance of this specific measure as a measure

of individual rationality is reduced: it may be well to the interest of informed players to form

coalitions with others, even if this means that the payoffs of others will exceed theirs many

times. Nevertheless, if the agents are equally uninformed, it shouldn’t be the case that stronger

types are able to outweigh weaker ones more than what their relative power indicates.

As mentioned, the setting makes discovery of opponent types difficult, and thus rational

agents should settle for suboptimal coalitions (hopefully using them as stepping stones to form
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Method Reward Q =
∑

C fCV (C) A/B

KST-NoRL-0.95 1353.54 1.01238 1.02
BE-NoRL-0.95 5200.94 4.20369 1.63
KST-NoRL-0.75 271.263 4.20369 1.34
BE-NoRL-0.75 4123.24 7.85009 1.42
KST-NoRL-0.5 1860.23 4.32893 3.02
BE-NoRL-0.5 6189.38 20.0437 0.99
KST-RL-0.95 2051.47 1.50318 1.87
BE-RL-0.95 6322.38 5.4451 1.54
KST-RL-0.75 1719.11 2.42433 5.94
BE-RL-0.75 5554.52 7.95062 1.39
KST-RL-0.5 1767.81 4.12974 3.05
BE-RL-0.5 2793.71 11.5523 1.16

Table 5.4: Setting C results - Informed Priors. BE uses SS=5, LA=2.

better ones later). Results in the uniform priors (Table 5.3) case show that BE agents outper-

form KST agents both in terms of social welfare and individual rationality and that RL updates

are in general beneficial. Further, lowering the discount factor to 0.75 and to 0.5 forces the

agents to form coalitions earlier, but also contributes to better decisions—in terms of Q; the

actual reward coalitions get is, naturally, lower—because it enables the agents to discover the

types of opponents with more accuracy, effectively reducing the number of possible opponent

responses during bargaining (intuitively, given more time, both a “strong” and a “weak” type

might refuse a proposal, while if time is pressing the “weak” might be the only one to accept).

The only time that KST agents seem to be doing relatively well in quality decisions is the

KST-NoRL-0.5 case. We believe that was the case because, in that scenario, the “pressure”

put on the agents to make early decisions happened to fit well with the KST’s “compromise”

approach (we remind the reader that the KST agents are willing to settle for an 80% fraction

of their best anticipated payoff when proposing or accepting agreements). Notice, however,

that this relatively good performance with respect to Q is achieved to the expense of individual

rationality, in the sense that type A agents managed to “exploit” the type B ones: A/B was 4.26,

with the agents forming an 〈AB〉 coalition 37% of the time on an average run (the average

percentage of forming 〈AB〉 in a run was 37%), while the 〈BB〉 or 〈BBB〉 coalitions (which,

if the agents were informed would have guaranteed the same expected payoff with 〈AB〉 for B

agents) were created only 8% and 4% of the time, respectively.

The results in the informed priors case (Table 5.4, where agents know the type of oppo-

nents with 85% accuracy) were similar to the ones in the uniform priors one. Once again, BE
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agents are doing a lot better than KST ones. As expected, the quality of their decisions is im-

proved as the discount factor falls (for much the same reasons as in the uniform priors case).

Also, the general performance of informed BE agents is clearly better than their performance

when uninformed. Notice however that, interestingly, the KST agents have not benefited from

being informed, specially when the discount factor is high. Our interpretation is that, since

they are informed, they tend to stick more on their ground, and this makes it harder for their

“compromise” heuristic to work, at least in this scenario.22

Finally, it’s worth mentioning the very good performance of BE agents in the (informed)

BE-NoRL-0.5 case. The average percentage of forming the optimal coalition 〈AABB〉 in a run

was 41.9% in this scenario. Notice that type B agents were not at all weak in this setting: they

have power, derived by their knowledge, and force the A agents to accept to grant them big

shares to form the better coalitions. However, this does not mean that A agents are not doing

well either: they do achieve a lot more payoff than they did in the uninformed BE-NoRL-0.5,

and also in the informed BE-NoRL-0.75 and BE-NoRL-0.95 cases—so, the overall quality of

decisions is better and rewarding for both types of agents, but their increased confidence in

their beliefs forces them to compromise more instead of suffering discounted payoffs.23 The

RL version of this setup, BE-RL-0.5, also does well (takes better decisions than BE-RL-(0.75

& 0.95), and BE-NoRL-(0.75 & 0.95) counterparts), but is not as successful as BE-NoRL-0.5.

This is an example of a case where RL was not helpful: even though the agents did possess

prior information that was close to being accurate, this information sometimes got “disturbed”

due to the occassional unlikely payoffs received.

5.7 Conclusions

In this chapter we provided a Bayesian approach to discounted coalitional bargaining under

(type) uncertainty. We defined Bayesian coalitional bargaining games (BCBGs), and described

their PBE equilibrium solution. Since computing the PBE solution is intractable, we presented

a heuristic, best-response bargaining algorithm, which uses belief monitoring of other agents

22We stress that this phenomenon is not due to some error in our implementation of the KST algorithm— when
we tested a fully informed version of KST agents, they were indeed able to form the optimal coalition.

23One perhaps would expect that informed agents would be able to form “core” allocations, which would
benefit the A agents; we remind the reader that this is not to be anticipated, as the bargaining dynamics (such as
the horizon of negotiations and the discount factor) are not accounted for in stability concepts, so it is not realistic
to expect that core allocations will be formed as the result of discounted coalitional bargaining, unless specific
assumptions regarding the agent beliefs and other factors are in place.
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and belief updates following every bargaining round. In repeated coalition formation settings,

the algorithm can be combined with RL-style belief updates after the execution of coalitional

actions at the end of each formation episode. We verified experimentally that Bayesian coali-

tional bargaining (using our heuristic approach) enables the agents to take sequentially rational

decisions while bargaining, and to come up with agreements that are rewarding both with re-

spect to self and team rationality.

We also contributed a new equilibrium solution concept for coalitional bargaining games,

the sequential equilibrium under fixed beliefs (SEFB), which assumes that the agents have

beliefs that remain fixed during bargaining. We then provided a non-cooperative justification

of the Bayesian core by proving propositions that essentially show that SEFB equilibrium play

can lead to outcomes that are in the BC—and, conversely, that if the BC is non-empty then

there exists an SEFB equilibrium that produces a BC element. In addition, we established a

sufficient condition for the existence of the (weak) Bayesian core.

To the best of our knowledge, the work presented in this chapter is the first to address

the problem of discounted coalitional bargaining under uncertainty. The Bayesian model we

proposed allows dealing with the problem under the generic assumption of type uncertainty,

with the resulting benefits for learning explained in this and in the previous chapter. Further,

to the best of our knowledge we were the first to relate a cooperative stability concept under

uncertainty with non-cooperative equilibrium play in coalitional bargaining games, in the spirit

of what many researchers in game theory have done in deterministic settings. By doing so, we

provided further justification for the adoption of the Bayesian core as a coalitional stability

concept under uncertainty.



Chapter 6

Bayesian RL for Coalition Formation

under Uncertainty

In this chapter we provide a framework for agents to take sequentially rational decisions, bal-

ancing individual and team interests, while engaging in repeated coalition formation activities.

Our adopted framework effectively integrates decision making during repeated coalition for-

mation under uncertainty with Bayesian reinforcement learning.

It is often the case that a set of agents may have to engage in repeated coalition formation,

having the opportunity to engage in a series of coalition formation episodes, each of which is

followed by some collective action taken by each coalition formed. This suggests opportuni-

ties for agents to learn about each others’ abilities through repeated interaction, refining how

coalitions are formed over time; it also poses the question of how to make decisions that are

sequentially rational, given the anticipated horizon of formation interactions and the evolution

of agents’ knowledge.

The agents should be able to make future use of information they gain in this process. Intu-

itively, the effects of collective (coalitional) actions provide information about the capabilities

of partners, and agents can use this in order to make decisions and abandon formed coalitions

for potentially more profitable ones if they have the chance—and, in most settings, this would

be the case.

To account for such considerations, we propose a reinforcement learning (RL) model which

enables the agents to improve their formation decisions and coalitional decisions through ex-

perience gained by repeated interaction with others, and the observation of the effects of coali-

tional actions. More specifically, we propose a Bayesian RL model in which agents main-

tain and update explicit beliefs about the types of others, and, through this process of pro-

165
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gressive belief refinement, become increasingly able to make rewarding sequentially rational

decisions—regarding both potential coalition formation activities on their part, and potential

choice of actions on behalf of their formed coalitions. This is natural, since real world coali-

tions can in general have the opportunity to choose among several reward-producing activities

or tasks to take up—for example, the construction agents in our toy example presented in Chap-

ter 1 may have the choice to take up building a block of apartments in Toronto or a skyscraper in

downtown Manhattan—and their choice of partners and choice of projects are interdependent.

We make use of a POMDP formulation similar to the one used for MARL in stochastic

games. This formulation enables the agents to assess the long-term value of coalition for-

mation decisions, including the value of potential collective actions. It thus also manages to

implicitly trade off individual rationality (i.e., the goal of maximizing one’s individual payoffs)

with team rationality. The agents using our approach choose actions and coalitions not only

for their immediate value, but also for their value of information, since an action has a value

both because it provides the agents with immediate gains and also because it provides them

with information about the types of others and the values of potential coalitions. Thus, our

formulation enables us to deal with the problem of optimal repeated coalition formation un-

der uncertainty (i.e., the problem of taking sequentially rational decisions in repeated coalition

formation scenarios).

Further, we stress that our formulation (based as it is on the Bayesian model for coalition

formation under type uncertainty that was presented in Chapter 4) enables us to simultaneously

deal with uncertainty regarding both the types of others and the outcomes of coalitional actions.

In addition, we describe how this RL framework can be combined with the dynamic formation

processes presented in Chapter 4.

We demonstrate experimentally that our framework enables agents to make informed, ra-

tional decisions that are rewarding both in the short and in the long term. This is true, even if

they do not converge to stable coalitions in the end of a series of repeated coalition formation

episodes.1 The agents make efficient use of the information at hand, taking decisions that are

as informed as possible, and thus balance the need to explore in order to learn with the need to

exploit current knowledge effectively.

The focus of the work described in this chapter, and the associated experiments, is mainly

on the (online) behaviour of the agents while learning by observing the results of coalitional

actions. We will not focus here on the negotiation processes themselves, or the strategic con-

1For example, stability cannot be reached unless the agents’ beliefs themselves stabilize over time.
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siderations of the agents during bargaining (as we do in Chapters 4 and 5 of this dissertation).

However, we note that our Bayesian RL formulation is such that it allows for the incorporation

of any potential bargaining process to be employed during formation.

The chapter’s outline is as follows: We start by describing our Bayesian RL framework

(and POMDP formulation) for optimal repeated coalition formation under uncertainty in Sec-

tion 6.1. In Section 6.2 we present several Bayesian RL algorithms that we developed in order

to approximate the solution to the problem’s POMDP formulation. Section 6.3 then explains

how our RL algorithms can be combined with negotiation processes for coalition formation

(including the processes presented in Chapter 4 and Chapter 5). In Section 6.4 we detail the

experiments we conducted to evaluate our algorithms, discuss their results, and provide in-

tuitions for further experimentation. Following that, in Section 6.5 we provide a discussion

comparing our approach with related work.2 We argue there that our framework is much more

general than existing approaches, as their specifics can be easily incorporated in it, if so desired.

Finally, Section 6.6 recaps the main findings of this chapter.

Parts of the research described in this chapter appeared originally in [CB04].

6.1 A Bayesian RL Framework

In realistic settings, agents participating in coalition formation activities will have to face the

forms of uncertainty (i.e., type uncertainty and uncertainty regarding coalitional actions and

their results) described in Chapter 4. The possibility of repeated interaction, as explained

earlier in this dissertation, provides the agents with the ability to learn, progressively updating

their beliefs about the types of their potential partners. One may ask, of course, if agents are

indeed faced with the possibility of repeated interaction, would most uncertainty about agent

types eventually vanish? We argue that in fact, not only is it generally infeasible for “type

uncertainty” to vanish altogether, but furthermore that agents often have no incentive to engage

in actions (or interactions) that would reduce this uncertainty.

Therefore, here we formulate a solution for what we call the problem of optimal repeated

coalition formation: The participating agents are interested in eventually forming efficient,

profitable coalitions, but they also want to gather as much reward as possible while doing

so. To rephrase this, the problem of optimal repeated coalition formation, or optimal coali-

tional learning, is to maximize the lifetime performance of an agent that repeatedly engages

2This discussion has to be provided at the end of the chapter, as it assumes the reader’s familiarity with the
details of our approach.
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Figure 6.1: A Bayesian RL framework for repeated coalition formation under uncertainty.
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in coalition formation activities and receives agreed-upon shares of payoffs arising following

the execution of agreed-upon coalitional actions—as specified in agreements reached during

the aforementioned coalitional activities (as illustrated in Figure 1.1, which we repeat here as

Figure 6.1 for convenience).

So, in this section we describe an RL model in which agents repeatedly form coalitions

and take coalitional actions—in accordance with the framework of Figure 6.1. This gives

agents the opportunity, through observation of the outcome of coalitional actions, to update

their beliefs about the types of their partners. Belief updates using our RL formulation will

in turn influence future coalition formation decisions, which will be taken in a manner that is

sequentially rational: With a Bayesian approach to repeated coalition formation, agents are

often satisfied not to learn about the abilities of potential partners, if the costs of doing so

outweigh the anticipated benefits (or value of information). For example, if agent i believes

that some potential partner j is of lesser ability (and value to i) than its current partner, and

if he believes that trying to form a partnership with j will probably not lead to some new and

interesting information either, then i should not attempt to form the partnership with j at all.

Of course, i may be wrong as j may in fact be an agent of great abilities and i would have been

better off had he tried to learn about them; nevertheless, i’s optimal course of action, given his

“pessimistic” beliefs, is unquestionably not to abandon his current partner for j.

Optimal Repeated Coalition Formation (under Uncertainty)

To lay out the setting for optimal repeated coalition formation, let us first suppose the exis-

tence of N participating agents, each having initial beliefs Bi. The RL process proceeds in

stages (as shown in Figures 6.1 and Fig. 6.2): at each stage t, the agents engage in some coali-

tion formation process, based on their current beliefs B t
i . Once coalitions are formed, each

C ∈ CS
t takes its agreed upon action αt

C and observes the resulting outcome state s of that

action. These are “local” outcome states, depending on the actions and type vectors of specific

coalitions, and not on the whole coalition structure reached at the end of the formation pro-

cess.3 Recall from Chapter 4 that the model of the domain dynamics Pr(s|α, tC) is assumed

3The model can be extended by allowing the value of any coalitional action (equivalently, the probabilistic
model for transitioning to the various outcomes) to depend on the current state of the game, such a state consist-
ing of the coalitional configurations (i.e., the complete coalition structure and payoffs allocation) reached and the
beliefs of the agents. This would allow for a sequential environment model (an underlying MDP) given a config-
uration, presumably allowing for the study of coordination games played among the various coalitions present in
the coalition structure (without the agents regrouping). We don’t consider this possibility here, instead focusing
on the sequential nature of repeated coalition formation itself. We note however that a formulation like this may
fit well in natural settings requiring the agents to dynamically pick a coordination problem to tackle, as is the case
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[update of beliefs may 
 occur while observing bargaining actions]

   − bargaining round 1

   ...

   − bargaining round 2

   − bargaining round n

− Coalition formation stage (n rounds of bargaining):

− "RL" stage: Agents have beliefs about the types of others, 

− The process repeats

Outcomes of coalition formation stage: Coalitional agreements, comprising:
A set of formed coalitions, a payoff shares  vector and a set of coalitional actions

and expectations about the values of potential coalitional agreements (Q−values)

   or may not

− Bayesian update of beliefs given actions’ outcomes
− Expectations about the sequential values of agreements are revised (via RL algorithms)

− Emerged coalitions act, outcomes of actions are observed

[in each round, the agents perform
 bargaining actions (offers/ responses)]

Figure 6.2: The “RL” and the “coalition formation” stages of the Bayesian RL framework for
repeated coalition formation under uncertainty.

to be common knowledge, providing agents with the probability of occurence of outcome s

given that coalition C with members type vector tC takes coalitional action α. Each member

of coalition C then updates its beliefs about its partners’ types:

Bt+1
i (tC) = z Pr(s|α, tC)Bt

i(tC) (6.1)

where z is a normalizing constant (we sometimes denote the updated belief state as Bs,α
i ). In

order to make our model apply to realistic circumstances, and in order to be able to test the

full potential of our RL algorithms, in this chapter we assume only limited observability of

the realized outcomes: the agents only observe the outcome of their own coalition’s action.

The process then repeats. So, overall, our reinforcement learning process consists of coalition

formation games being played (“coalition formation stage”) between the execution of coali-

tional actions, which causes the beliefs to be updated (“RL stage”)—as depicted in Figures 6.1

and 6.2. Notice that, even though our general framework allows for this (see for example 6.2),

in this chapter we won’t consider ourselves with the possibility of the agents updating beliefs

during bargaining (i.e., within the coalition formation stage).

We adopt an approach to optimal repeated coalition formation that uses Bayesian explo-

ration. As demonstrated in the approach to multiagent RL presented in Chapter 3, Bayesian

agents in multiagent interaction can balance exploration with exploitation, effectively realizing

sequential performance that is optimal with respect to their beliefs about other agents: Bayesian

in the Robocup Rescue competition [KT01], where agents have to coordinate in order to combat the effects of a
major natural disaster that has hit a city. We elaborate more on these ideas in Chapter 7 of this dissertation.
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exploration outperforms in expectation any other method having the same prior knowledge.

We cast the problem of optimal coalitional learning as a partially observable MDP (POMDP),

or a belief-state MDP. Assuming an infinite horizon problem, with discount factor γ (with

0 ≤ γ < 1), it is reasonably straightforward to formulate the optimality equations for the

POMDP; however, certain subtleties will arise because of an agent’s lack of knowledge of

other agent beliefs.

Let agent i have beliefs Bi about the types of other agents. Let Qi(C, α, dC , Bi) denote

the long-term value i places on being a member of coalition C that has agreed action α and

demands dC , realizing that after this action is taken, the coalition formation process will repeat.

This is accounted for using Bellman-like equations [Bel57] as follows:

Qi(C, α, dC , Bi) =
∑

s

Pr(s|C, α, Bi)[riR(s) + γVi(B
s,α
i )] (6.2)

=
∑

tC

Bi(tC)
∑

s

Pr(s|α, tC)[riR(s) + γVi(B
s,α
i )]

Vi(Bi) =
∑

C|i∈C,dC

Pr(C, α, dC |Bi)Qi(C, α, dC , Bi) (6.3)

Recall that R(s) is the reward paid to C for its action resulting to outcome state s, and ri is the

relative demand ri = di
P

j∈C dj
of agent i given demand vector dC (and thus riR(s) describes i’s

reward share when coalitional action α results in s). Vi(Bi) describes the value of belief state

Bi to i, deriving from the fact that while in Bi, agent i may find itself participating in any of a

number of possible agreements, each of which with some Q-value (we elaborate below).

Thus, when the agents find themselves in a new belief state, following the formation of a

coalition and the occurence of a coalitional action, they are able to estimate new values reflect-

ing the worth of possible future decisions, and thus become capable of using these new values

in future coalitional negotiations. The agents’ uncertainty is effectively encapsulated in the

belief-state MDP described by Equations 6.2 and 6.3; also, the expected value of information of

a coalitional agreement is incorporated in those equation, since the agents recognise—through

examining the value of future belief states—the need to examine the potential effect that new

information will have on their future decisions. Specifically, the agents will enter in the negoti-

ation process taking into account the Q-values of coalitional agreements, rather than using only

immediate expected reward estimates: that is, they incorporate considerations of the long-term

value of their decisions in this repeated coalition formation environment. The optimal course

of action for the agents, then, is to act greedily with respect to their Q-value function, making



CHAPTER 6. BAYESIAN RL FOR COALITION FORMATION UNDER UNCERTAINTY 172

formation moves and suggesting coalitional actions that are maximizers of Eq. 6.2.

Unlike typical Bellman-like equations, the value function Vi cannot be defined by maxi-

mizing Q-values. This is because the choice that dictates reward, namely, the coalition that

is formed, is not in complete control of agent i. Instead, i must predict, based on it beliefs,

the probability Pr(C, α, dC |Bi) with which a specific coalition C (to which it belongs) and

a corresponding action-demands pair 〈α, dC〉 will arise as a result of negotiation. However,

with this in hand, the value equations provide the means to determine the long-term value of

any coalitional agreement. Specifically, they account for how i’s beliefs will change in the

future when deciding how useful a specific coalition is now. The sequential value of any coali-

tional agreement (and action), accounting for its value of information, is used in the formation

process, as explained above.

Thus, we can now make our repeated RL process (depicted in Figures 6.1 and 6.2) more

specific by providing the algorithm of Figure 6.3:

1. Each agent i with belief state Bi calculates the Q-value of any potential agreement 〈C,α,dC〉 in
which it can potentially participate, by solving Equations 6.2 and 6.3.

• In solving Equations 6.2 and 6.3, agents may have to take into account the specifics of
the coalition formation process to follow, so that they are able to estimate the probabilities
Pr(C,α,dC |Bi) in Eq. 6.3.

2. The agents engage in a coalition formation process, in which each one of them is using the Q-values
calculated above in order to reflect the long term value of coalitional agreements. The process results
in a coalition structure CS, a payoff allocation vector d, and a vector of coalitional actions α, one
for each coalition C ∈ CS.

3. Each agent i observes its own coalition C ∈ CS, and the corresponding dC , α that are the restric-
tions of d, α to this coalition.

4. Each agent i updates beliefs about partners j ∈ C, j 6= i, using Eq. 6.1.

5. The RL process repeats.

Figure 6.3: Optimal repeated coalition formation under uncertainty.

Now, returning to the issue of estimating the Pr(C, α, dC |Bi) probabilities, we note that

they can be approximated in a variety of ways, depending also on the coalition formation algo-

rithm assumed to be in use during the formation stage. If a discounted coalitional bargaining

model is assumed, for instance, where coalitions are expected to abandon the negotiations after

forming, then the agents could (a) simulate the process of solving the game tree, possibly using

a heuristic algorithm such as the one presented in Chapter 5, and then (b) assign probability 1

to ending up in the coalitional configuration emerging as a result of the bargaining tree solution
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(or, if X > 1 such solutions exist, possibly corresponding to multiple bargaining equilibria,

assign probability 1/X to each corresponding configuration).

If, however, the negotiations are assumed to be conducted according to a dynamic process

that can be modeled by an underlying Markov chain (such as the BRE process introduced in

Chapter 4), then these probabilities would be easily calculated if one was able to predict the

probability with which the states of the Markov chain containing the 〈C, α, dC〉 would arise

at the end of the negotiation process. These probabilities correspond to the Markov chain’s

steady-state distribution probabilities. The steady-state distribution P ∗ is the solution of the

system P ∗ = P · P ∗, with P being the Markov chain’s transition matrix—which describes the

probability of transitioning to each state ω ′ starting from any state ω (see Table 6.1).

current states

future states
ω1 ω2 . . . ωn

ω1 p11 p12 . . . p1n

ω2 p21 p22 . . . p2n

. . . . . . . . . . . . . . .
ωn pn1 pn2 . . . pnn

Table 6.1: A Markov chain transition matrix. For each row i,
∑

j pij = 1. For a dynamic
coalition formation process such as BRE, states are of the form ωi = (CS, d, α).

However, such an approach is inherently problematic in our setting. The Markov chain

transition matrix and the steady-state distribution above can be determined by an agent only

if the parameters affecting the state transitions are known (such as whether it is expected by

someone else to make a specific proposal in the future); however, agent i does not have full

knowledge of those parameters, since he is unaware not only of other agents’ types, but also

of other agents’ beliefs. Even the use of a common prior to help approximate these beliefs is

problematic, as we now explain.

Assume that at each RL time step there exists a common prior, shared by all agents, spec-

ifying the probability with which the agent type profiles are drawn; and that the agents use

this common prior in order to estimate the probabilities an opponent of a specific revealed type

assigns to type profiles of his opponents (i.e., they treat the common prior as representing the

beliefs of their opponents; these beliefs can then be assumed to stay fixed throughout the coali-

tion formation process). However, the use of such a static common prior to account for the

beliefs of others at the initiation of a negotiation process is unrealistic and problematic. This

is due to the fact that all agents’ beliefs get updated after each RL trial: after k RL steps, the
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agents will enter the formation process preceding RL step k + 1 assuming that their opponents

hold beliefs adhering to the common prior that was in use before the first RL step. This is

clearly an unrealistic assumption, as all agents have updated their beliefs k times since then.

Further, it is not possible for the agents to monitor the way the beliefs of others are changing,

because, as we explained above, in this chapter we make the more realistic and challenging

assumption that agents can observe the outcome of their own coalition’s action only.

For those reasons (and others, which we relate later), we do not try to calculate any Markov

chain transition matrices or steady-state distributions in this chapter; rather, when we need to

approximate the Pr(C, α, dC |Bi) probabilities corresponding to agreements that are outcomes

of dynamic (e.g., BRE) processes, we do so in other ways (we elaborate in the next section).

Furthermore, whenever we have to account for the beliefs of others in some way, we do not

do so by using a simple static common prior assumption, but use a heuristic approach instead

(again, we elaborate in the next section).

The Bayesian exploration formulation presented here is optimal with respect to the beliefs

of the agents—assuming, of course, that the agents have the means to reasonably predict the

outcomes of negotiations. The “optimality” of this approach is irrespective of the nature of the

formation process that precedes the execution of a coalitional action. Whether the formation

process will lead to a stable coalition configuration is not the major concern for the agents—

even though our model allows for the use of (dynamic) formation processes with convergence

guarantees, such as the BRE process presented earlier. The main concern of the agents is to

maximize their long-term value without behaving naively (exploring perhaps aimlessly or with

insufficient reason) while learning.

Next we examine specific Bayesian RL methods developed for use in the described frame-

work. These methods are, in essence, computational approximations dealing with solving the

optimal exploration POMDP described by Equations 6.2 and 6.3.

6.2 Computational Approximations

The calculation of an exact solution to the repeated coalition formation problem, using the

Bayesian RL formulation of Equations 6.2 and 6.3 is infeasible, due to the bottlenecks dis-

cussed above. However, there exist ways to work around the problems, at least to some extent:

here, we describe several algorithms that do so. These Bayesian RL algorithms can be com-

bined with any underlying negotiation process. The agents can evaluate any potential coali-

tional agreement described by a triplet 〈C, α, dC〉 that may arise as a result of a negotiation.
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They will then use these valuations to enter negotiations that may be governed by any set of

rules.4 Thus, we use the algorithm of Figure 6.4 to provide an approximate solution to the

problem of optimal repeated coalition formation under uncertainty.

1. Each agent i with belief state Bi calculates the Q-value of any potential agreement 〈C,α,dC〉 in
which it can potentially participate, by approximating the solution to Equations 6.2 and 6.3, using
one of the following algorithms (described below): OSLA, VPI, VPI-over-OSLA, Myopic, MAP.

2. The agents engage in a coalition formation process, in which each one of them is using the Q-values
calculated above in order to reflect the long term value of coalitional agreements. The process results
in a coalition structure CS, a payoff allocation vector d, and a vector of coalitional actions α, one
for each coalition C ∈ CS.

3. Each agent i observes its own coalition C ∈ CS, and the corresponding dC , α that are the restric-
tions of d, α to this coalition.

4. Each agent i updates beliefs about partners j ∈ C, j 6= i, using Eq. 6.1.

5. The RL process repeats.

Figure 6.4: Approximating the optimal solution to the problem of repeated coalition formation
under uncertainty.

4Of course, the agents may need to take the specific set of rules into account when evaluating the various
agreements, as they may have to account for the agreements’ probability of occurence, as discussed above.
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One-Step Lookahead Algorithm

Here we present an one-step lookahead (OSLA) algorithm, which deals only with immediate

successor belief states following coalition action α and resulting outcome state s. The moti-

vation for this is that computing a value for every possible belief state in order to solve the

belief-state MDP would be in general impossible (and it would not be made any easier by the

fact that an agent is not in complete control of the choices that dictate reward), while it is possi-

ble to approximately calculate the value of the belief states that might follow the execution of a

coalitional action (and the subsequent observation of outcome and update of beliefs) under the

current agreement. When employing the OSLA method, Vi(B
s,α
i ) in equation 6.2, the value of

a successor belief state will be calculated myopically.

Specifically, we define the 1-step lookahead Q-value of a 〈C, α, dC〉 agreement for i, under

belief state Bi, to be given by

Q1
i (C, α, dC , Bi) =

∑

s

Pr(s|C, α, Bi)[riR(s) + γV 0
i (Bs,α

i )] (6.4)

=
∑

tC

Bi(tC)
∑

s

Pr(s|α, tC)[riR(s) + γV 0
i (B′

i)]

(where ri is i’s relative demand given dC). In this equation, V 0
i (B′

i) represents the myopic (“0-

step” lookahead) value of successor belief state B ′
i, which can be calculated using the 0-step

(myopically calculated) Q-values under some B ′
i as follows:

V 0
i (B′

i) =
∑

C′,β∈A(C′),dC′ |i∈C′

Pr(C ′, β, dC′|B′
i)Q

0
i (C

′, β, dC′, B′
i) (6.5)

Q0
i (C

′, β, dC′, B′
i) = r′i

∑

tC′∈TC′

B′
i(tC′)

∑

s′

Pr(s′|β, tC′)R(s′) (6.6)

where r′i is i’s relative demand given dC′ , and Q0 values are calculated accounting only for the

expected immediate reward of C ′ (with agreed dC′) for taking β under B ′
i.

The Pr(C ′, β, dC′|B′
i) above is the probability of negotiation ending with the agent in a spe-

cific coalition in a specific state (i.e., in a specific coalition structure under a specific agreement

to do β while dividing the demands as prescribed by dC′) of the Markov chain that describes

the dynamic coalition formation process that takes place after the execution of some coalitional

action α.

One could envisage deriving the Pr(C ′, β, dC′|B′
i) probabilities by calculating the Markov
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chain steady-state distribution, assuming a common prior regarding types—even though, as

we explained earlier, the assumption of a common prior (after each RL step) is inherently

flawed in a limited observability setting such as ours. However, this approach can prove to be

expensive, both computationally and also in terms of memory requirements, as it would require

that each agent calculates, after each RL step, a big transition matrix for each negotiation

process corresponding to a Markov chain defined given each possible successor B ′
i. To provide

some further intuitions regarding the complexity of the necessary calculations, if the use of

BR or BRE is assumed, then all the agents have to estimate, for every potential state of every

such Markov chain (corresponding to each possible successor belief state of the agent), the

dmax
i (C, α) maximal realistic demands of any type of any other agent i regarding any 〈C ∪

{j}, α〉 proposal that could be made by some j in that state. Further, the agents would have to

take into account the possibility of agents experimenting (if BRE is used).

Thus, we instead choose to adopt a different strategy to approximate the Pr(C ′, β, dC′ |B′
i)

probabilities, regarding them as being the probabilities of ending in a state containing the spe-

cific agreement 〈C ′, β, dC′〉 after one negotiation step, and not after the whole negotiation

process—this is in the spirit of employing a bound (or lookahead) for the size of the bargaining

game tree. (We explain the choice of 1 as a size bound below.) Once negotiations are entered,

the OSLA agents need to utilize Q1 values in order to make decisions; in order to calculate the

Q1 values, the probabilities in question are calculated at each negotiation step, but only by the

agents that are involved in negotiations at this step.

Specifically, an agent who wants to estimate the 1-step Q-value of (every potential) agree-

ment 〈C, α, dC〉 at some negotiation step, should have to calculate (as prescribed in 6.5), the

Pr(C ′, β, dC′ |B′
i) probabilities for each B ′

i reached after the assumed execution of α and as-

sumed observation of s. However, we make the assumption that the agent cares only for

〈C ′, β, dC′〉 agreements that are reachable within one negotiation step after “fixing” his beliefs

to B′
i: Assuming the use of the BRE negotiations algorithm, agent i calculates the probability

with which a certain agreement 〈C ′, β, dC′〉 will be reached within one negotiation step, by

solving the game tree corresponding to the way the BRE process will evolve in one step, and

appropriately summing up the probabilities of any calculated best response strategies that give

rise to 〈C ′, β, dC′〉. Essentially, the deliberations of the agents are similar to the ones used

when solving a BCBG under fixed beliefs with a lookahead value of 1, using a common prior

assumption, but also accounting for the BRE process specifics (i.e., the agents can propose

only to coalitions already in place, and may experiment when proposing or accepting).

We chose to use a lookahead value of 1 when solving the game tree in our experiments, for
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computational efficiency (considering that such a game tree has to be solved by each agent i for

each B′
i successor belief state—the B ′

i beliefs corresponding to the agent’s prior when solving

a BCBG game tree such as the one shown in Fig. 5.1). However, this tree-size lookahead could

take any value of l ≥ 1, depending on the specific setting’s requirements.

An additional issue interfering with the solution of the game tree is that, as mentioned

before, the common prior assumption is not a valid assumption in our setting, firstly because

any common prior assumed in the very beginning of the whole process cannot be assumed to

remain unchanged (“static”), and secondly because it is not possible to monitor the way the

other agents’ beliefs change, due to limited observability of coalitional actions. As a partial

remedy for this problem, we considered making an “optimistic” assumption that the beliefs of

others would coincide with one’s beliefs over time (apart from their part refering to their beliefs

regarding that agent, of course)—in other words, each agent i can assume that his changing Bi

beliefs are shared by others at every point in time, and use these to describe the common prior

whenever solving a BCBG game tree. However, this assumption is itself quite unrealistic—

and, when we experimented with it, it did not lead to good results. We thus tried to empirically

identify the solution that would be most beneficial for our agents; we eventually settled for a

“hybrid” approach, which uses a “static” common prior in the initial5 stages of learning, but

switches to using an “optimistic” prior later on.

Once the Pr(C ′, β, dC′ |B′
i) probabilities are calculated, the agent is able to estimate his

1-step Q-values regarding any 〈C, α, dC〉 that he needs to consider, and use these Q-values

to negotiate with others. However, two more computational difficulties arise when one tries

to sum over all possible tC in equations 6.4 and 6.6, and over all possible formation actions

(choice of coalition, action and demands) in equation 6.5 above. Nevertheless, the use of

sampling and appropriate discretization of demands can help alleviate these problems.

In summary, thus, the OSLA method proceeds as follows:

1. At the beginning of each RL stage, each agent i with belief state Bi calculates the 1-step

Q-value Q1
i of any potential agreement 〈C, α, dC〉 in which it can potentially participate,

using Equations 6.4, 6.5 and 6.6.

• The Pr(C ′, β, dC′ |B′
i) probabilities in Eq. 6.5 are derived for each potential suc-

cessor belief state B ′
i by each agent solving a BCBG game tree describing the an-

ticipated negotiations, assuming a tree size of l (i.e., a negotiation horizon of size

5Specifically, for the first 50 RL steps in the experiments described in Section 6.4.
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l), and a common prior derived by the “hybrid” approach described above. (In our

experiments, we used l = 1.)

2. The calculated Q1
i values are then used by i in the coalition formation process of the

subsequent coalition formation stage. (Specifically, if this process is the BR or the BRE

dynamic process described in Chapter 4, the Q1
i values are used to calculated the p̄i

i and

dmax
i values used by i in its deliberations.)

VPI Exploration Method

In Chapter 3 of this dissertation, we described a multiagent VPI exploration method that

was based on the single-agent RL method of the same name (initially developed in [DFR98,

DFA99]). Recasting the relevant ideas to the repeated coalition formation setting, we now pro-

pose a VPI exploration method that estimates the (myopic) value of obtaining perfect informa-

tion about a coalitional agreement given current beliefs. The sequential value of any coalitional

action, accounting for its value of information, is then used in the formation process.

Let us consider what can be gained by learning the true value of some coalitional agreement

σ = 〈C, α, dC〉. If σ is adopted and corresponding action α is executed, assume that it leads

to specific exact evidence regarding the types of the agents in C. Thus, we assume that the

real type vector t∗C is revealed following σ. In this way, the true value of σ is also revealed,

and it can be defined as the share of the “true” coalitional agreement value that i gets; let it be

denoted as q∗σ = q∗
〈C,α,dC〉

= Qi(C, α, dC |t
∗
C), with

Qi(C, α, dC |t
∗
C) = ri

∑

s

Pr(s|α, t∗C)R(s) (6.7)

where ri is i’s relative demand given dC . This is a “myopic” calculation of the specific (fu-

ture) coalitional agreement value, assuming the definite adoption of this agreement, and the

subsequent revelation of their true types.

This new knowledge is of interest only if it leads to a change of the agent’s policy. This

can happen in two cases: (a) when the new knowledge shows that a coalitional action that was

previously regarded as inferior to others is now revealed to be the best choice, and (b) when

the new knowledge indicates that the action previously regarded as best, is actually worse than

originally predicted.

For case (a), suppose that under the current belief state Bi the value of i’s current best

action σ1 = 〈C1, α1, dC1
〉 is q1 = Qi(C1, α1, dC1|Bi) = EBi

[q
〈C1,α1,dC1〉

]. Moreover, suppose
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that the new knowledge indicates that σ is a better action; that is, q∗σ > q1. Thus, we expect i to

gain q∗σ − q1 by virtue of performing σ instead of σ1.

For case (b), suppose that the value of the second best action σ2 = 〈C2, α2, dC2〉 is q2 =

Qi(C2, α2, dC2|Bi) = EBi
[q

〈C2,α2,dC2〉
]. If action σ coincides with the action considered best,

σ1, and the new knowledge indicates that the real value q∗σ1
= q∗σ is less than the value of the

previously considered second-best action—that is, if q∗σ1
< q2—then the agent should perform

σ2 instead of σ1 and we expect it to gain q2 − q∗σ1
.

Thus, the gain from learning the true value q∗σ of the σ agreement is:

gainσ(q∗σ|t
∗
C) =





q2 − q∗σ, if σ = σ1 and q∗σ < q2

q∗σ − q1, if σ 6= σ1 and q∗σ > q1

0, otherwise

(6.8)

However, the agent does not know in advance what types (and, consequently, which Q-

value) will be revealed for σ; therefore, we need to take into account the expected gain given

our prior beliefs. Hence, we compute the expected value of perfect information about σ as:

V PI(σ|Bi) =
∑

t∗
C

gainσ(q∗σ|t
∗
C)Bi(t

∗
C) (6.9)

The value of perfect information gives an upper bound on the myopic value of infor-

mation for exploring coalitional action σ. The expected cost for this exploration is given

as the difference between the (expected) value of σ and the value of the action currently

considered best, i.e., q1 − EBi
[qσ] (with EBi

[qσ] = EBi
[q

〈C,α,dC〉
] calculated as EBi

[qσ] =

ri

∑
tC∈TC

Bi(tC)
∑

s Pr(s|α, tC)R(s)). Consequently, an agent should choose to perform the

action that maximizes

V PI(σ|Bi) − (q1 − EBi
[qσ]) (6.10)

This strategy is equivalent to choosing the proposal that maximizes:

QVi(σ|Bi) = EBi
[qσ] + V PI(σ|Bi) (6.11)

The agents should then use these QV values instead of using the usual Q-value quantities

in their decision making for forming coalitions. The calculation of expected values and VPI

above can be done in a straightforward manner if the number of possible type configurations is

small. If, however, this number is too large, then sampling has to be employed.
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In summary, the VPI algorithm proceeds as follows:

1. The “true” Q-values of any potential agreement σ, with respect to each realization of the

relevant type vector, are myopically calculated via Eq. 6.7.

2. The gain from reaching agreement σ is calculated via Eq. 6.8.

3. The VPI for σ is calculated via Eq. 6.9.

4. The Q-values QVi for (any) σ are calculated through Eq. 6.11 (and are subsequently used

in the coalition formation process).

VPI exploration is a non-myopic method, since it does reason about the value of future

belief states (accounting as it does for the value of perfect information of future coalitional

agreements and its impact on the agents’ decisions). Notice, however, that the VPI algorithm

uses myopic calculations when determining the value of agreements. Even though this is an

approximation, it enables the method to focus on exploiting the value of (perfect) information

regarding the types, however myopic the estimation of this value may be, instead of making

tedious attempts to estimate the specific value of anticipated coalitional actions, which is what

lookahead methods explicitly try to do. Thus, unlike lookahead methods, the VPI algorithm

does not have to explicitly incorporate the common prior hypothesis in the calculation of the

Q-values to be used during formation—and does not need to account for the probability of

agreement when transitioning to future belief states (in other words, it does not try to explicitly

approximate the solution to the POMDP described in Eq. 6.2 and 6.3). The VPI exploration

method is thus not tightly tied to the specific formation process used. As we will see later

in this chapter, this myopic VPI estimation proves to work well in a variety of experimental

settings.

Nevertheless, for interest, we also developed and tested a method which combines VPI

with OSLA. This VPI-over-OSLA method uses the application of VPI over Q-values estimated

using the OSLA method. When this method is used, the values of currently expected best

action, second best action and exploratory action σ are estimated using one-step lookahead

(and, thus, there is a need to approximate the probabilities of future agreements in this case).

In brief, VPI-over-OSLA proceeds as follows:

1. The “true” q-values of any potential agreement σ are calculated, assuming one-step

lookahead and calculation of the V 0
i and Q0

i values of the successor belief state (fol-

lowing the revelation of the true t∗C) through Eq. 6.5 and 6.6.
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2. The gain from reaching agreement σ is calculated via Eq. 6.8, where the values q1 and

q2 of the best and second-best actions are calculated through Eq. 6.4, 6.5 and 6.6.

3. The VPI for σ is calculated via Eq. 6.9.

4. The Q-values QVi for (any) σ are calculated through Eq. 6.11 (and are subsequently used

in the coalition formation process).

Myopic Bayesian RL Algorithm

A myopic Bayesian RL algorithm may be defined exactly as was earlier described: the agents

do not reason about future belief states, but rather just assess myopically the value of vari-

ous coalitional moves, apply an inner coalition formation process (such as the BRE process

presented in Chapter 4), and repeat.

An agent i using myopic Bayesian RL calculates the value of agreements 〈C, α, dC〉 under

belief state Bi, as follows:

Qi(C, α, dC , Bi) = ri

∑

tC∈TC

Bi(tC)
∑

s

Pr(s|α, tC)R(s)

(where ri is i’s relative demand given dC).

Maximum A Posteriori Type Assignment RL Algorithm

A maximum a posteriori type assignment (MAP) algorithm can also be defined. This algorithm

effectively reduces the problem of updating Q-values about agreements given beliefs about the

types of opponents, into the problem of updating Q-values about agreements given a belief that

opponents’ true type is the one specified by our beliefs as being the most probable.

In other words, given a belief state Bi, agent i assumes that the type ti
j of an opponent j is

the one specified as the most probable by Bi(tj): that is, tij = argmaxtj Bi(tj). Thus, a vector

of types tC assumed by i to represent the true types of partners’ (in any coalition C) can be

defined, and agent i will be able to calculate the value of agreements as follows

Qi(C, α, dC |tC) = ri

∑

s

Pr(s|α, tC)R(s)

(where ri is i’s relative demand given dC).

Notice that this calculation is a myopic one, not accounting for the sequential value of an

agreement.
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6.3 On Combining the RL Algorithms with the Formation

Process

It is easy to define variants of our Bayesian RL algorithms, in order to accomodate different

environment requirements. What is more, we can partition the space of the possible variants

of RL algorithms, by examining their combination with various coalition formation processes.

For example, we can consider the following four classes of reinforcement learners, combining

Q-value estimation with dynamic formation processes such as those identified in Chapter 4.

The first are non-myopic/full negotiation (NM-FN). Agents in this class employ full negoti-

ation when forming coalitions, attempting to find a BC structure and allocation before engaging

in their actions. For instance, they might use the dynamic process described above to determine

suitable coalitions given their current beliefs. Furthermore, they employ sequential reasoning

(using the OSLA or the VPI RL method, for example), in their attempt to solve the POMDP

described by equations 6.2 and 6.3.

Myopic/full negotiation (M-FN) agents use full negotiation to determine coalitions at each

stage. However, they do not reason about future (belief) states when assessing the value of

coalitional moves. Essentially, M-FN agents engage in repeated application of a coalition

formation process (for example, BR or BRE), myopically choose actions, and repeat.

Myopic/one-step proposers (M-OSP) are agents that are myopic regarding the use of their

beliefs when estimating coalition values (like M-FN), but do not employ full negotiation to

form coalitions. Rather, at each stage of the RL process, one random proposer is assumed to

be chosen, and once a proposal has been made and accepted or rejected, no further negotia-

tions are assumed to take place: the coalitional action is assumed to be executed after a single

proposal. Finally, non-myopic/one-step proposers (NM-OSP) are, naturally, the obvious com-

bination of NM-FN and M-OSP agents. Notice that the fact that OSP agents assume (from

an RL perspective) that the negotiation process has only one round, does not necessarily mean

that the actual negotiations will last for just one round. Specifically, an agent may deliberate

about the value of various agreements by supposing one-step negotiation, to simplify its rea-

soning. This is possible even if the actual negotiation uses multiple rounds. Nevertheless, in

the experiments of this chapter, all OSP agents simulations involve actual negotiations that last

for one round.

When comparing these approaches, we see that FN approaches have the advantage that at

the end of each RL stage, before actions are executed, the coalition structure is in a stable state,
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provided that a coalition formation process which ensures this is employed (e.g., if the BC is

non-empty and BRE is used). Another advantage of FN is that agents have the opportunity to

update their beliefs regarding other agents’ types during the negotiation itself (as was suggested

in Chapter 5).6

However, FN-methods will face the problem that it is not possible for the agents to fully

explore all coalition formation possibilities (if dynamic processes that lead to stable configu-

rations are used): at the end of each stage, the agents will indeed have strong information on

a sub-space of the coalition structure space, specifically the subspace that contains the stable

coalition structure the agents have led themselves into; but the agents may not have many op-

portunities to explore coalition structures not reachable under their beliefs (since if they indeed

reach a stable structure given their beliefs, they won’t have “an interest” in exploring more).

This is in contrast to OSP approaches, which may potentially provide the agents with more

flexibility to investigate the whole space of structures.

6.4 Experimental Evaluation

In order to evaluate our methods experimentally, we conduct four sets of experiments. In the

first set of experiments, we compare our methods to each other by requiring the agents to face

the same coalition formation problem repeatedly. This set of experiments also underscores the

differences in behaviour and perfomance between the agents employing full negotiations dur-

ing bargaining, and those not. In the second set of experiments, our agents act in a dynamic

environment, being presented with a different problem after each RL step. This setting demon-

strates that our approach allows for the transfer of knowledge between different tasks, allowing

as it does the agents to progressively update beliefs regarding the partners’ capabilities. Further,

it helps demonstrate the benefits of using the VPI method in particular (we elaborate below).

Our third experimental setting also helps demonstrate the transfer of knowledge benefits of our

approach. However, unlike the second setting, here we allow the agents to have knowledge of

the (different) formation problem that they will face in the next RL step. Finally, the fourth

set of experiments attempts a comparison of our methods to the KST method (introduced in

Chapter 5).

In all cases the experiments focus on assessing the performance of our methods while learn-

ing by observing the emerging coalitions’ behaviour in repeated coalition formation settings—

6We do not explore this possibility in the experiments of this chapter, in order to focus more on the RL aspects
of the repeated coalition formation problem, rather than those of bargaining.
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unlike our experiments in Chapter 5 where the focus was on learning by monitoring the agents’

interactions during bargaining. The main metric we use in all our experiments is discounted

reward accumulated by the coalitions—this is a metric reflective of the sequential rationality of

the agents’ decisions. The formation process used during the coalition formation stages is the

BRE dynamic process (thus providing us with the opportunity to make observations relating

to the agents’ BC-convergence behaviour). For sampling type vectors, we used the following

approach: if |T ||C| ≤ 1000, where |T | is the number of types and |C| is the size of coalition C,

no sampling was used; otherwise, the sampling size was set to 100. Overall, our experiments

show that our Bayesian RL approach (and especially our VPI method) facilitates the agents’

sequential decision making under uncertainty, and contributes to good online performance.

6.4.1 Learning while Repeatedly Facing a Specific Formation Problem

In our first set of experiments, we test our approach in two settings: the first has 5 agents,

10 types per agent, 3 actions per coalition and 3 outcome states per action; the second has

10 agents, 10 types per agent, 3 actions per coalition and 3 outcome states per action. The

setting in our experiments is homogeneous (i.e., all agents in an experiment employ the same

algorithm). Each experiment consists of 30 runs, and each run employs 500 RL steps. A

discount factor of 0.985 was used in all of our experiments requiring discounting. Whenever a

full negotiation (FN) approach is used, formation negotiations last for 50 rounds (per RL step).

Agents can observe the results of the action taken by the coalition to which they belong, not

those of any other coalition. Thus, they can only update their beliefs regarding their partners

at any stage. However, the assumption of observability of the membership of all coalitions

and all other agents’ demands by any agent is in place. The coalition structure in place at the

beginning of each RL step is the result of the preceding formation process.

The agents form companies to bid for software development projects. There are 3 “major”

types, corresponding to project roles, each having 3 or 4 “quality” types: interface designer

= 〈bad, average, expert〉, programmer = 〈bad, average, good, expert〉 and systems engineer =

〈bad, average, expert〉. The quality types correspond to quality “points” (starting with 0 points

for “bad” types and increasing by 1), which, accumulated, characterize the overall quality of a

coalition. The agents know the major type of their opponents, but not their quality types. The

companies can bid for a large, an average-sized or a small project (actions), and they expect to

make large, average or small profit (outcome), given their choices and their members’ types.

The outcome (and subsequent coalitional reward) of a coalitional action depends on the
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quality of the coalition and the action performed. In general, bidding for large projects is

unlikely to be rewarding: a coalition will in general be unable to receive large profits by doing

so, unless its overall quality is high and there is enough diversity (regarding major types)

among its members. A coalition with 2 (or more) members is “punished” if it does not have

2 (or, respectively, at least 3) members of different “major” types, by receiving only a fraction

of the reward it is entitled to given the quality of its members (see Tables B.2, B.3, and B.4 in

Appendix B). Also, the reward shares that the members of a size 2 coalition expect to receive

are equal to their rewards for forming singletons, and less than these if the 2-member coalition

is made up of members of the same “major” type. Thus, it is to be expected that agents using

a Myopic method will find it hard to form size 2 coalitions (starting from a configuration

structure of singletons), even if in fact these coalitions can serve as the “building blocks” for

more promising ones. We omit further details about the rewards (and the outcomes staes’

transition function) here—we refer to Appendix B for further details.

Agent Type quality points
0 expert interface designer 2
1 good programmer 2
2 expert systems engineer 2
3 bad programmer 0
4 bad systems engineer 0

Table 6.2: Participants in the five-agents experiments.

Agent Type quality points
0 expert interface designer 2
1 good programmer 2
2 expert systems engineer 2
3 bad programmer 0
4 bad systems engineer 0
5 bad interface designer 0
6 average interface designer 1
7 average programmer 1
8 average systems engineer 1
9 bad programmer 0

Table 6.3: Participants in the ten-agents experiments.
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When 5 agents are present, the actual types of the agents are as in Table 6.2, while when

10 agents were present the participants’ types are as in Table 6.3. The 5-agent environment is

such that the (classic deterministic) core is not empty: the core contains the coalition structure

{〈a0, a1, a2〉, 〈a3〉, 〈a4〉} with 〈a0, a1, a2〉 (which is a coalition of expert agents) bidding for

large projects and 〈a3〉, 〈a4〉 for small. When 10 agents are present the (deterministic) core is

empty.

Fully informed agents 5 agents 10 agents
Full negotiation 183713 258726
One-step proposals 139965 226490

Table 6.4: Discounted average (over 30 runs) total accumulated payoffs after 500 RL steps for
fully informed agents employing either FN or OSP formation algorithms.

Within each environment, we run our agents in two types of settings: one with a com-

mon prior that was uniform with respect to the quality types of opponents, and one with a

misinformed common prior—in this case the agents has a belief of 0.7 that each one of its

opponents is of a quality type other than its real one. The results of the experiments are shown

in Figures 6.5, 6.6, 6.7 and 6.8. The plots in these figures show how the agents in each ho-

mogeneous environment of Myopic, OSLA, VPI, MAP, or VPI-over-OSLA fared, comparing

the average (over 30 runs) discounted payoff accumulated by coalitions in each one of these

environments to each other. In order to have a comparison metric against some form of “op-

timal” behaviour of the agents in the 5-agent or 10-agent environments, we also tested the

behaviour of agents who were fully informed regarding each others’ types (using a common

prior that accurately depicted the assignment of types to agents); we do not show the plots

regarding fully informed agents (in order not to congest the figures), but we report their dis-

counted average (over 30 runs) total accumulated payoff after 500 iterations, in Table 6.4. We

also note that in the 5-agent case, the structure agreed upon by the fully informed agents is the

{〈a0, a1, a2〉, 〈a3〉, 〈a4〉} structure, with 〈a0, a1, a2〉 bidding for a large project and 〈a3〉, 〈a4〉

for small ones, which, apart from being an optimal configuration (i.e., one resulting to maxi-

mum possible collective payoffs), is also a core-stable one. In addition, in Tables 6.5 and 6.6

we report on the average “per step” rewards accumulated in the final 50 RL steps of an average

run, when the agents’ beliefs and behaviour are expected to have stabilized.

Considering the experiments involving 5 agents (Figures 6.5 and 6.6) first, we can see that

VPI is usually (cases of Fig. 6.6(a), 6.6(b) and 6.5(b)) doing at least slightly better than the

other methods, in terms of discounted average total accumulated payoff (but in the cases of
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Figure 6.5: Experiments with five agents, full negotiation. Discounted average total payoff
accumulated by coalitions (in 30 runs). Error bars are 95% confidence intervals. The “BC-
Stable configuration” is a non-optimal one, and involves no learning. The discounted averarage
accumulated payoff for an optimal core-stable configuration at step 500 is as shown in Table 6.4
(i.e., 183, 713).
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Figure 6.6: Experiments with five agents, one-step proposals. Discounted average total payoff
accumulated by coalitions (in 30 runs). Error bars are 95% confidence intervals. The dis-
counted averarage accumulated payoff for an optimal core-stable configuration at step 500 is
as shown in Table 6.4 (i.e., 139, 965)
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Fig. 6.6 its “lead” is not significant, unlike as in Fig. 6.5(b)). In contrast, the method with the

worst performance is Myopic.

Interestingly, the MAP method manages to do quite well in the five-agent experiments.

Notably, it tops the other methods in the uniform priors-full negotiation case (Figure 6.5(a)).

The MAP method effectively employs “crude” exploration, with agents behaving “greedily”

(acting in an overly optimistic or pessimistic manner) towards the value of information they

receive (slight modification of beliefs may “point” to a different type for a partner to be taken

for granted). This turned out to be helpful in this setting, assuming major types which are

known to agents, with only 3 or 4 unknown quality types each (and with a reward signal that

can in fact be quite clear regarding the quality of coalitions). In this setting, the MAP agents

are able to determine, after the initial stages, which partners have beneficial quality types—

and then they stick to their choice. In fact, the MAP agents manage to achieve high rewards

without ever reducing their type uncertainty regarding most of their potential partners. Defining

D(x, τy) = 1 − Bx(ty = τy) as being the distance of x’s beliefs regarding the true type τy of

agent y from this true type, we observe a distance of approximately 0.75 or 0.66667 appearing

regularly at the end of step 500, which coincides with the initial distance of an agent’s prior

beliefs from the true type of his partners.

Notice that in the case of the five agents-full negotiation experiments we plot a “BC-Stable

Configuration” curve corresponding to rewards accumulated by agents that are placed, at the

beginning of each experiment, in a configuration that lies within the strong Bayesian core

(according to their initial beliefs), and which is never left afterwards: no renegotiations or

learning is involved. This BC-stable configuration contains, both in the uniform and in the

misinformed case, the coalition structure {〈a0, a3, a4〉, 〈a1〉, 〈a2〉} with 〈a0, a3, a4〉 bidding

for large projects and 〈a1〉, 〈a2〉 for small; this is in fact a quite rewarding configuration under

the specific experimental setting (even though a “suboptimal” one), with 〈a0, a3, a4〉 having

10% chance to “make a large profit” (best outcome). We plot this curve to examine whether our

learning methods have the potential, if used, to improve the performance of agents that have

(perhaps luckily) found themselves initially in rewarding stable structures but do not care to

expand their prior knowledge. In both the uniform and misinformed priors cases (Figure 6.5(a)

and 6.5(b)), we can see that the agents employing the VPI method are performing substantially

better than the agents lying in the rewarding BC-stable configuration. We do not plot the “BC-

Stable Configuration” graph in the case of five agents-OSP experiments in order not to congest

the corresponding figures. (Those graphs would have been identical to their full negotiation

counterparts, since there is no learning or change of the coalition structure involved in the
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“BC-Stable Configuration’ case; plotting the stable configuration would have resulted in a big

gap between its graph and the reward graphs generated by the various methods.)

In all cases the results do indicate that agents using full negotiation are more successful

than those using one-step proposals in terms of discounted accumulated reward. The magni-

tude of difference can be quite high, with FN agents regularly being three times as successful as

their OSP counterparts (in terms of discounted accumulated reward). The fact that FN agents

are taking the time to engage in lengthy dynamic formation processes between RL steps, en-

ables them to reach more stable configurations (as these are to a greater extent the product of

“collective consensus”, and for that matter closer to the truly rewarding states). The more “ex-

ploratory” nature of OSP agents is, in any case, apparent when observing the error bars in the

figures describing FN and OSP results. Nevertheless, when examining the results of Tables 6.5

and 6.6, we observe that OSP agents do manage to catch up with FN agents in the long run:

in the final RL stages, they usually manage to gather per step reward that is comparable to

that gathered by FN agents. Especially in the five-agent settings (Table 6.5), they consistently

(with the only exception of MAP-Uni) achieve per step reward which is, as a percentage of that

gathered by fully informed agents, higher than that gathered by their FN counterparts. Thus,

the more exploratory nature of OSP agents pays out in the long run—but their performance

suffers more along the way.

As the number of agents increases and the environment becomes more complicated, VPI es-

tablishes itself as the most successful of the methods, both in terms of discounted accumulated

reward (Figures 6.7 and 6.8) and in terms of reward calculated when the agents beliefs have

“converged” (Table 6.6). The method managed to accumulate 76.6% of the average discounted

rewards accumulated by fully informed agents in the misinformed priors-full negotiation case

(and 67% in the uniform priors-full negotiation case), with the rest of the methods not exceed-

ing 51.7%.

One important observation is that the VPI method manages to achieve good performance

without, in most cases, significantly reducing the agents’ uncertainty regarding the true type

of partners. As an example, let us discuss the reduction of uncertainty for the VPI agents in

the experiments shown in Figure 6.7(b). Defining D(x, τy) = 1 − Bx(ty = τy) as being the

distance of x’s beliefs Bx(ty = τy) regarding the true type τy of agent y from this true type,

we observe that in most of the cases the D(x, τy) metric ranges from 0.5 to 0.96 at the end of

step 500, after averaging its value over 30 experimental runs. (To be more exact, only 8 out of

the 90 possible D(x, τy) quantities—since we are calculating the average D(x, τy) distance of

each one of the 10 possible agents’ beliefs regarding the real type of his 9 possible partners—
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Figure 6.7: Experiments with ten agents, full negotiation. Discounted average total payoff
accumulated by coalitions (in 30 runs). Error bars are 95% confidence intervals.
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Figure 6.8: Experiments with ten agents, one-step proposals. Discounted average total payoff
accumulated by coalitions (in 30 runs). Error bars are 95% confidence intervals.
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had a value of less than 0.5.) Thus, the agents are usually not even coming close to being

certain of the true type of most of their opponents—nevertheless, they manage to balance their

uncertainty with their expectations in such a way that it is possible for them to make beneficial

decisions. This observation reiterates the point that it is not always necessary for agents to seek

to forcefully reduce uncertainty (e.g., by employing some kind of uninformed exploration) in

order to achieve satisfactory performance.

The results of the experiments involving five agents, and especially those of experiments

involving ten agents, indicate that the performance of OSLA and VPI-over-OSLA in terms of

discounted accumulated reward is, in general, poor. We attribute this to the fact that the com-

mon prior assumption that OSLA makes is not realistic, as explained in the previous section.

It is notable, however, that the VPI-over-OSLA method consistently achieves better perfor-

mance than OSLA (using VPI over OSLA seems thus to be helpful); also, in most cases, both

VPI-over-OSLA and OSLA perform better than Myopic (actually, they always do better than

Myopic in the 5-agent settings). Furthermore, the reward-gathering performance of OSLA and

VPI-over-OSLA in the final stages of the experiments, as depicted in Tables 6.5 and 6.6, is in

several cases comparable to (and in some cases superior to) the performance of methods that

fare better in terms of discounted accumulated reward. Finally, Myopic usually exhibits poor

performance; its approach is far too cautious, the agents not being very successful in progres-

sively building profitable coalitions. Nevertheless, this was to be expected, since Myopic does

not in any way incorporate an assessment of the value of information.

Further, it is interesting to observe when comparing the 6.5 and 6.6 tables with the dis-

counted accumulated reward figures that, quite often, methods that are doing well in terms

of accumulating reward at the end of the runs, do not necessarily fare well in terms of dis-

counted accumulated reward. This is for example the case for MAP in the 10-agent setting

with one-step proposals and uniform priors: even though it does very well in terms of rewards

accumulated towards the end of the runs (Table 6.6(b)), it still ranks by far under both VPI and

VPI-over-OSLA in terms of discounted accumulated reward (Figure 6.8(a)).

With regard to the stability of formed coalitions in the 5-agent setting, we observe that the

VPI, OSLA, VPI-over-OSLA, and Myopic agents frequently find themselves in a BC configu-

ration while learning (i.e., at the end of formation stages, before executing coalitional actions),

even if they do not “converge” to one. “Convergence” was assumed if a least 50 consecutive

RL trials before the algorithm run’s termination resulted in a BC configuration. The conver-
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Method Reward
Fully informed agents 2992.82
VPI-Uni 1503.08(50.23%)
VPI-Mis 1387.28(46.35%)
VPI-over-OSLA-Uni 873.74(29.19%)
VPI-over-OSLA-Mis 783.44(26.18%)
OSLA-Uni 860.72(28.76%)
OSLA-Mis 807.18(26.97%)
MAP-Uni 2745.6(91.73%)
MAP-Mis 1218.24(40.7%)
Myopic-Uni 824.96(27.56%)
Myopic-Mis 1046.64(34.97%)

(a) Full negotiations

Method Reward
Fully informed agents 2392.54
VPI-Uni 1611.4(67.35%)
VPI-Mis 1562(65.29%)
VPI-over-OSLA-Uni 1063.14(44.44%)
VPI-over-OSLA-Mis 973.92(40.71%)
OSLA-Uni 1562.86(65.32%)
OSLA-Mis 1253.8(52.4%)
MAP-Uni 1588.6(66.4%)
MAP-Mis 1459.4(61%)
Myopic-Uni 674.44(28.2%)
Myopic-Mis 723.76(30.25%)

(b) One-step proposals

Table 6.5: Experiments with 5 agents. Average “per step” reward accumulated within the final
50 RL steps of a run; “Uni”: uniform, “Mis”: misinformed prior.

Method Reward
Fully informed agents 3884.77
VPI-Uni 2987.6(76.9%)
VPI-Mis 2893.6(74.48%)
VPI-over-OSLA-Uni 1622.5(41.76%)
VPI-over-OSLA-Mis 1768.86(45.53%)
OSLA-Uni 1564.6(40.27%)
OSLA-Mis 1669.4(42.97%)
MAP-Uni 2736(70.42%)
MAP-Mis 2144.34(55.2%)
Myopic-Uni 2419.4(62.28%)
Myopic-Mis 2235.2(57.54%)

(a) Full negotiations

Method Reward
Fully informed agents 3881.7
VPI-Uni 2764.2(71.21%)
VPI-Mis 2736.4(70.49%)
VPI-over-OSLA-Uni 1642.88(42.32%)
VPI-over-OSLA-Mis 1710.96(44.08%)
OSLA-Uni 1542.4(39.74%)
OSLA-Mis 1541.8(39.72%)
MAP-Uni 2657.58(68.46%)
MAP-Mis 1660.7(42.78%)
Myopic-Uni 1078.68(27.8%)
Myopic-Mis 1462.8(37.68%)

(b) One-step proposals

Table 6.6: Experiments with 10 agents. Average “per step” reward accumulated within the
final 50 RL steps of a run; “Uni”: uniform, “Mis”: misinformed prior.
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FN Unif. FN Misinf. OSP Unif. OSP Misinf.
MAP 27/30 0/30 14/30 0/30

Myopic 0/30 0/30 1/30 2/30
VPI 0/30 0/30 1/30 3/30

OSLA 0/30 0/30 2/30 2/30
VPI-over-OSLA 0/30 0/30 0/30 0/30

Table 6.7: The convergence to BC results (converged/30 runs) for the algorithms (for 5 agents).
“Convergence” is assumed if at least 50 consecutive RL trials before a run’s termination result
in a BC configuration.

gence results are shown in Table 6.7.7 The MAP agents managed to converge to the rewarding

stable configurations quite often (and this contributed to their good performance in the uniform

priors-full negotiations case.) When 10 agents were present, none of the algorithms ever con-

verged to a BC allocation, but this was to be expected since a “core” allocation did not actually

exist.

To conclude this subsection, perhaps the most significant observation regarding these re-

sults is the consistently good performance exhibited by the VPI method. The method seems

to be robust, ranking first in all but one experiment—in terms of both short-term (during the

initial stages of learning) and long-term reward-gathering performance. Furthermore, VPI is a

quite scalable method, whose worst case running time (for an entire run) is in the order of 700

sec (when 10 agents are present and full negotiation is used). By comparison, OSLA-FN can

exhibit running time of the order of 6 hours/run, if 5 agents are used; or >25 hours /run, if 10

agents are present. (No parallelism was used in those experiments; however, the autonomous

agents can be assumed to be performing their calculations in parallel, which could mean that

the total time for the experiments would be reduced by a factor close to the number of agents.)

6.4.2 Learning while Facing Dynamic Tasks

The experiments we presented so far involved the agents facing the same coalition formation

problem—involving the same transition to outcome states model—at each RL step. Maybe a

better way to think of those scenarios is as having the agents facing static tasks—the same set

of tasks needs to be served at each time point—in distinction to facing dynamic tasks (which

7When we tried some runs for 10000 RL steps, the methods did seem to be able to converge to BC allocations
more often.
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change over time) [MCW04, KG02, SK98, SL04]. Thus, it would be interesting to see how

our methods fare when they are presented with a different problem at each time step.

One of the challenges in dynamic situations, as before, is for the agents to discover the type

of their opponents. The need to achieve this particular goal is more emphatic in this case, since

they will have to put their beliefs to test facing different situations each time. Thus, this setting

tests the abilities of our agents to achieve transfer of knowledge between tasks; this is one of the

benefits deriving from assuming type uncertainty and using learning to tackle it: once agents

learn about the abilities of partners, they can re-use this knowledge when encountering those

partners again under different circumstances.

Further, in this setting we assume that the agents do not know in advance which task they

are going to face in the next RL step. In other words, the agents do not know in advance

which transition to outcome states model prevails in the next RL step (they only know the

model in the current RL step). This is to make the environment truly dynamic. However, the

POMDP assumptions do not now hold, due the non-stationarity of the environment—since the

Pr(s|α, tC) domain dynamics keep changing at each time step, and the agents are not aware

of the way this happens. Therefore, any method that tries to approximate the solution to the

POMDP assuming stationary transition model dynamics is making an assumption that is flawed

in this setting. Therefore, one would expect lookahead methods to do poorly here, since agents

employing them would wrongfully anticipate to encounter a specific task (described by the

same transition outcomes model currently in place) again in the near future—for example, in

the next RL step, if one-step lookahead is employed. However, the performance of the myopic

VPI method should not be negatively affected, since its main characteristic is employing the

myopic value of perfect information regarding the types of partners, and not dealing intrin-

sically with the expected utility of future anticipated coalitional actions in subsequent belief

states (the VPI method is not tightly linked to the “internal” coalition formation process used).

To put these hypotheses to test, we used the following experimental setup: Five agents

co-exist in a homogeneous environment, and form coalitions over a period of 500 RL steps.

Between two RL steps, the BRE algorithm is used with 50 (full negotiation) steps. Each one of

the agents is assigned with one of five different types (so that the agents are of different types).

The agents share a uniform common prior regarding the types of opponents (but know their

own types). At each RL step, the formed coalitions have 3 coalitional actions at their disposal,

with 3 possible outcome states per action—however, the model for transitions to outcome states

differ from one RL step to another, as we will describe shortly. As mentioned, the agents do not

know beforehand which transition model they will encounter in the next RL step—and assume
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that the current transition model will be again encountered. Finally, at the beginning of each

RL step, the coalition structure is re-initialized to a coalition structure of singletons.

In fact, the experiment is designed to study the agents’ behaviour while facing changing

problems, but also so that the effectiveness of their type-learning ability is clearly exposed.

The setup describes the problem that five bandits in the Wild West face when trying to form a

successful gang. Specifically, the “Good”, the “Bad” and the “Ugly” (agents’ types) have to

discover each other and come together in order to “Rob the Train” (coalitional action), so as to

get the “Big Money” (outcome state). In order to do so, they will go through some experience-

gathering phase, during which it is possible to coalesce with other villains (“El Viejo” and

“Sancho Villa”), performing “petit crime” actions of lesser significance (such as “Rob Corner-

store” or “Rob Saloon”) which may result to them getting to the “Some Change” or the “Some

Decent Cash” outcome states—given the coalition qualities and underlying stochasticity. The

setup is summarized in Figure 6.9.
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Figure 6.9: The Good, the Bad and the Ugly.

During the experience-gathering phase of the first 400 RL steps, the bandits are faced with

problems 1 and 2 alternatively (with each problem employing its own, distinct outcome tran-

sition model) while they face problem 3 during the last 100 RL steps (this is the “Big Crime”

phase of the experiment). By the time RL step 401 is reached, they should have gained enough

experience in order to tackle problem 3 (through identifying each other correctly) and fare well

in their “Big Crime” activities, or else they are going to be making only “Some Change” during
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most of the last 100 RL steps. Specifically, if all of them form a coalition and decide to rob the

train, they have 85% probability of making Big Money; if only two of them form a coalition,

they can expect, with 80% probability, to make Some Decent Cash by taking that same action

(Figure 6.9). The setup of problems 1 and 2, in contrast, is such that it urges the agents to form

two-agent coalitions, so that they get information regarding their partners’ types. We can see in

Figure 6.9, for example, that the transition model for the first “Petit Crime” scenario specifies

that a coalition of the Good and the Bad have 50% chance of achieving a reward of 100 if they

decide to rob the saloon, and so on.
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Figure 6.10: The Good, the Bad and the Ugly: Discounted accumulated reward results.

Results are presented in Figure 6.10 and Figure 6.11. It is obvious from these results

that VPI dominates the other methods both in terms of discounted accumulated rewards (i.e.,

behaviour during the “experience-gathering” phase), and also in terms of accumulated rewards

during the final stage of the experiment. In contrast, the lookahead methods’ behaviour was

much poorer, as expected. Nevertheless, the OSLA and VPI-over-OSLA agents do manage to

collect, in the last phase of the experiment, approximately 10 and 6 times respectively more

reward than the MAP agents, who appear to have been utterly confused by the setup.
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Figure 6.11: The Good, the Bad and the Ugly: Rewards gathered during the “Big Crime” phase
(averaged over 30 runs).

6.4.3 More on Transfering Knowledge among Tasks

We repeated the experiment above, using again “The Good, the Bad and the Ugly” setup of

Figure 6.9, with the difference that now the agents did have prior knowledge of the order with

which the tasks are arriving. In other words, the agents know at every point in time the correct

outcomes’ transition model for the current and the following RL stages. Thus, the OSLA

and VPI-over-OSLA agents are now again able to evaluate the 1-step Q-values without having

false beliefs regarding the coalition formation problem to be faced after their successor belief

states are reached. Again, however, the setup allows for the demonstration of the way our

agents “transfer knowledge” between tasks, capable as they are of updating beliefs regarding

the types of others.

The results we got are presented in Figures 6.12 and 6.13. We can see there that VPI-over-

OSLA’s and OSLA’s performance has improved substantially in comparison to the previous

setting. VPI-over-OSLA, in particular, was even able to surpass the performance of Myopic,

both in terms of discounted accumulated rewards and in terms of rewards received during the

final “Big Crime” phase of the experiment. Nevertheless, VPI still dominates all others in every

respect.

6.4.4 Comparison to a Kernel-Based Coalition Formation Approach

To the best of our knowledge, there does not exist so far any other work that combines dynamic

coalition formation with learning under “type uncertainty”. However, as mentioned in Chap-

ter 5, Kraus et al. have dealt in [KST04] with coalition formation under some restricted form
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Figure 6.12: Transfer of knowledge setup: Discounted accumulated reward results.

Figure 6.13: Transfer of knowledge setup: rewards gathered during the “Big Crime” phase
(averaged over 30 runs).
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of uncertainty (regarding coalitional values) in the “Request For Proposal” domain.
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Figure 6.14: Setup for the fourth set of experiments (comparison to the KST method).

Of course, a direct comparison of our techniques with the [KST04] would not be fair to

that method, since it does not use any learning and was not designed to be used in our adopted

settings (for example, there are some heuristic assumptions involved which we consider inap-

propriate, such as computing the kernel for the coalition with the greatest coalitional value,

even though this might not at all be the coalition ensuring the highest payoff to the agent).8

Nevertheless, we chose to treat it as a benchmark (adapting it in our setting so that agents use

beliefs about opponents types), in order to exhibit the benefits of learning versus non-learning

approaches. Also, for interest, we combined it with our own Myopic RL algorithm (treating it

as its dynamic coalition formation component), in an attempt to assess whether there exist any

clear benefits between using a core-based or a kernel-based formation approach in our RL set-

ting. As in Chapter 5, we will refer to our adapted version of [KST04] as the “KST” algorithm.

Essentially, our KST is a myopic RL method, using the kernel-stable payoff allocation method

and the “compromise” assumption used by [KST04].

We used an experimental setup with five agents, five possible types each, with each agent

being of a different type. There exist 3 possible actions per coalition. The setup is shown

in Figure 6.14. We compare KST (with and without using learning) against our VPI method

8[KST04] does not assume an initial demand vector or any renegotiation of agreements, so agents have to
assume that the coalition with the greatest estimated value is the one to prefer.
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(since this was the method that performed best in our previous experiments) and also against

our Myopic algorithm (since KST is essentially a myopic method).
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Figure 6.15: Comparison with the (adapted) KST coalition formation approach.
“KST(learning)” is Myopic RL having KST as its coalition formation component. The y axis
shows discounted average accumulated reward gathered in 30 runs.

Each coalition formation process consists of 50 negotiation steps, and there are 1000 RL

steps in each one of the 30 experimental runs. The sampling size used was 100 (when sampling

type vectors). The agents hold uniform prior beliefs regarding partners’ types. At the beginning

of each RL step, agents are assumed to lie in singleton coalitions. Singleton, four membered

or five membered coalitions get a reward that is close to zero; two-membered coalitions have

a 5% chance to “Some Decent Cash”, if one of the bandits is not “Good”, “Bad” or “Ugly”

(both members are better off in expectation than being singletons). However, two-membered

coalitions of “Good”, “Bad” or “Ugly” agents have greater (50%) chances to “Some Decent

Cash”. Finally, forming a 3-member coalition will in general not be as rewarding to agents as

forming 2-member coalitions, unless they form the 〈Good, Bad, Ugly〉 coalition and choose to

“Rob the Train”, in which case they have an 85% chance to get “Big Money”.

The results of the experiments are shown in Figure 6.15. Clearly, VPI (using BRE) is

the best method in this domain, achieving reward close to 50% of the maximum possible.

When no learning is involved, the agents do poorly: “KST (no learning)” achieves accumulated

discounted reward that is not greater than 350 after 500 RL steps. However, the Myopic RL
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approach seems to work approximately equally well whether a core-based (BRE) or kernel-

based formation approach is used (with the core-based approach doing a bit better).

6.4.5 Discussion

Preliminary as they may be, the experiments demonstrate the effectiveness of our approach,

verifying that our algorithms improve the learning and decision making capabilities of the

agents in coalition formation domains under type uncertainty and payoff stochasticity, even

when having to deal with dynamic tasks. They also point, as we have already hinted and as

we will further discuss shortly, to VPI being the most reliable of our methods—exhibiting as

it does competitive behaviour in all of the settings tested and usually ranking higher than all

other methods.

However, the experiments presented here do not constitute an exhaustive and systematic

evaluation of our methods. Thus, in this section we outline several key factors (i.e., environ-

ment characteristics or parameters) that are expected to affect the performance of our methods,

provide further interpretation of our results with respect to these factors, and discuss the scala-

bility of our methods and their expected behaviour in more realistic scenarios.

A first factor expected to have an impact on the performance of any automated coalition

formation method is the problem size, determined by the number of participating agents and

the number of possible agent types. As these numbers grow, the number of computations re-

quired by the agents increases,9 and so does the importance of any approximations or sampling

methods used. An increased problem size is expected to put an increased computational strain

particularly to any (one-step or multi-step) lookahead method used, since lookahead methods

explicitly attempt the evaluation of future belief states, the number of which grows exponen-

tially with the problem size. (We will return to this issue later in this section.) In contrast,

VPI, Myopic and MAP are far less affected by this factor, since they do not attempt to evalu-

ate successor belief states. Our results point to VPI as being the most robust of the methods

against problems incurred by increased problem size: this can be deduced by the results re-

garding the 10 agents/10 types environments, presented in Figures 6.7 and 6.8, and Table 6.6.

We can see there that VPI tops all other methods in terms of both discounted and undiscounted

accumulated rewards.

However, we believe that the dominance of VPI in the 10-agent settings was basically due

9In addition, an increased number of agents may lead to more potential costs and bottlenecks, derived by the
increased communication needs of the participating agents.
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to another factor (which, as we will explain in a while, can also be related to the problem

size) affecting the agents’ reasoning: the discriminative power of the transition—and, thus, the

reward—model. Simply put, a discriminative (or ”information-rich”) reward model allows an

agent to easily differentiate between different types participating in a coalition by observing the

results of coalitional actions. This factor is set to have a significant impact on the performance

of methods not using sequential reasoning, such as MAP and Myopic. This is because these

methods make assumptions that are myopic—and, in the case of MAP, the method’s success

relies on the agent making the correct “guess” about the actual type of the potential partners

(given his beliefs, of course). For example, MAP agents did particularly well in the 5-agent

settings (Figures 6.5 and 6.6), when the reward model was quite informative regarding the value

of coalitions and the types of their members (i.e., it was not very difficult to infer which specific

types were present in a coalition given the reward received following an action). When this

was not anymore the case so much (Figures 6.7 and 6.8) or at all (Figures 6.10 and 6.12), MAP

agents did not do as well, or failed completely. Naturally, it is not very likely that the transition

and reward model of realistic environments will be highly informative; we will discuss this

issue in a greater length shortly.

A further indication of the importance of the transition and reward model used is the fact

that the agents can do well over time if discriminative (i.e. information-rich) transition models

and reward signals are used in conjunction even with misinformed priors. Examples of this

are shown in several occassions in our figures depicting discounted reward and in the tables

describing average per step reward, with several “misinformed” agents doing better than the

ones using uniform priors. We attribute this to the fact that the transition model and reward

signal used in the experiments was quite informative regarding the quality of coalitions, en-

abling agents in many cases to discover the unrewarding parts of the coalition structure space

earlier in the “misinformed” case: the information one gets by encountering a highly unex-

pected outcome (given the discriminative rewards model) is stronger than the one acquired

when operating under uniform beliefs (in which case more exploration is required in order to

resolve one’s doubts).10 Thus, an information-rich reward model can help an agent overcome

the difficulties posed by a misinformed prior.

Another factor that is expected to have an impact on the performance of our methods is

10To make this point clearer, if agent A (mistakenly) believes that agent B is a great carpenter, he will try
to interact with him early on. If the interaction is unrewarding, then agent A’s initial beliefs will be promptly
invalidated (given the informative reward model), and agent A will (early on) decide that he should refrain from
interacting with B in the future.
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the underlying negotiation process used, and more specifically whether full negotiations or

one-step proposals are assumed. As we saw in our experiments (noticing the magnitude of

difference in the amount of reward gathered by FN and OSP agents in Figures 6.5, 6.6, 6.7

and 6.8), FN tends to have a positive impact on the performance since it allows the agents the

time to reach more stable configurations that are to a greater extent the product of “collective

consensus”, and for this reason closer to the truly rewarding states. (As we noted while pre-

senting our experiments, the more exploratory nature of OSP agents is made apparent when

observing the wider error bars appearing in figures showing OSP agent results.)

The validity of the common prior assumption, as well as the accuracy of the information

carried by the agents’ priors are additional factors that affect performance. Clearly, informative

priors can help alleviate the drawbacks of using a myopic approach, rather than one that takes

sequential behaviour into account.

One other factor that could play a role in determining the success of some of our methods

is the amount of computational power at hand. As already discussed, any lookahead method,

such as OSLA and VPI-over-OSLA, has increased computational needs. It is not very likely

that these needs can be satisfied in a realistic automated coalition formation environment re-

quiring the timely computation of coalitional decisions. In contrast to lookahead methods, the

VPI method is not a computationally intensive one, since it does not require the evaluation

of successor belief states and the calculation of the relevant probabilities for reaching future

agreements. The MAP and Myopic methods are not computationally intensive either, but, as

we will see in some detail shortly, they are themselves not very appropriate for realistic envi-

ronments. Nevertheless, if enough computational resources are at hand, then using a multi-step

lookahead method is most probably the best choice for an agent, as such a method is expected

to maximize the accuracy of the sequential value calculations (subject to appropriate sampling

size, which is in turn subject to computational power available).11

On a related note, one way to improve the performance of our lookahead algorithms is

improving the accuracy of the computation of the Pr(C ′, β, dC′ |B′
i) probabilities for reaching

agreements in future belief states. This could, for example, be done by calculating the steady-

state distribution of the Markov chain describing the underlying negotiation process. However,

as noted earlier in this chapter, several concessions should be made (in the form of assumptions)

for this calculation to be feasible: common knowledge of priors should be assumed, along with

11Naturally, the more computational power at hand, the more lookahead steps can be used, and the more samples
of successor belief states can be evaluated. Thus, experimenting with different sample sizes for successor belief
states could inform us of the scaling potential of a given k-step lookahead method.
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complete observability of the actions of all coalitions and their resulting stochastic outcomes.

However, we envision our approach and algorithms to be used in realistic and complex task

allocation environments, such as environments requiring the formation of coalitions to provide

services in the computational grid [PTJ+05], most probably under specific time constraints not

allowing for intensive computation [SK98]. Clearly, lookahead approaches with intense com-

putational needs are not well-suited for such environments; and assumptions such as the ones

mentioned above cannot be realistically expected to hold in open and distributed environments.

Further, realistic systems with great numbers of agents of many possible types (such as vir-

tual entities probably located in remote regions of the computational grid) make it unlikely that

the agents possess prior information that is accurate and informative; it is also unlikely in such

environments that the transition and reward model provided is highly discriminative: Firstly,

it is natural that in any such environment, populated by many different agents possessing a

variety of capabilities and resources, there exists a multitude of coalitions that can have the

same potential (i.e., similar coalitional values) while at the same time having widely varying

member type vectors. Secondly, in environments like these it is conceivable that high value

(or any value at all) is derived by participation in large coalitions (since complex tasks require

a variety of skills), but the bigger a coalition, the more difficult it is to associate a particular

member with a particular skill (and, in the likely absense of valuable small coalitions that can

be used as “stepping stones” to derive knowledge, agents will find it hard to identify the types

of potential partners with some certainty). As discussed above, and as seen in our experiments,

the Myopic or MAP agents’ reasoning would be negatively affected in such situations.12 In

contrast, VPI is a method that is expected to be far more robust in such situations, balancing as

it does value of information with current expectations, without rushing to myopic conclusions

(such as assigning to an agent the type currently most probable, as MAP does) that will most

probably prove to be unjustified in such environments. Therefore, it is expected that VPI will

have an advantage to other methods in most realistic environments.

We will now discuss existing approaches related to our work, demonstrating further the

flexibility and generality of our framework and algorithms in the process.

12One additional factor expected to blur the picture in realistic environments, is the fact that it may not be able
to guarantee that all agents will in fact allocate all of their available resources (or, even those promised to allocate)
to a problem, and this would definitely affect the coalitional reward (since the resources used should in fact be,
at least partly, determining the type of the agents). Such behaviour could emerge for a variety of reasons: agents
may be trying to cheat, may not be rational, or, simply, they may be experiencing technical problems or facing a
sudden need to allocate resources elsewhere.
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6.5 Related Work

Much of the coalition formation related work done in AI is motivated by the need to serve

tasks requiring the utilization of various resources found among a collection of agents. This

is because involving all available agents in a detailed coordination/negotiation process (as, for

example, is done in [SL04] and elsewhere), can seriously limit the scalability of the system. It

is preferable to first form a coalition that has enough capabilities and resources to undertake

the given common problem. Incidentally, notice that the concept of “resources” can be readily

captured by our model, since resources can be thought of as determining (at least partly) the

capabilities of the agents (and thus determining their type and coalitional values).

In this section we review some related articles, originating from both the AI and the game

theory communities. Where appropriate, we highlight their differences to our work, and we

provide a brief discussion to further compare our approach to others.

Shehory and Kraus [SK98] present coalition formation algorithms which take into account

the capabilities of the various agents. However, the agents rely on information communicated

to them by their potential partners in order to form their initial estimation of others’ capabilities.

In addition, [SK98] does not deal with payoff allocation issues. The same authors, however, do

address payoff allocation issues in [SK99]. There, they present two coalition formation algo-

rithms to be used by self-interested agents in non-superadditive environments. The algorithms

deal with expected payoff allocation, and the coalition formation mechanisms used are based

on the kernel stability concept. However, information about the capabilities and resources of

others is again obtained via communication. This is the case also for the approach of Shehory,

Sycara and Zheng presented in [SSJ97], which utilizes coalition formation algorithms in order

to achieve collaboration of agents within the RETSINA framework, so that tasks of common

interest are executed successfully. This work focuses on serving the needs of the team (i.e., it

deals with the social welfare question), and does not deal with payoff allocation issues.

As discussed in the previous chapter, and also in the experiments section above, Kraus,

Shehory and Taase [KST03, KST04] proposed a heuristic method to deal with coalition forma-

tion in the “Request for Proposal” domain, under a restricted form coalitional value uncertainty.

Again, the focus of their work is on social-welfare maximization rather than individual rational-

ity. Furthermore, no learning is involved, since they do not tackle iterative coalition formation:

a formed coalition “walks away” from negotiations and it cannot be decomposed.

Campos and Willmott on the other hand, do bring iterative coalition formation into the

picture in [MCW04]. They attempt to tackle “iterative coalition games” that may involve up
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to 100 agents that may possess different abilities that will collectively enable coalitions to

fullfill a task which does not change over time. The agents are initially assigned to coalitions

randomly, and they do not concern themselves with the payoff allocation problem; instead,

they use several pre-described strategies for choosing their coalition formation moves, based

essentially on whether their current coalition is a winning coalition or not over several rounds

of play. Those limitations make the approach basically static, and there is no attempt to employ

learning to facilitate coalition formation.

In contrast, Abdallah and Lesser [AL04] utilize reinforcement learning in their approach

to “organization-based coalition formation”. They assume an underlying organization to guide

the coalition formation process, and Q-learning is employed in order to optimize the decisions

of coalition managers, who try to assess communication or action-processing costs. However,

the agents involved in this setting are assumed to be cooperative, and there is no attempt to solve

the allocation problem. Furthermore, the managers are assumed to possess full knowledge of

their “children” agents’ capabilities.

Another piece of work worth mentioning here is a paper by Banerjee and Sen [BS00],

which does deal with uncertainty regarding members’ payoffs deriving from entering a coali-

tion, even though the authors do not concern themselves with the process of coalition formation

or payoffs’ allocation, but rather just with the problem of “coalition selection”: an agent has

some imperfect summary information on anticipated payoff from joining a coalition, and has to

choose one coalition over another after a fixed number of allowed interactions with them. This

“summary information” is provided by a payoff-structure encoding in the form of a multino-

mial distribution over possible payoffs for joining the coalition. The proposed decision making

mechanism for choosing a coalition makes use of this distribution, and also employs an arbi-

tration mechanism from voting theory in order to resolve ties. In the case of limited allowed

interactions, the proposed mechanism notably outperforms the maximization of expected utility

mechanism in terms of selecting the most beneficial coalition. If the interactions allowed are

infinite, however, the former mechanism reduces to the latter.

Finally, Blankenburg et al. [BDR+05] have recently implemented a coalition formation

process that allows the agents to progressively update trust values regarding others, by com-

municating to each other their private estimates regarding task costs and coalition valuations.

They use encryption-based techniques and developed a payment protocol that ensures that

the agents have the incentive to be truthful when reporting their valuations. However, the pro-

posed mechanism involves extensive inter-agent communication, and its effectiveness seems to

rely on computing the optimal coalition structures and kernel stable solutions—which involves
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exponential complexities. In any case, our approach can easily incorporate the mechanism

proposed in this work as the internal coalition formation “stage” of the larger RL process.

In distinction to some of the methods mentioned here (e.g., [KST03, KST04, MCW04]),

the agents in our framework—given our proposed Bayesian model of Chapter 4—have the

ability not only to dynamically choose the tasks they wish to deal with, but also to choose the

proper way (action) to deal with them. The incorporation of task execution in our model can be

readily achieved by simply viewing the tasks as entailing the use of specific action sets: Tasks

can be thought of as entailing (triggering the existence of) certain action sets (which define

actions that need to be executed in order for the tasks to be accomplished). Therefore, we can

implicitly abstract away tasks, considering them as being equivalent to action sets. In other

words, the choice of an action can be thought of as being made in order to serve a task, and the

outcome state implicitly corresponds to the resulting quality of the attempt to serve a task.

Finally, we note that our approach potentially enables the agents to form the most suitable

coalitions for a new problem “online”—in the sense that knowledge acquired during executing

one task is readily “transferable” to another through the estimation of the types (capabilities)

of partners. Thus, the agents do not have to experience dealing with a new specific problem

for some time period before deciding on ways to attack it. Instead, they can implicitly rank

the possible choices and solutions (coalition partners’ choices and coalition action choices) for

dealing with the specific problem immediately when it appears (given their past experiences

and their beliefs about other agents capabilities).

6.6 Conclusions

In this chapter we proposed a Bayesian MARL framework for (repeated) coalition formation

under uncertainty. The framework enables the agents to improve their decision-making abili-

ties through experience gained by repeated interaction with others, and the observation of the

effects of coalitional actions. The agents in our model maintain and update beliefs about the

types of others, and become increasingly able to make sequentially rational decisions that re-

flect their interests—regarding both potential coalition formation activities on their part, and

potential choice of actions on behalf of their formed coalitions. We made use of a POMDP

formulation, which enables the agents to assess the long-term value of coalition formation de-

cisions, including the value of potential collective actions. Our formulation enables the agents

to deal with uncertainty regarding both the types of others and the outcomes of coalitional ac-

tions, and to choose actions and coalitions not only for their immediate value, but also for their
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value of information.

Our RL framework is a flexible one—being able to accomodate any underlying negotiation

process, being able to incorporate prior beliefs, and being independent of the requirement of

convergence to a specific stability concept. It is a generic framework, that allows the agents

to dynamically form coalitions, serve tasks and transfer knowledge among them. Critically,

our framework enables the agents to weigh their need to explore the abilities of their potential

partners with their need to exploit knowledge acquired so far.

Our experiments verify the effectiveness of our approach, and show that our Bayesian coali-

tional VPI method, in particular, is the most successful of our methods. It consistently ranks

high in all experimental settings, being successful in facilitating the agents’ sequential decision

making, and improving their ability to transfer knowledge among different tasks. In addition,

VPI is expected to be a method well-suited for environments more realistic than the ones ex-

amined in our experiments.



Chapter 7

Conclusions

Sequential decision making under uncertainty is always a challenge for rational autonomous

agents populating a multiagent environment. Any such agent inevitably faces the task to find

the right balance between exploring in order to learn and acquire useful information, and ex-

ploiting current information regarding the environment and other agents present. Moreover,

when it comes to forming teams or coalitions to tackle an underlying problem, agents may be

tempted to abandon formed coalitions in search for more rewarding ones; this raises the in-

teresting question of finding coalition structures that are stable, and ways to converge to such

structures (if so desired). Last but not least, having the ability to bargain effectively (i.e., taking

profitable sequential bargaining decisions) under uncertainty is an issue of utmost importance

to any rational agent participating in negotiation scenarios of any sort.

In the work presented in this dissertation, we have combined (multiagent) reinforcement

learning and game theoretic ideas to tackle the issues above. We adopted a principled, Bayesian

framework in order to deal with the agents’ uncertainty regarding the environment and the capa-

bilities or the strategies of others. Our work resulted in several contributions, both theoretical

and algorithmic/practical, described in detail in the chapters of this dissertation. We note in

particular that, in many cases, our work was the first to address the problem of uncertainty in

coalition formation, and to the best of our knowledge there exists no other approach to date en-

abling agents to take into account beliefs about the types (or capabilities) of others in coalition

formation scenarios.

In Section 7.1 we provide a critical summary of our dissertation. We then proceed in

Section 7.2 to identify problems of interest that could form the basis for future work, in relation

to the work described in this thesis.

212
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7.1 Summary

Throughout the main chapters (Chapters 3, 4, 5 and 6) of this thesis, we (a) formally described

our approach and defined relevant concepts and algorithms, (b) presented our theoretical results

and proved any relevant propositions (in chapters where this was required), and (c) provided

experimental evaluation of our approach and the performance of our algorithms as appropriate.

In summary, in Chapter 3 we dealt with the generalized exploration-exploitation problem

in MARL in the context of stochastic games. We described a generic Bayesian approach to

MARL, allowing agents to explicitly reason about their uncertainty regarding both the under-

lying domain and the strategies of their counterparts. We provided a formulation that provides

for an optimal solution to the multiagent exploration-exploitation problem; however, the com-

putational intractability of the solution forces one to make several modeling assumptions to

help approximate this solution. Thus, we developed two heuristic algorithms for Bayesian

exploration in MARL; though these incorporate several assumptions (such as an assumption

of independence of the model parameters) they are well-founded on the Bayesian optimal so-

lution of the problem. Our algorithms incorporate and update fictitious play beliefs to model

opponents; this is a simple opponent modeling technique, but adequate for the class of repeated

games we studied in that chapter. Nevertheless, more work and experimentation has to be done

in order to determine the degree of the burden that our assumptions impose on the accuracy

of the solutions provided by our algorithms—especially in environments more complex than

the ones tested. Also, though one can never fully do away with approximations and modeling

assumptions—indeed, possessing and maintaining opponent and environment models is an in-

tegral part of the Bayesian solution—there is always room for the development of better related

models: models that will be both more accurate and also more computationally efficient. We

outline some thoughts on how to achieve this in the next section.

In Chapter 4, we provided a Bayesian cooperative approach to coalition formation under

uncertainty, dealing mainly with the question of coalitional stability under uncertainty. We pre-

sented a Bayesian coalition formation model that enables the agents to tackle type uncertainty

(and thus resulting in gains in terms of reusability of knowledge regarding partners), and ac-

comodates action-related uncertainty as well. We introduced the concept of the Bayesian core

(BC), presenting three different variants of it, and discussed its properties, presenting relevant

theoretical results and algorithms (constituting dynamic coalition formation processes) with

some convergence to BC properties. We believe that the Bayesian core is a natural stability

concept for coalition formation under uncertainty, taking into account as it does the beliefs of
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the agents regarding their potential partners. Further, by establishing a process, the BRE, that

is guaranteed to converge to the (strong) Bayesian core, we provided an automated way to form

stable coalitions. Of course, as was discussed in Chapter 4, one could investigate ways to relax

some of the assumptions used in BRE to ensure convergence. Also, extending the concept of

the Bayesian core in various ways is in our immediate interests—we discuss this issue more in

the next section.

In Chapter 5, we dealt with non-cooperative aspects of coalition formation, focusing on the

study of the problem of discounted coalitional bargaining. We defined Bayesian coalitional

bargaining games (BCBGs), described their PBE equilibrium solution, and presented a heuris-

tic algorithm that (a) is empirically shown to resemble optimal sequential bargaining behaviour

(but without any bounds’ guarantees), and (b) can be combined with belief updating following

the execution of coalitional actions, in RL fashion. Admittedly, the computational complexity

of the heuristic can be hard to tackle; however, in the next section we outline ways to do so.

We also defined the sequential equilibrium under fixed beliefs (SEFB), and we were the first

to relate a non-cooperative coalition formation solution concept (the SEFB) with a cooperative

one (the BC)—even though this was done under specific assumptions (i.e., the use of fixed

beliefs, and the assumption of order independent equilibria). Nevertheless, as we discussed in

Chapter 5 and as we further discuss in the next section, these assumptions are difficult to do

away with, partly because it is not very plausible to devise a coalitional stability concept that

takes the dynamic aspects of the formation process into account.

Finally, in Chapter 6 we presented a generic Bayesian MARL framework for optimal re-

peated coalition formation under uncertainty. Our approach enables coalition participants to

make informed, sequentially rational decisions (regarding both the bargaining and the coali-

tional actions to take, and taking into account the value of information of the various actions),

balancing exploration of actions with exploitation of knowledge in repeated coalition forma-

tion scenarios. Our framework can in principle accomodate any underlying negotiation process,

and enables the agents to dynamically form coalitions and serve tasks, also allowing them to

transfer knowledge gained in the past to different problems to be faced in the future.

The flexibility of the framework is even more apparent when considering settings where

certain structural properties are not (well, or at all) defined. There are several such properties

in all aspects of the RL and coalitional model, including the type set from which the agent

types are drawn, the transition and reward model, the availability of resources, and so on. The

Bayesian approach still enables the agents to alleviate the problems through the use of priors:

for example, even if the types of agents are not known in advance, Bayesian agents could them-
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selves assume the existence of some uniform prior over some arbitrary type set, associate this

with an unknown transition model, and then attempt to learn both simultaneously by observing

rewards. Though understandably hard, this is not infeasible. We did not consider this possibil-

ity in this thesis since in real-world coalition formation settings we can in many cases expect

to have some degree of information regarding the set of types and transition/reward models.

However, dealing with uncertainty regarding such structural properties is a challenging but

interesting problem.1

We presented and evaluated several RL algorithms for use in this framework, and demon-

strated how these algorithms can be combined with the coalition formation processes we devel-

oped in Chapter 4. Our experiments demonstrate the effectiveness of our approach in improv-

ing the agents’ learning and decision making capabilities in coalition formation domains under

type uncertainty and payoff stochasticity—and which may even require the transfer of knowl-

edge among different, dynamic tasks. We provided a comparative evaluation of the behaviour

and the discussed the properties of our algorithms—including their scalability potential—given

their performance in our experimental settings. In broad lines, we reached the conclusion that

our Bayesian VPI technique is a quite robust method, expected to exhibit competitive perfor-

mance even when computational resourses are scarce, the stochasticity is high, or the initial

information of the agents is poor or misleading.2 Of course, it is clear that more extensive

experimentation is required for a full understanding of the impact that potentially increased

computational requirements, in conjunction with the inherent algorithmic properties, may have

on performance. To this end, in the next section we propose ways to extend our framework and

test our approach in more complicated and challenging environments.

To conclude, we believe that the work described in this thesis can find application in do-

mains where sequential decision making and team or coalition formation under uncertainty

are employed, such as multiagent coordination and planning, formation of robotic teams, e-

commerce and e-marketplaces, wireless and/or sensor networks, and the computational grid.

We now describe possible extensions of our work, along with open problems we have identified

1On a somewhat related note, and also in relation with opponent modeling in MARL, the agents could try—by
making appropriate observations and assumptions—to assess the possibility of taking advantage of suboptimal
bargaining behaviour of potential partners during the coalition formation stage. For instance, an agent that cal-
culates a bargaining equilibrium (or maintains a distribution over equilibria, assuming uncertainty regarding the
reward model), while at the same time having—through any means—strong beliefs regarding the type or avail-
ability of resources of other agents, may be able to observe irrational, suboptimal or static (e.g., “always ask for
10%”) behaviour of others and exploit them during negotiations.

2This is also true for our Bayesian VPI technique developed for use in stochastic games’ environments (Chap-
ter 3): BVPI is expected to scale better than BOL when computational resources are scarce.
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as naturally presenting themselves in some of the application domains mentioned above.

7.2 Future Work and Open Problems

Firstly, it would be interesting to apply our Chapter 3 Bayesian MARL algorithms to more com-

plex environments, containing more than 2, and possibly heterogeneous agents, as it would be

interesting to test our algorithms in scenarios with antagonistic rather than cooperating agents.

For example, we could try our model in a zero-sum game of two agents playing soccer, as

in [BV01b, Lit94]; we could also try our approach with N > 2 soccer-playing agents.

Further, as explained in Section 3.5.3, the use of more efficient sampling techniques is

required for our methods to scale. More work on computational approximations to solving

the belief state MDP would also be desirable. The use of function approximation meth-

ods [KLM96, Duf02] in order to deal with large state spaces could be explored. When dealing

with very large problems, focusing the attention of the agents to smaller regions (to subsets

of opponents or successor states of interest) could be important. Related techniques and ideas

found in the literature of DEC-MDPs [BZI00], could be of value, as could perhaps be exploring

the use of MDPs with a first-order structure [BRP01, SB06].

In relation to dealing with more realistic, larger scale problems, another interesting di-

rection could be to extend our Bayesian RL model to include reasoning about the “cost of

computation” [Hor90, RW91] as part of the inferential process. An agent using an approxi-

mate method to do inference could be willing to specify, in the same units as the reward/utility

are measured, the cost of improving that approximation by using more computation. The com-

putation thus would have a value, arising as the expected gains or losses inflicted by its use. It

would be interesting to incorporate this value in our framework.

Moreover, it would be interesting to explore the possibility to combine Bayesian learning

with more sophisticated opponent modeling techniques, perhaps focusing on exploiting oppo-

nents with limited capabilities. Apart from using simple, fictitious play opponent models, one

could try more elaborate opponent modeling techniques, such as FSMs for the effective de-

tection of patterns of play [CM96]—and use computationally tractable means of representing

and reasoning with distributions over specific classes of FSMs representing strategy models.

Specifically, the detection of patterns of play or specific events would lead to the update of

distributions over the potential strategies of the opponents.3

3This is essentially a “conditional Bayesian learning” approach [FL98].
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To give a simple example, consider FSMs representing opponent strategies as being made

up from combinations of specific patterns of play. Assuming a specific number of such poten-

tial patterns of play, an agent could use Dirichlet priors over sequences of actions (correspond-

ing to the patterns of play triggering opponent actions) in order to update beliefs regarding

the FSM class used by the opponent. In some more detail, a set of parameters θ could be

used to describe the agent’s prior over FSMs, and construct a Bayesian network describing

the dependence of actions on the FSM used by an opponent (and the dependence of observing

action at+1 at time t + 1 on the action bt having been executed at time t etc.).4 Then, Dirichlet

updates could be used to compute the posterior Pr(θ|at) given the observation of action at

(corresponding to an FSM state) at time t. This posterior belief state could then be used by the

agent to derive the probability of observing an opponent performing any action at at any time

step, and then use this probability in his sequential value calculations.

Furthermore, on a somewhat related note, we would be interested in applying our Bayesian

MARL ideas in the context of computational trust in e-marketplaces. There has recently been

interesting work resulting in the suggestion of principled, Bayesian ways by which consumer

agents update their degree of trust towards service-providing agents, the reputation of which is

disseminated to consumers by existing reputation sources [RRRJ07, TJJL06, RPC06]. How-

ever, existing work has not dealt with the question of the buyers trying to make sequentially

rational decisions on whom (which service provider and which reputation source) to interact

with over a specified horizon of interactions. Given that buyers in such a setting can also act

as reputation sources, this sequential aspect makes this problem a non-trivial multiagent one,

since interacting agents—that model others, realizing that they are being modeled at the same

time—should adopt non-myopic strategies that take the strategies of opponents into account.

We believe that our Bayesian MARL formulation and algorithms can be useful in this setting,

as it could allow agents to make decisions to balance exploitation of current knowledge with

exploration of the space of potential providers and reputation sources.

There is a multitude of interesting questions that can be raised in such a setting: What is

the most proper way for one to update his degree of trust towards the service providers? How

does one update his degree of trust towards the reputation sources? How should one combine

one’s own valuations and information with information coming from other sources, in the first

place? When does the bias created by existing information, coming from various sources, begin

to have an impact on the decisions of agents? Thus, the space for research in this setting is

4One could also try to capture correlations between the actions of different opponents by using a similar
network.



CHAPTER 7. CONCLUSIONS 218

rich—but a proper formulation of the problem is needed, along with a proper choice of belief

priors to use and independence assumptions to make, so as to guarantee the easy update of

distributions. This can clearly be a challenging exercise.

Regarding coalition formation, there exists a plethora of research questions that are worth

pursuing. First, it would be interesting to find ways to perhaps extend the Bayesian core con-

cept. One idea could be to try to extend the BC to allow meta-reasoning regarding one’s beliefs

about the beliefs of others regarding itself. Further, a related topic could be extending the BC

concept to allow for the dynamics of formation negotiations to be incorporated in the stability

concept. Notice, however, that such extensions could lead to a core concept that would in-

creasingly look like a PBE. If that is the case, then why not define stability as the PBE itself

(or perhaps an order-independent instance of the PBE) in the first place? We do not as yet have

clear answers to these questions.

One related research direction that is certainly worth following is extending the concept

of the Bayesian core, or of the deterministic core even, to cover the possibility of overlapping

coalition formation—i.e., settings in which the agents may simultaneously belong in more than

one coalitions. Overlapping coalition formation is of much value in situations when agents can

allocate different parts of their resources to serve different tasks as members of different coali-

tions simultaneously. To date, there is not much work on overlapping coalition formation, and,

to the best of our knowledge, there exists no attempt to extend the traditional stability concepts

in such settings. Such an extension is not a trivial exercise: unlike traditional coalition forma-

tion settings, where stability depends on the agents having the incentive to abandon coalitions,

in an overlapping coalition formation setting stability has to depend on the agents having in-

centives to participate in different coalition structures (without necessarily abandoning their

coalitions). In this context, the agents have to worry about the payoff they can achieve in the

coalition structure as a whole, rather than the payoff they can achieve in only one coalition.

Nevertheless, we believe there is much room for interesting theoretical research in this setting:

one can define appropriate stability concepts, investigate their properties, and identify algo-

rithms that can converge to stable structures of overlapping coalitions—or at least guarantee

payoffs that are close to the ones achieved in these stable structures.

Even though the extension of the core in overlapping coalitional environments may initially

look conceptually straightforward, it requires taking several careful technical steps, including

proper redefinitions of concepts in this domain. Actually, as a first step towards this research

direction, we believe that we can show that—having defined, in an appropriate non-trivial

manner, an overlapping coalition formation core (OCF-Core) along with the concepts of super-
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additivity and convexity5 for overlapping coalition formation environments—if an overlapping

coalition formation game is convex, then the OCF-Core is non-empty. We are also interested

in defining balancedness for overlapping coalitional games, and relate it to the non-emptiness

of the core.

We also believe that there is much space for work regarding discounted coalitional bargain-

ing. The work described in Chapter 5 of this dissertation refers to bargaining environments

with a discrete bargaining actions’ space; it would be interesting to investigate the problem

assuming a continuous bargaining actions’ space. Further, we believe that it is possible (as

is, of course, important) to improve the scalability of our heuristic bargaining algorithm, and

compare the resulting variants to each other. Such less demanding variants could, for example,

be constructed by having the agents track the belief updates of only a selected few of their

opponents’ types; and there is always room for experimentation with sample complexity when

sampling type vectors.

As mentioned in Chapter 6, it is important to conduct an extensive, principled experimental

evaluation of the Bayesian RL algorithms presented there, examining in more detail the be-

haviour of our algorithms when carefully varying the factors listed in Section 6.4.5 (e.g., the

number of agents, the number of types, the descriptive power of the reward model etc.), and

assessing the algorithms’ scalability. This could be done in complex, realistic multiagent do-

mains, with agents facing demanding task and resource allocation problems—perhaps for the

provision of services by virtual organizations [PTJ+05], which would further require dealing

with the problems at hand in a timely manner [SK98]. Also, as noted in Section 6.4.5, we can

work on improving the approximations inherent in our lookahead algorithms when computing

the probabilities of reaching future agreements. For the accuracy of these calculations to be

improved, however, we would most probably have to make more concessions in terms of as-

sumptions used, such as: a priori knowledge of the negotiations process used, observability of

all coalitions’ actions, common knowledge of priors and observability of all bargaining actions.

For interest, and in order to demonstrate the flexibility of our Bayesian MARL framework

for coalition formation, we would also like to examine the effects of combining the Bayesian

RL algorithms (which were combined in the experiments of Chapter 6 with one of our own

formation algorithms, BRE) with other coalition formation algorithms found in the literature.

Furthermore, we believe that it is easy to extend our framework to accomodate overlapping

coalition formation, since it allows the formation process to be decoupled from the RL process.

5Briefly, a coalitional game is said to be convex if for any set of agents in the game it is more profitable to join
a larger rather than a smaller coalition. All convex coalitional games are trivially superadditive.
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It would also be interesting to extend our framework to accomodate uncertainty regarding any

structural properties (e.g., the set of types), along the lines described in Section 7.1.

Moreover, as we observed in Chapter 6, our Bayesian coalition formation model can be ex-

tended by allowing the probabilistic model for transitioning to the various outcomes to depend

on the current state of the game, such a state consisting of the configuration reached—i.e., the

complete coalition structure and payoffs allocation reached, and the beliefs of the agents. This

would allow for a sequential environment model (an underlying MDP) given a configuration,

allowing for the study of coordination games played among the various coalitions present in

the coalition structure (without the agents regrouping). Essentially, we propose that stages of

coalition formation alternate with stages of coordination games played (and subsequent update

of agents’ beliefs after observing the strategies in the coordination games). Further, the co-

ordination games played among coalitions could themselves depend on the coalition structure

reached as the result of negotiations: if structure CS1 is reached, then a specific coordination

game G1 follows (with the game payoffs depending on the coalitions’ member type vectors);

if structure CS2 is reached, then game G2 is played, and so on. Though this is a conceptually

obvious extension to our model, it is not a trivial one, since now any agent’s sequential decision

making problem should take into account the possibility of different games being played given

different structures reached, along with the possibility of coordination or miscoordination in

any such game—given the capabilities and expected strategies of other players.

We note that a setting like this bears clear resemblances to natural scenarios requiring the

continuous regrouping of teams of agents in need to coordinate in a variety of ways within ever-

changing dynamic environments. This is the case in the Robocup Rescue competition [KT01],

for example, where agents have to coordinate in order to combat the effects of major natural

disasters; over time, the agents (autonomous rescue vehicles with different capabilities, moving

and operating in a city hit by a disaster) have to regroup and tackle a multitude of novel coor-

dination problems, in the face of new information. Agents operating in such a setting should

be able to (a) decide which partners to cooperate with, (b) decide which coordination problem

to tackle6 and (c) choose a strategy to help them address a specific coordination problem.

Finally, we believe that there is room for interesting work in the intersection of coalition

formation and mechanism design.7 Coalition formation could be viewed as a decentralized

6For example, the agents have to decide which of the several victims trapped in buildings collapsed by an
earthquake to try and save, or which parts of the city to protect from the spread of fires.

7Mechanism design is a subfield of game theory and microeconomics that studies the design of protocols
(mechanisms) for non-cooperative environments, that attempt to implement the “rules of a game” in such a way
that a system-wide goal (described by a social choice function that selects the optimal outcome given agent types)
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mechanism design tool: via coalition formation, agents could be allowed to join forces (i.e.,

attempt to “collude”) as they find appropriate given their beliefs, when participating in auctions

or reverse auctions for the allocation of goods and services. One could perhaps apply this

tool in the context of routing in networks or in the computational grid [MQ05, PTJ+05]. We

believe that several interesting questions exist in this context: Would the behaviour of Bayesian

agents in coalition formation scenarios resemble behaviour that could perhaps be enforced

through centralized mechanisms (which can possess any of the usual desirable properties, such

as incentive compatibility8 [DJP03])? If not, how close to that behaviour would it be? Does it

come close to resembling the play of any kind of equilibria? What is the difference between the

earnings of the agents when using a decentralized coalition formation approach and when not?

Similarly, what is the impact of using a decentralized approach to the system and the utility of

the designer? What are the costs (or benefits) arising from collusion under uncertainty?9 In

brief, what is the price of anarchy [KP99] in this case? We believe that these are only some of

the many related research questions worthy to be asked, and, hopefully, to be answered.

is satisfied. A mechanism, thus, defines the set of strategies available to the agents and the method used to select
the final outcome—in order to satisfy the system-wide goal. An auction is an example of a mechanism.

8Briefly, a mechanism is incentive compatible if the equilibrium strategy profile has every agent reporting its
true preferences to the mechanism.

9We are aware of only one piece of work that examines similar issues—but without assuming (or examining
the properties of) a coalition formation model per se: Leyton-Brown et al.’s work on “Bidding clubs in first-price
auctions”[LBST02].
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Appendix A

Non-convexity of the PBE-calculating

program

A convex optimization problem is a constrained optimization problem of the form

minimize M(~x)

subject to: gj(~x) ≥ 0, j = 1, . . . , m

where M(~x) and −gj(~x) are convex functions of ~x, with ~x = (x1, . . . , xn)T representing

the problem’s n variables [BV04, JKP72].

Therefore, to prove that the constraint satisfaction program describing the PBE solution of

our problem is not convex, it suffices to show that one of the constraints in the program is a

non-convex function.

Proposition 8. The constraint satisfaction program describing the PBE solution for a coali-

tional bargaining game is non-convex.

Proof: We will prove the theorem for the 2-agents, 2 types per agent, bargaining case.

Assume agents A and B, with possible types t1A, t2A and t1B, t2B respectively. For simplicity,

assume also that there exists only one possible coalitional action per coalition.

Consider the simple, last-round, responder-related constraint (for responder, say, B, of type

tB):

σ
〈yA,yB〉|µB

tB (y) · (yB(µB(t1A|〈yA, yB〉)V {t1A, tB} + µB(t2A|〈yA, yB〉)V {t2A, tB}))

+(1 − σ
〈yA,yB〉|µB

tB (y)) · V {tB}

≥ V {tB}
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where σ
〈yA,yB〉|µB

tB (y) is a variable denoting the probability that B says yes to proposal 〈yA, yB〉

giving him share yB and giving A share yA, when his beliefs regarding the type of A (given

that A proposed 〈yA, yB〉) are µB(t1A|〈yA, yB〉 and µB(t2A|〈yA, yB〉).

This is a constraint of the form:

g(~u) = x(λ(yv1 + zv2)) + (1 − x)v3 − v3 ≥ 0

where ~u = (x, y, z)T and v1, v2, v3, λ are all constants. To show that the program is not convex,

it suffices to show that f(~u) = −g(~u) is not convex.

In other words, it suffices to show that

f(~u) = −(x(λ(yv1 + zv2)) + (1 − x)v3 − v3)

= −(xyλv1 + xzλv2 − xv3)

= −xyV1 − xzV2 + xV3

where V1 = λv1, V2 = λv2 and V3 = v3, is not convex.

To show this, it suffices to show that not all the principal minors1 of f(~u)’s Hessian matrix,

H(~u), are non-negative (as this will imply that H(~u) is not a “positive semidefinite” symmetric

matrix— it is known that f(~u) is convex if and only if H(~u) is positive semidefinite).

The Hessian H(~u) of f(~u) = −xyV1 − xzV2 + xV3 is calculated to be:

H(~u) =




0 −V1 −V2

−V1 0 0

−V2 0 0




Calculating the principal minors of H(~u), we observe that they are not all non-negative.

For example, the second-order leading principal minor of the Hessian is strictly negative:

∣∣∣∣∣
0 −V1

−V1 0

∣∣∣∣∣ = −V 2
1 < 0

Therefore, the Hessian is not positive semidefinite, which means that f(~u) is not convex,

and therefore the program cannot be written as a convex optimization problem for the 2-agent

1The k-th order principal minors of an n× n symmetric matrix A are the determinants of the k × k matrices
obtained by deleting n− k rows and the corresponding n− k columns of A (where k = 1, . . . , n).
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bargaining case.

The proof for any “N > 2 agents–more than 2 types per agent” case is similar. 2



Appendix B

Experiments’ setup tables

Agent a Agent b Agent c
Q({a}, α) 120 150 100
Q({a}, β) 110 140 90
Q({a}, γ) 100 130 80
Q({b}, α) 210 200 180
Q({b}, β) 200 190 170
Q({b}, γ) 190 180 160
Q({c}, α) 380 440 500
Q({c}, β) 370 430 490
Q({c}, γ) 360 420 480
Q({a, b}, α) 1000 980 880
Q({a, b}, β) 990 970 870
Q({a, b}, γ) 980 960 860
Q({a, c}, α) 600 650 700
Q({a, c}, β) 590 640 690
Q({a, c}, γ) 580 630 680
Q({b, c}, α) 220 280 290
Q({b, c}, β) 210 270 280
Q({b, c}, γ) 200 260 270
Q({a, b, c}, α) 650 560 450
Q({a, b, c}, β) 640 550 440
Q({a, b, c}, γ) 630 540 430

Table B.1: Agents’ beliefs regarding Q-values (for experiment mentioned in section 4.6); α, β,
γ denote actions.
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a: “action”; s: “state”; q : quality points; ∗: any;
N : number of coalition members
penalty = N ∗ 0.1 : penalty to discourage employing “cheap” workers
NMT : number of different “major” types present in coalition
SP : small profit state;
AP : average profit state;
LP : large profit state
BFS: bid for small project action;
BFA: bid for average project action;
BFL: bid for large project action

Table B.2: Symbols used in tables describing transition functions (for the first experimental
setting in Chapter 6).
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1-member coal. Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.02
Pr(AP |a = BFA, q) = q ∗ 0.01
Pr(AP |a = BFL, q) = 0
Pr(SP |a, q) = 1 − Pr(AP |a, q)

2-member coal. if NMT < 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.04
Pr(AP |a = BFA, q) = q ∗ 0.02
Pr(AP |a = BFL, q) = 0
Pr(SP |a, q) = 1 − Pr(AP |a, q)

3-member coal. if NMT < 3 then : if NMT = 1 then q = q/3
if NMT = 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.06
Pr(AP |a = BFA, q) = q ∗ 0.02
Pr(AP |a = BFL, q) = q ∗ 0.01
Pr(SP |a, q) = 1 − Pr(AP |a, q)

if NMT = 3 then :Pr(LP |a = BFS, q) = q ∗ 0.01
Pr(LP |a = BFA, q) = q ∗ 0.04
Pr(LP |a = BFL, q) = q ∗ 0.05
Pr(SP |a, q) = (1 − Pr(LP |a, q))/(q + 1)
Pr(AP |a, q) = 1 − Pr(LP |a, q) − Pr(SP |a, q)

4 or 5-member coal. if NMT < 3 then : if NMT = 1 then q = q/3
if NMT = 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.03
Pr(AP |a = BFA, q) = q ∗ 0.05
Pr(AP |a = BFL, q) = q ∗ 0.03
Pr(SP |a, q) = 1 − Pr(AP |a, q)

if NMT = 3 then :Pr(LP |a = BFS, q) = q ∗ 0.01
Pr(LP |a = BFA, q) = q ∗ 0.04
Pr(LP |a = BFL, q) = q ∗ 0.05
Pr(SP |a, q) = (1 − Pr(LP |a, q))/(q + 1)
Pr(AP |a, q) = 1 − Pr(LP |a, q) − Pr(SP |a, q)

Table B.3: Outcome states’ transition function for 5-agents environments (for the first exper-
imental setting in Chapter 6). In all cases, Pr(SP |a, q), Pr(AP |a, q) and Pr(LP |a, q) are
eventually normalized in order to sum to one.
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1 or 2-member coal. As in a 5-agents environment
3-member coal. if NMT < 3 then : if NMT = 1 then q = q/3

if NMT = 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.06
Pr(AP |a = BFA, q) = q ∗ 0.02
Pr(AP |a = BFL, q) = q ∗ 0.01
Pr(SP |a, q) = 1 − Pr(AP |a, q)

if NMT = 3 then :Pr(LP |a = BFS, q) = q ∗ 0.01
Pr(LP |a = BFA, q) = q ∗ 0.04
Pr(LP |a = BFL, q) = q ∗ 0.05
Pr(SP |a, q) = (1 − Pr(LP |a, q))/(q + 1) + penalty
Pr(AP |a, q) = 1 − Pr(LP |a, q) − Pr(SP |a, q)

4,5,6 or 7-member coal. if NMT < 3 then : if NMT = 1 then q = q/3
if NMT = 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.03
Pr(AP |a = BFA, q) = q ∗ 0.05
Pr(AP |a = BFL, q) = q ∗ 0.03
Pr(SP |a, q) = 1 − Pr(AP |a, q)

if NMT = 3 then :Pr(LP |a = BFS, q) = q ∗ 0.01
Pr(LP |a = BFA, q) = q ∗ 0.04
Pr(LP |a = BFL, q) = q ∗ 0.05
Pr(SP |a, q) = (1 − Pr(LP |a, q))/(q + 1) + penalty
Pr(AP |a, q) = 1 − Pr(LP |a, q) − Pr(SP |a, q)

8,9 or 10-member coal. if NMT < 3 then : if NMT = 1 then q = q/3
if NMT = 2 then q = q/2
Pr(LP |a = ∗, q) = 0
Pr(AP |a = BFS, q) = q ∗ 0.035
Pr(AP |a = BFA, q) = q ∗ 0.05
Pr(AP |a = BFL, q) = q ∗ 0.04
Pr(SP |a, q) = 1 − Pr(AP |a, q)

if NMT = 3 then :Pr(LP |a = BFS, q) = q ∗ 0.01
Pr(LP |a = BFA, q) = q ∗ 0.04
Pr(LP |a = BFL, q) = q ∗ 0.05
Pr(SP |a, q) = (1 − Pr(LP |a, q))/(q + 1) + penalty
Pr(AP |a, q) = 1 − Pr(LP |a, q) − Pr(SP |a, q)

Table B.4: Outcome states’ transition function for 10-agents environments (for the first exper-
imental setting in Chapter 6). In all cases, Pr(SP |a, q), Pr(AP |a, q) and Pr(LP |a, q) are
eventually normalized in order to sum to one.


