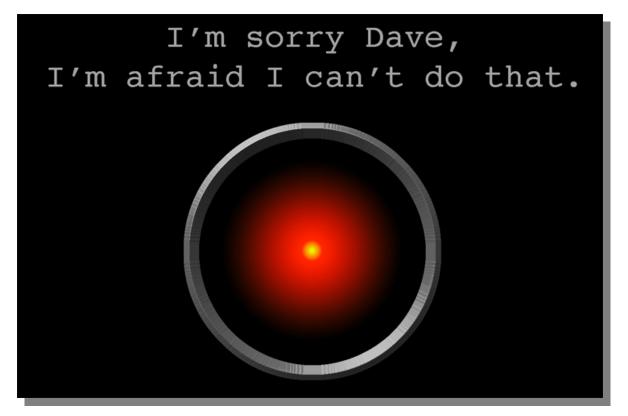
Automatic Identification of Figurative Language


Presented by: Saša Milić

Special thanks to: My supervisor Suzanne Stevenson and my mentor Afsaneh Fazly

June 19, 2013

A Conversant Computer?

(Source: http://www.604republic.com/gocms/)

The Minimal Requirements

"Open the pod bay doors, HAL"

Speech Recognition

Language Understanding

Information Extraction

Inference

Language Generation

Speech Synthesis

"I'm sorry, Dave. I'm afraid I can't do that."

CULTY OF ARTS & SCIENCE

Computational Linguistics (CL)

Understand

- acquisition
- comprehension
 - production

of *human language* from a *computational* perspective Apply focus on *practical outcomes* of modeling human language

Applications of CL

- Grammar and style checking
- Apple's Siri
- Search Engine
- Machine translation

Google Translate : An Informal Experiment

Translating a <u>literal phrase</u>:

Translating a <u>multiword expression</u>:

ACULTY OF ARTS & SCIENCE

Difficulty with Multiword Expressions

- Multiword expression:
 - two or more words that together form a *single unit* of meaning
 - "frying pan"
 - "keep an eye out for"
 - "shoot the breeze"
- overall meaning \neq sum of the meaning of the components

Light Verb Construction (LVC)

A multiword expression (in our case, verb + noun) where the noun determines the primary meaning of the whole

LVC	"give a sigh"	"make a decision"	"take a walk"
Literal	"give a present"	"make a cake"	"take an apple"

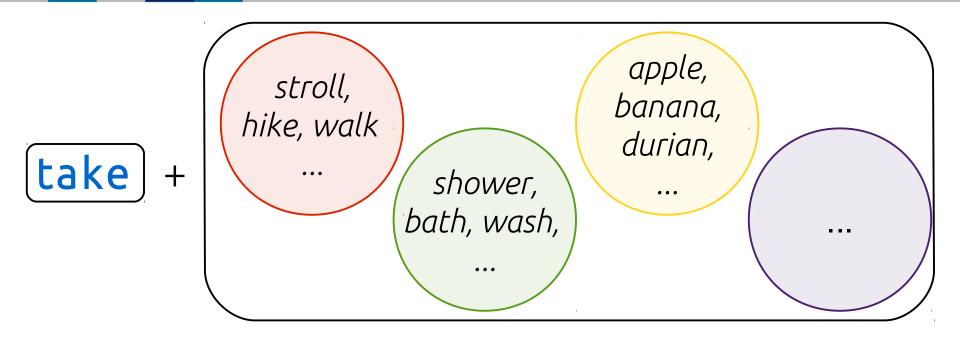
- Again:
 - overall meaning \neq sum of the meaning of the components
- However:
 - the component meanings still contribute something to the overall meaning

Identifying LVCs

- Which of the following is a light verb construction?
 - *He <u>gave</u> a <u>donation</u>.*
 - It took place over there.
 - *He <u>gave</u> her an <u>advantage</u>.*
- Motivates the question: can we do better than a simple binary classification?

A More Appropriate Measure

- Binary decision-making vs graded decision-making
 - "Is this an LVC?" vs "How acceptable is this as an LVC?"
- More formally:
 - What is the probability that some verb + noun combination forms an LVC?
- New measure: Acceptability



Measuring Acceptability

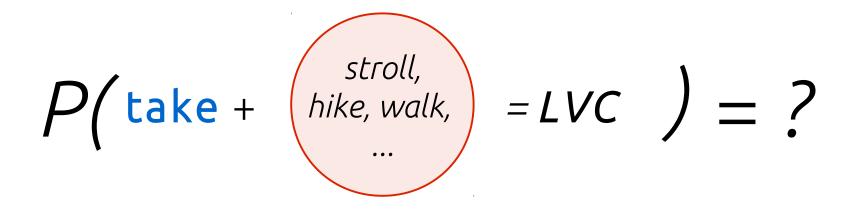
- Linguistic studies suggest that a measure of LVC acceptability should incorporate both frequency and semantic similarity.
- Hypothesis:
 - a novel LV + noun is considered more acceptable if the noun is similar to a noun in a high-frequency LVC
- Example:
 - How acceptable is "<u>take a saunter</u>"?

"take a saunter"

 $C(take) = \{ (0, 0),$

C(v): set of semantic classes of nouns that can occur with verb v

"take a saunter"



P(**n**|**c**): probability that noun **n** belongs to class **c**

"take a saunter"

P_{LVC}(**c**|**v**): probability that class **c** forms acceptable LVCs with **v**

Measuring Acceptability

- Acceptability:
 - A *probabilistic* measure
- Components
 - $-C(\mathbf{v})$
 - P(**n**|**c**)
 - $-\mathsf{P}_{_{\mathrm{LVC}}}(\mathbf{C}|\mathbf{V})$

Estimating Probabilities

- We can't know the true probabilities. So we estimate.
- In order to estimate $P_{ivc}(\mathbf{C}|\mathbf{v})$ we need to know:
 - $-\mathsf{P}_{_{\mathrm{LVC}}}(\mathbf{n}|\mathbf{v})$
 - for all **n** in class **c**
 - Estimate **directly**
 - Why can't we do this for novel LVCs?
 - Estimate indirectly

Estimating Probabilities

- We use a machine learning algorithm to estimate this directly for frequent combinations :
 - $-P_{_{LVC}}(n \mid v)$
- Using ~25 features drawing on linguistic properties of LVCs
 - Examples:
 - frequencies
 - association
 - syntactic behavior

Some Features of LVCs

- We expect the noun and the verb in an LVC to have strong associativity
- We expect LVCs to have a preference for indefinite determiners ("a", "an", …)
 - consider:
 - "make <u>a</u> speech" **vs** "make <u>the</u> speech"
 - Which one occurs more often?
 - ~16 million vs ~2 million Google hits

Evaluation

- Obtain human ratings (on some scale) of LVC acceptability
- Goals:
 - to introduce a more appropriate (*linguistically-motivated*) measure for identifying LVCs
 - to be able to predict LVC acceptability of novel expressions

