
Opportunistic Storage
Maintenance

George Amvrosiadis
Angela Demke Brown

Ashvin Goel

• Tasks that run periodically in the background
e.g., backup and virus scans once a week

• Access large amounts of data
e.g., process all files, scan every block

• Operate in the user or kernel level
e.g., user-level backup, file system garbage collector

What is storage maintenance?

2

• Maintenance tasks offer essential guarantees

• Maintenance provides insurance against disaster
• U.S. immigration unable to process visas for 2 weeks

• Backups disabled during high tourist season

• Hardware failure occurs (Murphy strikes again!)

Guarantee Periodic maintenance task

Reliability Scrubbing, Write Verification

Availability Backup, Data reorganization

Performance Layout optimization

Security Virus scanning

Storage Efficiency Deduplication, Garbage collection

Why perform storage maintenance?

3

• Problem: maintenance tasks can significantly
impact foreground applications (workload)
• Run alongside workload and access lots of data

• Consequence: Increased seeks, cache pollution

• Solution: schedule tasks around workload
• Perform during scheduled downtime

• Perform while device is idle, at low priority

When should maintenance be run?

4
Sufficient idle time is needed to reduce maintenance impact

• Idle time is expensive
• No one wants extended downtime for maintenance

• Consolidation in the cloud reduces idle time

• Maintenance takes too much time
• Full backups performed every 1-4 days

• A 6TB hard drive takes 10 hours to scan

• Too many tasks
• Each task adds to total maintenance I/O

Too little time, too much work

5

• Tasks often access the same data
• E.g., backup and defrag the same file system

• Caching should be able to exploit data reuse

• Problem: cached data gets replaced before reuse
• Each task accesses more data than fits in cache

• Tasks process data independently

Too many tasks

6

• Different processing order: breadth- vs depth-first

• Same processing order, run at different times

Effect of independent processing

Time

Task B f1 f2 f3 f4
…

Task A f1 f2
…

/

f2 dir/

f1

1

2

Task A /

f2 dir/

f1

2

1

Task B

7

Maintenance I/O proportional to number of tasks,
even when tasks access the same data

• Insight: correctness is not tied to processing order
• E.g., backing up file f1 before, or after f2 doesn’t matter

• Adapt order based on other tasks’ accesses

Reducing maintenance I/O

Storage

Application

Virus scanner Backup process

f1 f2 f3
…

f1 f2 f3

f2 f1

f3 f3

f3

8 How can a task determine what’s accessed by other tasks?

• Recently accessed data is cached

• Opportunistically process cached data

Look in the cache!

Storage

Application

Virus scanner Backup process

f1 f2 f3
…

f1 f2 f3

Cache

f1

f1

f3

f3

f3 f3

f2

9 How can a task find out what’s in the OS cache?

f2

• Operating systems cache data at page granularity

• Need to expose which pages are cached

Exposing cache information

Page status Description

Added Added in cache

Removed Removed from cache

Dirtied Dirty bit set

Flushed Dirty bit cleared

• Inode #
• Page offset
• Page status

Page event

10

1) We track changes to the
status of cached pages

3) tasks poll
for events

2) tasks register
interest

 Added
 Removed

Tell me about…

/home

Occurring at…

Application layer

The Duet Framework

Page cache layer

Filesystem layer

Backup task

Defrag task

Duet kernel module

Duet hooks

Page
status

changes

User-level

Kernel

Page
events

Pending
page

events

11 How do tasks use page events?

• Goal: Use events to achieve more efficient order

• Tasks operate on items of different granularities

e.g. files, extents, blocks, segments, …

• Page events expose what portion of an item is cached

• Example: file defragmentation task

• Uses Added, Removed events to track cached file pages

• Prioritizes processing of files with most cached pages

• Opportunistic processing reduces required I/O

Using page cache events

12

An example opportunistic task

Fetch any new page events

Use page events to update
priority queue of files with

most cached pages

Pick next file in task’s
standard order

Ensure file hasn’t been
processed before

13

Opportunistic maintenance tasks

Task Processing
Order

Opportunistic version Modified
Lines of Code

Scrubber
(Btrfs)

By block
number

Don’t scrub recently read
blocks

75 LoC (2%)

Backup
(Btrfs)

By inode
number

Backup in-memory blocks
first

140 LoC (3%)

Defragmentation
(Btrfs)

By inode
number

Prioritize files with cached
blocks

95 LoC (8%)

Garbage collector
(F2fs)

Cost function Adjust cost function to
account for cached blocks

150 LoC (11%)

Rsync
(User level app)

Depth-first
order

Prioritize files with most
cached pages

300 LoC (<1%)

14

Goal: Evaluate Duet’s ability to reduce I/O

• Run maintenance tasks alongside Filebench workloads

• Measure maintenance I/O saved over 30 minutes

• Maintenance I/O is scheduled at idle times

Parameter Description

Data overlap
Fraction of maintenance task data also
accessed by workload

Device
utilization

Amount of time the device is busy when
running the workload alone

Evaluation Setup

15

Maintenance I/O
saved by using Duet

(higher is better)

Evaluation metrics

Device utilization

I/
O

 s
av

ed
 b

y
D

u
et

Overlap w/ Maximum utilization
Maintenance Baseline Duet

25%

50%

75%

100%

Max. device utilization by workload
to complete maintenance in 30mins

(higher is better)

16

Workload Maximum utilization
overlap Baseline Duet

25% 40% 50%

50% 40% 60%

75% 40% 70%

100% 40% 100%

Duet exploits all
opportunities to reduce I/O

Single task performance:
Btrfs backup

17

Less idle time is
needed for

maintenance I/O

Running multiple tasks together:
Btrfs scrubbing, backup, and defragmentation

18

• Tasks can piggyback on one another
• 3 tasks + idle device = up to 48% I/O reduction

• 3 tasks + busy device = up to 80% I/O reduction

Workload Maximum utilization
overlap Baseline Duet

25% N/A 30%

50% N/A 40%

75% N/A 40%

100% N/A 50%

Duet overhead

19

• Low CPU overhead

• Ran Filebench at full device utilization
• Generates a high rate of page events

• Registered for all page cache changes

• Aggressively fetched events every 10 ms

• Measured CPU overhead at ≤ 1.5%

• Small memory footprint
• 64 bytes per page with pending events

• 1.5% for 4K pages

• Problem: Current maintenance tasks
work independently

• Our approach: Enable collaboration
between tasks
• Expose changes in cache state as events

• Tasks poll for these events to detect
cached data of interest

• Tasks reduce I/O by reordering work to
process cached data first

Conclusion

20

Source code: github.com/gamvrosi/duet

