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Abstract

Trip planning is a practical task that has drawn ex-
tensive attention from the AI planning and scheduling
community and the industrial/commercial sectors. In
this paper, we consider the setting of the multi-modal
trip planning, where users can exploit different trans-
portation modes, such as walking, biking, public tran-
sit, and taxi. In such a context, it would be of benefit
if the user was able to extend the cost base, including
traveling time and fare, of the planner, and to person-
alize the planner according to her own constraints and
preferences. To this end, we designed and developed
a hipergraph-based multi-modal trip planner that al-
lows users to upload auxiliary cost metrics (e.g., crime
rates), to specify constraints as a theory in the linear
temporal logic, and to express preferences as a prefer-
ential cost function.

Introduction
Trip planning, an application of planning and schedul-
ing, has seen substantive implementations by re-
searchers and developers (Bast et al. 2015). Some of the
planning systems are multi-modal ; that is, combining
distinct transportation modes, the trip planners com-
pute optimal routes from sources to destinations. This
notion of “optimality” generally refers to the computed
routes having minimal total time or total fare.

However, in the eyes of a user, it may be more faceted
than just “fastest” or “cheapest.” For instance, for a
college student who specifies that she will only walk or
take public transit in a trip from Palo Alto to San Fran-
cisco, the computed plan is not necessarily the fastest
(e.g., taking a cab could be faster) or the cheapest (e.g.,
walking all the way has no fare). This happens when
a user tells the planner her hard constraints, called
constraints. The planner then needs to either satisfy
the constraints in the search process or return failure
because they are over-restrictive. Moreover, the user
might want to further customize the planner by describ-
ing soft constraints, called preferences. For example, an
agent wants to travel from school to downtown, and
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prefers biking to taking the bus. Thus, a trip with more
biking than bus may be considered better for the agent
than the one with more bus than biking. In this case,
the planner will need to accommodate user preferences
whenever possible in the search of optimal solutions.

In the work by Yang et al. (Yang et al. 2009), a pi-
lot study was conducted to suggest favored transport
modes among the population in the Lisbon Metropoli-
tan Area. The study includes a survey involving 150
respondents, sampled to roughly represent the socio-
economic aspects of the local population. Their results
revealed that at least 72% of the population picked
multiple travel modes (e.g., bus combined with heavy
modes including subway, train and ferry) over singu-
lar travel modes (e.g., private car, carpool and taxi).
The results also presented that almost half of the pop-
ulation had some constraints on traveling time (e.g.,
departure times to/from work). Furthermore, the pilot
survey suggested correlations between travel safety and
travel modes, and between environmentally friendliness
and travel modes. To this end, our trip planning model
is designed and developed in line with these results.

Representing and reasoning about constraints and
preferences are fundamental to decision making in au-
tomated planning and scheduling in artificial intelli-
gence. Label-constrained multi-modal planning frame-
work was proposed (Barrett et al. 2008; Dibbelt, Pa-
jor, and Wagner 2015), where constraints are formal
languages over, and limited to, edge labels that are
the modalities in the planner. Son and Pontelli pre-
sented a declarative preference language, PP, to repre-
sent ordinal preferences (e.g., basic desires, atomic pref-
erences and general preferences) between trajectories of
a planning problem (Son and Pontelli 2004). Bienvenu,
Fritz and McIlraith proposed a first-order preference
language, LPP, extending PP by allowing the specifi-
cation of quantified qualitative preferences (Bienvenu,
Fritz, and McIlraith 2011). Modesti and Sciomachen in-
troduced an ad hoc utility function for weighing the arcs
both with their time and fare (Modesti and Sciomachen
1998). This relationship between time and fare in the
setting of transportation was studied, and economic
models capturing the trade-off between the two was pre-
sented (Antoniou, Matsoukis, and Roussi 2007).



However, relatively limited effort has been devoted
to designing and implementing real-world multi-modal
trip planners that captures user constraints and prefer-
ences over the cost base, possibly extended from the user
with auxiliary cost metrics, such as crime rates and pol-
lution statistics. One notable work by Nina et al. (Nina
et al. 2016) introduced system Autobahn for generating
scenic routes using Google Street View images to train
a deep neural network to classify route segments based
on their visual features. Although Autobahn computes
scenic routes using computer vision techniques, it does
not account for extensibility and personalizability.

Using a high-performance graph search engine (Zhou
and Hansen 2011), we designed and implemented a
multi-modal trip planner that uses pure graph-search.
This allows us to flexibly combine various modes (i.e.,
walking, biking, driving, public transit, and taxi) and to
declaratively specify constraints and preferences. The
planner also allows the user to upload new mapping
data over which constraints and preferences can be ex-
pressed. For instance, a user might upload a map of
crime in the city, and ask the trip planner to avoid areas
where crime is frequent. To handle user constraints, the
planner takes constraints (e.g., never bike after transit,
and never walk through bad neighborhoods) expressed
in linear temporal logic to restrain the search space. As
with user preferences, the planner uses a preferential
cost function, a weighted sum over several cost metrics
(e.g., time spend biking, fare on public transit, and over-
all crimes walking through) which can be re-weighted
based on different user preferences.

Our paper is organized as follows. In the next section,
we present what it means for a planner to be extensible
and formally define the method to incorporating new
metrics into the planner. In the next section, we dis-
cuss the two aspects of personalization in trip planning:
constraints and preferences, and how they are repre-
sented and reasoned with in the setting of multi-modal
trip planning. We then move on to describe the system
structure of our graph-search based planner, and show
results obtained from our planner in various occasions.
Finally, we conclude by outlining some future research
directions.

Extensibility
Allowing users to upload their own data sets of interests
is an important step towards customization of a trip
planner. We designed a framework where a user can
upload auxiliary cost metric data (e.g., crime statistics
and pollution data) into the planner, and the planner
will compute an optimal route accordingly.

The user-created data are the auxiliary data that is
represented as pairs of latitude and longitude degrees.
To merge these lat-long pairs into the planner, we per-
formed a neighborhood search to calculate the total
score of auxiliary data for each lat-long pair already in
our planner. It might be of strong interest to some user
for our planning system to take care of criminal statis-
tics so that some level of safety of the resulting routes

is guaranteed. For instance, a user traveling through
the downtown area of San Francisco around midnight
may want to upload a data set of crimes (cf. Figure 1),
and express her constraints and preferences in hope of a
safer trip plan. Note that in Figure 1 bad areas are the
colored circles, whose integer labels represent numbers
of crimes in corresponding areas, the bigger and darker
the circle, the worse the neighborhood.

Figure 1: Crime rates in San Francisco

Formally, we denote by A the set of auxiliary points
uploaded by the user, and N the set of points in our
planner. Given a point N = (xN , yN ) ∈ N in our plan-
ner, an auxiliary point A = (xA, yA) ∈ A and an effec-
tive radius r, we compute the auxiliary score S(N,A, r)
of N contributed by A with respect to r:

S(N,A, r) =

{
1− ED(N,A)

r if ED(N,A) ≤ r,
0 otherwise,

where ED(N,A) is the Euclidean distance between two
points.

Thus, the auxiliary score S(N,A, r) of N for A
with respect to r can be computed: S(N,A, r) =∑

A∈A S(N,A, r).
Now we turn to Figure 2 for an instance to show

how auxiliary data are integrated into the graph us-
ing the equation above. In Figure 2, we have the green
nodes denoting the graph nodes, and the red nodes the
new auxiliary nodes that represent locations of criminal
events. Say, we set radius r to 100 feet, and the dis-
tances from N to A1, A2 and A3 are 25, 80 and 90 feet,
respectively. For node N , these are the only auxiliary
nodes within its neighborhood of radius of r. Thus, the
auxiliary score, in this case, the crime score, S(N,A, r)
is 1.05.

Personalizability
Personalizability consists of two aspects: constraints
and preferences. From the viewpoint of the planner,
constraints, also referred to as hard constraints, are
statements that the planner has to satisfy during the
planning process; whereas preferences, also called soft
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Figure 2: Integrating uploaded data

constraints, are specifications that the planner will need
to optimize. We formulated constraints using linear
temporal logic (LTL) and preferences as a preferen-
tial cost function (PCF), and implemented our planner
leveraging the widely-used graph search algorithm the
A*.

Constraints

As constraints in the setting of trip planning are often
declarative and temporal, our choice of LTL is straight-
forward. We now give a brief review of linear temporal
logic (LTL). Let f be a propositional formula over a
finite set L of Boolean variables. LTL formulas are de-
fined recursively as follows.

ϕ = f |ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|¬ϕ| © ϕ|�ϕ|♦ϕ|ϕ1Aϕ2 (1)

Note that we have ϕ1Aϕ2, and it means that “ϕ2 holds
right after ϕ1 holds.”

A natural constraint for an agent in trip planning
could be “In this trip I will not drive a car at all af-
ter biking or taking the public transit.” In LTL, such
constraint can be translated into an LTL formula ψ

((M = bike) ∨ (M = public))A (�(¬(M = car))). (2)

Note that LTL allows agents to describe constraints
over the entirety of the search tree, not just limited to
mode labels on edges. For instance, an agent may also
express “In this trip I will bike for at least one hour but
not more than two,” which in LTL would be

(♦(Tbike ≥ 1)) ∧ (�(Tbike ≤ 2)), (3)

where Tbike denotes the total time spent so far per bike.
As the actions in trip planning is limited to taking

different transportation modes, in our definition of the
semantics of LTL these actions are subsumed into the
interpretations of L, or states. The semantics of LTL is
defined with regard to trajectories of states. Let σ be
a trajectory of states S0, a1, S1, . . . , an, Sn, and σ[i] a

suffix Si, ai+1, Si+1, . . . , an, Sn. We have

σ |= f iff S0 |= f,

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2,

σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2,

σ |= ¬ϕ iff σ 6|= ϕ,

σ |=©ϕ iff σ[1] |= ϕ,

σ |= �ϕ iff ∀0 ≤ i ≤ n(σ[i] |= ϕ),

σ |= ♦ϕ iff ∃0 ≤ i ≤ n(σ[i] |= ϕ),

σ |= ϕ1Aϕ2 iff ∀0 ≤ i < n(if σ[i] |= ϕ1, σ[i+ 1] |= ϕ2).

For example, we are given an LTL constraint ψ
(Equation 2) and three trajectories σ1, σ2 and σ3 as
shown in Figure 3. Clearly, we have σ1 |= ψ because,
after public transit in S2 and S3, traveling by car has
never taken place. Moreover, we have σ2 6|= ψ because
we have M = c hold in S6 and S7 after having M = p
hold in S2 and S5. Finally, we know σ3 |= ψ, as the
mode is always neither biking nor public transit.
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S3
p

S4
w
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goal

goal
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Figure 3: State transition diagram

Preferences

A state is described as a set of state variables. The state
variables of a state S include the transportation mode
M that led to S, time TM spent so far per mode M
(e.g., Tpublic for public transit), fare DM spent so far
per mode M (e.g., Dtaxi for taking a cab), and variables
related to the auxiliary data once uploaded. These ex-
tra data related variables are metrics such as the sum
(Asum), the maximum (Amax ), the minimum (Amin),
and the average (Aavg) data along the path. We assume
the fares Dwalk and Dbike are zeros.

We denote by M = {walk , bike, car , public, taxi} the
set of transportation modes and focus on weighted
functions over state variables and designed the cost
function, called preferential cost function (PCF), that
guides the graph-based search engine in our trip planner
as follows.

PCF (S) =βT ·
∑

M∈M
(αM · TM ) +

∑
M∈M

DM

+ βA ·Asum ,

(4)

where αM is the coefficient of TM specifying the rela-
tionship between M and car , and βT (βA) is the ra-
tio that describes how much in dollars a user would
pay to save an hour (an auxiliary datum, respectively).
Note that the PCF can be easily adjusted to cases when



no auxiliary dataset or multiple auxiliary datasets up-
loaded.

Clearly, to any given state our PCF assigns a mone-
tary value, the overall cost that drives our search algo-
rithm in the planner.

Preference Elicitation To gather these coefficients
(αi’s and βi’s) in our PCF , we designed an interface
to elicit them from the user. The planner asks the user
questions and collect answers from the user to derive
the coefficients. These questions are as follows.

1. How many hours of driving do you think are equiva-
lent to one hour of walking?

2. How many hours of driving do you think are equiva-
lent to one hour of biking?

3. How many hours of driving do you think are equiva-
lent to one hour of public transit?

4. How many hours of driving do you think are equiva-
lent to one hour of taxi?

5. How much in dollars would you pay to save an hour
in traveling?

6. How much in dollars would you pay to avoid an aux-
iliary datum (e.g., crime or pollution) in traveling?

For instance, Alice, an agent, answers 3, 2, 0.25, 0.5,
20 and 1 to the questions in the list above. Intuitively,
the numbers indicate that she prefers public transit the
most, followed by taxi, driving, biking and walking, in
order. We show how we can now derive αi’s in Equa-
tion 4. We start with setting αcar = 1. Now, since
one hour of walking is equivalent to 3 hours of walk-
ing, we have αwalk × 1 = αcar × 3; hence, we derive
αwalk = 3. Similarly, we have αbike = 2, αpublic = 0.25,
and αtaxi = 0.5.

As with the other two coefficients β1 and β1, we know
one travel hour is worth 20 dollars and one auxiliary
event 1 dollar. We then have β1×1 hour = 1×20 dollars
and β2 × 1 aux = 1 × 1 dollars; therefore, we derive
β1 = 20 dollars/hour and β2 = 1 dollar/aux. Indeed,
function PCF with the input of time, fare and auxil-
iary metric pieces boils down to monetary cost, and the
planner computes the best path by optimize based on
this overall monetary cost in the searching process.

Reasoning with Constraints and
Preferences
We leveraged the widely-used A* search algorithm
(Hart, Nilsson, and Raphael 1968) on top of our high-
performance graph search engine (cf. Figure 4). The A*
algorithm incorporates the following cost function.

f(S) = PCF (S) + h(S), (5)

where PCF (S) is the overall cost of an optimal trip from
the initial state to S, and h(S) is an admissible estimate
of the cost of an optimal trip from S to goal. We set
h(S) the minimum estimate among all available modes
in S. To prune the search space, we check satisfiability
of the temporal constraints in LTL at expansion of the
search tree.

S0

PCF(S)

S1

S2

S

Sg

…… ……

……

h(S)

cost of the optimal path

from S0 to S so far

admissible estimate of the cost

of an optimal trip from S to S
g

Figure 4: Adjusted A*

Implementation
We designed and implemented a multi-modal trip plan-
ning system (cf. Figure 5) based on a high-performance
graph search engine. The planner allows user uploads,
as well as declarative constraints and preferences. We
now describe the structure of the planning system.

The trip planner takes two types of data as input:
static data and user-specified request. The static input
includes Map Data and Transit Data. Map Data de-
scribes the map, a directed graph where nodes are street
corners, bus stops and train stations. Transit Data is a
set of schedules for the buses and trains On the other
hand, a user provides her request, composed of three
parts. First, the user enters from and to locations on
the map together with day and time of the start of the
trip. Second, the user may upload her auxiliary met-
ric dataset, e.g., crime rates. Lastly, the user specifies
her constraints in LTL and preferences as a PCF . For
example, the constraint could be “never walk through
a bad neighborhood.” Given these inputs, our planner
computes an optimal path satisfying all the constraints
and optimizing the preferences. Note that the request
from the user is encapsulated into a JSON object.

For instance, the JSON object for the constraint ψ
in Equation 2 is shown in Figure 6.

Results
We present and analyze resulting routes for three
agents: Alice, Bob, and Cal. This is assuming no auxil-
iary metric datasets uploaded so that the agents focus
on time and fare. Fixing their where and when infor-
mation, we show how agents’ different constraints and
preferences affect their optimal routes computed by our
planner. Their where and when are set so that they
all plan to travel from San Jose International Airport
(SJC) in San Jose, to Pier 39 in San Francisco. Note
that the natural constraint ψ in Equation 2 is implic-
itly imposed on all cases, and that we consider uberX
for the taxi mode.

Agent Alice has only one constraint that she does
not have a car; thus, driving to her is never available
during this trip. This constraint is represented as a LTL
formula �(¬(M = car)). Per her preferences, Alice pro-
vides her thoughts as earlier; that is, public transporta-
tion (0.25) is preferred to taxi (0.5), which is better than
biking (2), preferred to walking (3). What’s more, she
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Figure 5: System Overview

Figure 6: JSON object for constraint ψ in Equation 2

decides that she would sacrifice thirty dollars to save
one hour during the trip.

The resulting route for Alice is included in Figure 7. It
contains four trainsit modes: walk , bike, public and taxi ,
and takes 2 hours 7 minutes and 18 dollars 94 cents.
Alice’s travel constraints are clearly met by the result.
As for her preferences, most of the time in this route is
spent on the public transit that is her most preferred
travel mode. We see there is biking for 28 seconds and
walking for 1 minute. Although they may not be of of
interest from the user’s view, the two segments are part
of the optimal route the route with minimal combined
cost of time and fare among all paths from SJC to Pier
39.

Like Alice, Bob is constrained that he will not drive
a car in his travel, and his dollar per hour is thirty.

Figure 7: Resulting route for Alice

Moreover, Bob makes his mind to have some workout
with his bike and dictates that he will bike for between
one and two hours. So, Bob’s constraint is specified as
(�(¬(M = car)))∧ (1 ≤ Tbike ≤ 2). Then, he expresses
his preferences: biking and public transit are the most
preferred, next is taxi, and the least preferred is walk-
ing. Similarly, he has done so by answering the afore-
mentioned elicitation questions, and here we omit the
detailed answers.

The result for Bob is depicted in Figure 8. It spans
2 hours 57 minutes in time with the fare of 29 dol-
lars 17 cents. It is so, seemingly worse than what Alice
achieved, only because Bob has the constraint that he
will for sure bike for one to two hours (the solution pro-
vides under, but very close to, 2-hour biking), and the
preferences that put biking the most satisfying mode.

Finally, as part of his constraints, agent Cal will not
use a car in the trip. He also affirms that his budget is



Figure 8: Resulting route for Bob

restricted to 50 dollars. These constraints in LTL are
(�(¬(M = car))) ∧ (Dtotal ≤ 50). Cal’s preferences
are that the most preferred are public transit and taxi,
and the next preferred are walking and biking that are
equivalent, and that his one hour in traveling is as valu-
able as 500 dollars.

Refer to Figure 9 for the optimal path for Cal. This
route, stretching 1 hour 48 minutes, is the most time-
saving one compared with the previous two, at the price
of 49 dollars 91 cents. This is due to the constraint that
Cal can spend up to 50 dollars, as well as his preferences
and vale of time being high.

Figure 9: Resulting route for Cal

Auxiliary Metric

When the user of the planner is interested in met-
rics other than the ones offered already (i.e., time and
fare), she might discover new metrics (e.g., crime rates
and pollution statistics), upload them into the planner,
and retrieve optimal plans taking these metrics into ac-
count. One scenario of this approach is the following.

Our agent needs to travel without a car across San
Francisco downtown at night. For her, safety is impor-

tant. Having found the crime statistics for the area, the
agent uploads the data as a new auxiliary metric into
the map. By specifying that she will never walk through
a neighborhood with more than fifteen crimes over the
last month, and that she would sacrifice a quarter to
avoid one crime incident, the agent tells the planner
to come up with a relatively safe route. An example
is shown in Figure 10, where the agent needs to start
at the east of downtown and travel across the area to
arrive at the west side. The computed path is repre-
sented by the line colored by black, blue and green,
denoting taxi, public transit and biking, respectively.
Clearly, this path routes away from crime-heavy areas
and achieves optimality in that the combined metrics –
time, fare and crime rates, uploaded and personalized
by the user – is minimal among all possibilities.

Figure 10: Optimal route considering crime rates

Conclusion and Future Work

In multi-modal trip planning, it is vital for the plan-
ner to enable users to integrate new metrics of interest
into the existing map, and to express constraints and
preferences over which optimal routes are computed. In
our work, we designed and built a graph-search based,
extensible and personalizable multi-modal trip planner
that utilizes linear temporal logic (LTL) and a preferen-
tial cost function (PCF) to model user constraints and
preferences.

As a note on the future work, we plan to explore tech-
niques in planning for computing multiple routes that
are diverse with bounded difference of costs. Continuing
this direction, we intend to study the problem of learn-
ing the PCF coefficients using the observations of the
decisions the user made among the computed paths. (It
is reasonable to assume that routes picked by the user
are preferred to others, and these observations could
contribute to the learning problem.) Also interesting is
to introduce traffic information into the planner to sup-
port real-time multi-agent concurrent trip planning.
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