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ABSTRACT
Almost all medium- and large-scale businesses rely on electronic
workflow systems to manage their business processes. A key chal-
lenge is to enable the easy re-use and modification of these work-
flow schemas and their piece-parts, so that they can be adapted to
new business situations. This paper describes an approach for auto-
matic construction (and thus, evolution) of a workflow schema that
satisfies a specified condition (or “goal”), starting from a set of ba-
sic building block services (or “tasks”). We use a workflow model
based on “business artifacts”, which represent key (real or concep-
tual) business entities, and include both the business-relevant data
about them and a specification of their lifecycle, that is, how they
can evolve over time as they move through the workflow as the
result of services being applied to them.

This paper uses a declarative form of artifact-centric workflow. The
services are non-deterministic, which corresponds to the intuition
that humans performing the services may rely on information that
is not modeled within the framework. We study the problem of,
given a goal to be achieved, automatically finding the “maximal”
workflow schema that has the following property: every execution
is either complete or can be completed, and every complete exe-
cution satisfies the goal. We also study a complimentary problem,
in which exception-handling is used to deal with executions that
would otherwise not complete successfully. These problems are
non-trivial because the workflow services are non-deterministic.

This paper provides a general framework for studying these prob-
lems, and shows a tight relationship between workflow systems
specified using logics that permit quantifier elimination and the
ability to construct maximal schemas with the desired properties.
The paper then studies a restricted setting to provide insights into
complexity issues. Even in the restricted setting, the problem of
testing properties of maximal workflows is PSPACE-complete.
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1. INTRODUCTION
Business process management refers to the general challenge of
enabling the flexible yet systematic management and control of the
operations of a business (or similar organization). Almost invari-
ably, electronic workflow systems are used to support the manage-
ment of business processes in medium- and large-sized organiza-
tions. There has been a rapid increase in demand for the construc-
tion, execution, and management of workflows in which data are
created and managed in a coherent manner that cuts across large
portions of the workflow schema. A key contributing factor is
the availability of mature data management tools which make it
very easy to create, store, and access numerous data sources. An-
other is the growing popularity of the Service-Oriented Architec-
ture (SOA), a methodology to (re)organize complex software sys-
tems in terms of piece-wise sharable, individually manageable “ser-
vices” that are easily accessible from a network. The availability of
data sources and services has been enabling practitioners in busi-
ness enterprises to build application systems of ever growing size
and complexity. However, a serious challenge facing the practi-
tioners is the lack of fundamental principles, techniques, and tools
necessary to deal with issues in managing assemblies of large set
of data sources and services. This paper is among initial efforts
[6, 14, 19, 18] towards discovering design principles for business
processes through investigation of fundamental issues in workflow
management.

A critical challenge in business process management is to enable
the easy re-use and modification of workflow schemas and their
piece-parts, so that they can be adapted to new business situations.
Earlier and current work in SOA and workflow areas emphasize the
process assembly aspect, and treat the data exchange and mainte-
nance as either an afterthought or a consideration local to individual
services (see discussions in [6, 8]). Experiences in workflow man-
agement have revealed that serious problems in assembling work-
flows from existing services often arise from the lack of coherent
modeling of the data at a level that is global to the entire workflow,
and several efforts have worked to give data more prominence, e.g.,
[21, 26, 43]. IBM Research has been addressing this area by intro-
ducing and extending the “artifact-centric” approach to workflow
and business process management. A watershed paper is [37], and
there has been considerable research and development based on that
work, e.g., [5, 6, 7, 8, 24, 31, 32, 41]. The artifact-centric approach
enables business managers to have better insight into their business
operations, and has been shown to substantially reduce the cost of
business transformations [5]. Artifacts represent key (real or con-
ceptual) business entities, and include both the business-relevant
data about them and a specification of their lifecycle, that is, how
they can evolve over time as they move through the workflow as



the result of services being applied to them. Unlike process-centric
models, the artifact approach puts data squarely in the center stage
and models a workflow by adding services that act on the data. In a
sense, this approach beautifully bridges the significant gap between
the semantic web services work in academic research communities
and the usage of web services and SOA in business development
contexts (a challenge raised in a panel at ICWS ’04).

In spite of the initial success of applying artifact modeling method-
ology in business process management [7, 5, 41], there is a lack of
fundamental understanding of the approach with respect to re-use
and modification of workflows. In [6, 18, 19], we developed for-
mal models for artifact-based workflow and studied static analysis
of several properties such as satisfiability, “dead-end”, reachability,
etc. Additional research on static analysis is reported in [14]. In this
paper, we make our first attempt at automating workflow construc-
tion, that is, workflow synthesis. We focus on issues including (1)
whether it even makes sense to attempt to construct a workflow for
a given goal, (2) construction of a workflow that permits all input
artifacts which are guaranteed to support successful executions, (3)
goal-directed workflow construction that permit exceptions. The
workflows constructed can give insights, at design time, about the
properties of a goal, which can help the goal designer to understand
whether the goal is capturing her intended semantics.

This paper uses a declarative form of artifact-centric workflow, that
follows and significantly extends the model of [6]. We study the
problem of, given a goal to be achieved, finding the “maximal”
workflow schema that has the following property: every execution
is either complete or can be completed, and every complete exe-
cution satisfies the goal. This problem is complicated by the fact
that often the effect of running a service against an artifact is not
completely known during workflow construction. Thus we model
these effects as non-deterministic and construct workflows conser-
vatively, i.e. such that they succeed to achieve the goal for all pos-
sible outcomes of the involved service. We also study a compli-
mentary problem, in which exception-handling is used to deal with
executions that would otherwise not complete successfully. The
formulations expose some intricate subtleties perhaps for the first
time in the formal setting.

This paper provides a general framework for studying these prob-
lems, and shows a tight relationship between workflow systems
specified using logics that permit quantifier elimination and the
ability to construct maximal schemas with the desired properties.
The paper then studies a restricted setting to provide insights into
complexity issues. Even in our restricted setting, the problem of
finding maximal workflows is PSPACE-complete. The paper iden-
tifies a key property of workflows that can contribute to increased
run-time costs in these constructions.

Although the main technical results reported here are in a restricted
setting, we view them as an important starting point for further re-
search into mechanisms for both fully- and semi-automated con-
struction of workflows from goal specifications. In general terms,
a formal framework and algorithms for automatic generation of
workflow schemas from goal specifications holds the promise of
dramatic simplification of both workflow design and workflow evo-
lution. In the case of design, automatic generation of the maximal
workflow schema associated with a goal will allow designers and
managers to focus largely on their business goals, rather than get-
ting bogged down with procedural realizations of those goals. In
the case of evolution, there is the possibility that business man-

Artifact Class:PurchaseOrder
Associated Attributes:
prodName: string
prodType: {“hw”, “sw”}
bid: integer
profitMargin: [0..100] // as a percentage
approved: bool
execApproved: bool
scheduleDate: date
archived: bool

Figure 1: A simple artifact classPurchaseOrder

agers can adjust the goal specification for their workflow, and te
workflow schema can be adjusted automatically to a corresponding
schema.

This paper is organized as follows. Section 2 provides a motivat-
ing example to illustrate both the workflow model and the focused
technical problems. Section 3 establishes the formal model. Sec-
tion 4 places our problem space into a generalized logic setting,
and provides a close linkage between quantifier elimination and
the ability to construct maximal workflows that use quantifier-free
conditions and rules. Section 5 introduces and studies the restricted
setting. Section 6 briefly discusses some related work from various
areas of Computer Science. Section 7 provides brief conclusions
and selected research directions.

2. MOTIVATING EXAMPLE
This section provides an informal introduction to the artifact-based
workflow framework, presents a motivating example, and illus-
trates the main technical results that the current paper is focused
on. The formal definitions and statements of results appear in the
following sections.

Workflows in the artifact-based approach are focused onartifacts,
which are essentially sets of attribute/value pairs. Most values start
out undefined, and become defined during the life-cycle of the ar-
tifact. (In the general artifact-based model [37, 6, 19], artifacts can
also move, during their life-cycle, through the states of a finite state
machine. We do not consider artifact states in this paper.)

An example artifactclass, calledPurchaseOrder, along with an
associated set of attributes, is shown in Figure 1. In our examples,
we shall assume thatprodName, prodType, andbid are initial-
ized. Attributebid is intended to hold the value that is offered by
a potential buyer for the productprodName.

Artifacts are manipulated by services, as illustrated next.

EXAMPLE 2.1. A representative family of services that oper-
ate on artifacts ofPurchaseOrder is shown in Figure 2. The
Estimate service computes theprofitMargin of a purchase re-
quest, based on theprodName, theprodType and thebid. This
service can be executed on an artifacto only if the pre-condition
PRE is satisfied byo. Theconditional effectEFF describes proper-
ties of the outcome of executing the service (Note thattrue → φ
denotes the unconditional effectφ). Although the complete algo-
rithm of Estimate is not known, according toEFF we do know
that if thebid is 6 400 then theprofitMargin will end up 6

25%, and if thebid is> 350 then theprofitMargin will end up
> 20%.



Estimate: profitMargin
PRE:DEF(prodName) ∧ DEF(prodType) ∧ DEF(bid)
EFF:
bid 6 400 → profitMargin 6 25%
bid > 350 → profitMargin > 20%

RoutineApproval: approved
PRE:DEF(bid) ∧ DEF(profitMargin)
EFF:
bid 6 100→ approved = true

prodType = “sw” → approved = true

prodType = “hw” ∧ profitMargin > 10%
→ approved = true

“else”→ approved = false

ExecApproval: execApproved
PRE:approved = false

EFF: true → DEF(execApproved)
Schedule: scheduleDate

PRE:DEF(prodName)
EFF: true→ DEF(scheduleDate)

Archive: archived
PRE:DEF(scheduleDate) ∨ execApprov = false

EFF: true → archived = true

Figure 2: Family of services associated withPurchaseOrder
artifact class

ServiceRoutineApproval also has a rich conditional effect. We
have used a shorthand for the fourth formula ofEFF: here the “else”
means to take the negation of the disjunction of the conditions of
the first three conditional effects. ServiceRoutineApproval will
always define a value forapproved, perhaps true (i.e., approved)
and perhaps false (i.e., not approved).

ServiceExecApproval can be invoked ifRoutineApproval ended
with false. Intuitively, this service gives an executive a chance to
override a non-approval that might occur fromRoutingApproval.
This service will always define a value forexecApproved, even if
the executive denies to approval.

Schedule is performed based only on knowledge of theprodName;
intuitively this schedules a date for the creation or delivery of the
product.

Intuitively, Archivewill be used to represent the closing of a work-
flow execution. This can be achieved only if a date has been sched-
uled or ifexecApproved is defined and false.

Speaking informally, apre-workflow(schema) is a pair (A,S),
whereA is a family of artifact classes with associated attribute
sets, andS is a family of services which can act on artifacts in
these classes. The artifact classPurchaseOrder, along with the
set of services in Figure 2, forms the pre-workflow called here
Purchasing.

In the general artifact model, multiple artifacts may interact with
each other. In this section and Section 5 we focus on a single ar-
tifact class, and assume that the individual artifacts of this class
evolve independently of each other.

Given a pre-workflowP, a path overP is modeled as a sequence
~s = s1, . . . , sn of “snapshot”. Each snapshot corresponds to a
state of the overall system, and consists of a set of artifacts along
within information about the values of the attributes which are de-
fined for each artifact. Also,si+1 corresponds to the application of
one service fromP to one artifact occurring insi. (In this paper

we do not consider artifact “creation”.) We focus in this paper on
how a single artifacto can evolve from some initial state through
other states as the result of service invocations. Thus we focus on
path~o = o1, ..., on for a single artifacto, and for eachi, the artifact
(instance)oi+1 corresponds to the result of applying some service
to oi.

The artifact-based approach to workflow permits a declarative style
of workflow construction called heregoal-based workflow construc-
tion. In particular, suppose that we are given a pre-workflowP =
(A,S). We also assume that we are given a setI of attributes that
are to be initialized for all input artifacts. We are interested in con-
structing an actual workflowW from P such that all executions in
W satisfy a goalγ. In this paper we consider goalsγ which are
logical formulas to be satisfied by the final snapshot of an execu-
tion. (More generally, the goalγ might include temporal properties
to be satisfied by the overall execution.)

The following is a very natural, first question that arises when con-
templating goal-driven workflow construction.

Q1 (Satisfiability): Given pre-workflowP (with fixed set of input
attributes to be initialized) and goalγ is there an initial artifacto
and a path ono in P which ends in a snapshot that satisfiesγ?

EXAMPLE 2.2. In connection with thePurchaseOrder class
and the services of Example 2.1, consider the goal

γ1 = archived = true c1
∧ (DEF(scheduleDate)

→ (approved = true c2
∨ execApproved = true))

Intuitively, clausec1 here states that a path is successful forγ1 only
if it includes execution of theArchive service. Clausec2 (which
consists of the second, third, and fourth lines of the formula) states
that a purchase can actually be scheduled only if it is approved by
RoutineApproval or byExecApproval.

In connection withQ1, it is easy to construct artifacts which have
successful paths through this pre-workflow. For example, an input
artifact with prodType = “sw” can progress throughEstimate,
thenRoutineApproval, thenSchedule, and finally pass through
Archive.

Given a pre-workflowP = (A,S), we create a workflow by as-
sociating a setR of (transition)rules to P. The problem of goal-
directed workflow construction thus becomes the problem of find-
ing a ruleset that completes a pre-workflow and complies with the
goal.

EXAMPLE 2.3. Recall goalγ1 from the preceding example. Fig-
ure 3 provides a diagrammatic representation of a set of rules for
Purchasing. Two of the rules illustrated there are

if DEF(prodName) ∧ DEF(prodType) ∧ DEF(bid)
invoke Estimate

if (approved = true∨ execApproved = true)
invoke Schedule

Speaking intuitively, the rulesetR1 indicated in Figure 3, along
with various properties of the services themselves, will guide each



Estimate

Routine
Approval

Schedule

Archive

Exec
Approval

R1 : approved = false

R1 : (approved = true
∨∨∨∨ execApproved = true)

R1 : (DEF(scheduleDate)
∨∨∨∨ execApproved = false)

R1 : DEF(prodName)
∧∧∧∧ DEF(prodType)
∧∧∧∧ DEF(bid)

R1 : DEF(bid) ∧∧∧∧ DEF(profitMargin) 

Figure 3: Simple ruleset that isγ1-safe

execution through a certain sequencing of services, and will guar-
antee that each non-extendable execution satisfiesγ1.

Given a pre-workflowP = (A,S) and a rulesetR for P, we say
thatW = (A,S,R) is a workflow. In general, multiple rules may
call for invoking the same service. The rules indicate permissions
to invoke a service. However, the truth of some rule condition does
not require that the service actually be invoked.

The workflowW = (A,P,R) is safe for goal γ if each (non-
extendable) execution forW ends in a snapshot that satisfiesγ.
The pre-workflowPurchasing extended byR1 of Example 2.3 is
γ1-safe.

It is now natural to ask the following.

Q2 (maximal ruleset γ-safe for P): Given pre-workflowP =
(A,S) and goalγ, is there a rulesetR such that(A,S,R) is γ-
safe? Is there a “maximal”γ-safeR, in the sense thatR permits
any execution that is permitted by at least oneγ-safeR′?

It can be shown thatR1 is maximalγ1-safe forPurchasing.

EXAMPLE 2.4. Consider now the goal

γ2 = γ1

∧ DEF(execApproved) → bid > 300 c3

Intuitively, clausec3 states that executives do not want to waste
their time thinking about purchase requests where thebid is under
300. There are a variety of different ways that an execution can
beγ2-safe, but what happens if request hasprodType = “hw” and
hasbid between 100 and 300? It may arise thatEstimate will
assign theprofitMargin to be6 10%, in which caseapproved
will be assignedfalse. Because of clausec3 in γ2, the execution
does not satisfyγ2, nor can it be extended to satisfyγ2. We call
such executionsdead-end.

Consider now Figure 4, ignore the service labeledEXC, and fo-
cus on the rulesetRsafe. Note that the rule permitting entry into
Estimate (and effectively, into processing by the workflow) pre-
vents input executions where theprodType = “hw” and thebid
is strictly between 100 and 300. It can be shown thatRsafe is a
maximalγ2-safe ruleset.

Routine
Approval

Schedule

Archive

Exec
Approval

Exception

R safe-exc: prodType = hw
∧∧∧∧ bid < 300
∧∧∧∧ profitMargin ≤≤≤≤ 10%

R safe-exc: DEF(bid) ∧∧∧∧ DEF(profitMargin)
∧∧∧∧ ( bid ≥≥≥≥ 300 ∨∨∨∨ profitMargin > 10% )

R safe : DEF(prodName) ∧∧∧∧ DEF(prodType) ∧∧∧∧ DEF(bid)
∧∧∧∧ ( prodType = sw ∨∨∨∨ bid ≤≤≤≤ 100  ∨∨∨∨ bid ≥≥≥≥ 300 )

R safe-exc: DEF(prodName) ∧∧∧∧ DEF(prodType) ∧∧∧∧ DEF(bid)

R safe , R safe-exc: approved = false

R safe, R safe-exc: (approved = true
∨∨∨∨ execApproved = true)

R safe, R safe-exc: (DEF(scheduleDate)
∨∨∨∨ execApproved = false)

Estimate

R safe : DEF(bid) ∧∧∧∧ DEF(profMargin)

Figure 4: Alternative rendition of Maximal workflows for Pur-
chasing pre-workflow and goalγ2

Intuitively, the condition of the rule inRsafefor Estimate is “con-
servative”, in the sense that if an input artifacto violates that con-
dition, theno may lead to a dead-end execution. We now con-
sider a more “lenient” form of maximality, in which executions
are permitted to proceed through a workflow until the set of de-
fined attribute values is sufficient to imply that the execution will
become dead-end. To provide a formal setting for this, we intro-
duce a new, “universal”exceptionservice, denotedEXC. This has
precondition¬DEF(exc) and has exactly one conditional effect,
which is true → exc = true. Intuitively, if a workflow execution
includes the serviceEXC, then we shall view that execution as hav-
ing moved into exceptional treatment. We do not consider recovery
from exceptions in this paper.

Given a pre-workflowP = (A,S), thelenient(also calledexception-
permitting) extension ofP, denotedPEXC, is the pair(Aexc,Sexc ∪
{EXC}) where

(a) Aexc is obtained by adding, to each artifact class ofA, the
new attributeexc, and

(b) Sexc is the result of modifying each serviceσ in S into the
serviceσexc, which is obtained by replacing the pre-condition
ρ of σ by ρ ∧ ¬DEF(exc).

Intuitively, PEXC extends (each artifact class of)P with the new ex-
ception serviceEXC, and modifies the pre-condition of each service
σ of P so that it cannot be used if attributeexc has been defined.
TheEXC service acts as a sink – once the execution of an artifact
o executes theEXC service, then attributeexc for o takes the value
true, and no other service can be executed foro.

Given pre-workflow(A,S) and goalγ, a rulesetR is said to beγ-
safe forP with exceptionsif R is γ′-safe forPEXC relative toPEXC,
whereγ′ is the formulaγ ∨ (exc = true).

It is trivial to construct rulesets that areγ-safe with exceptions;
just route every execution to theEXC service. Informally, we say
that rulesetR is maximalγ-safe with exceptions forP if (i) it is
γ-safe forPEXC, (ii) each execution throughP that satisfiesγ is
an execution throughR, and (iii) if in an execution~s the defined



attributes of an artifacto imply that there is no extension of~s that
satisfiesγ, then inR this execution is immediately moved to the
EXC service. Intuitively, item (iii) states that in aγ-safe rulesetR
maximal for exceptions, an execution that will fail is shifted to the
EXC service at the earliest possible moment.

We can now phrase a third question.

Q3 (maximal rulesetγ-safe forP with exceptions:) Given pre-
workflow P = (A,S) and goalγ, is there a rulesetR such that
(A,S,R) is maximalγ-safe?

EXAMPLE 2.5. Consider again Figure 4 but this time including
theEXC service. RulesetRsafe-excshown there is maximalγ2-safe
for Purchasing with exceptions. To see this, note first that the
Estimate service will be performed on all input artifacts, even
the ones withprodType = “hw” and 100 < bid < 300. At the
point of certainty that an execution will eventually become dead-
end, however, that execution will be routed to theEXC service. In
particular, consider a “hw” product with100 < bid < 300, if the
profitMargin computed byEstimate is< 10%. It is easily in-
ferred that such artifacts will eventually dead-end inPurchasing,
and so rulesetRsafe-excmoves this artifact directly toEXC.

With Rsafe-exc, the routing toEXC is “eager”, in the sense that
a potential dead-end execution is diverted to theEXC service as
soon as possible. An alternative would be “lazy” routing, i.e.,
to continue to perform services on the execution until a dead-end
has actually been reached. In the example, this would happen if
the entry condition forRoutineApproval in Rsafe-excwere re-
placed byDEF(profitMargin), the edge fromEstimate to EXC

removed, the condition for enteringExecApproval were replaced
by approved = false∧ bid > 300, and the condition for entering
EXC were replaced byapproved = false∧ bid < 300.

We study here the case of building rulesets that enable “eager” rout-
ing to EXC, because these will have the effect of reducing the total
cost of performing services before an execution ends up atEXC.
Variations may also be relevant in practice.

We view questionsQ1, Q2, andQ3as fundamental for goal-directed
workflow construction and design-time analysis. Intuitively,Q1 is
asking whether it even makes sense to attempt to construct a work-
flow for goal γ. Q2 focuses on construction of a workflow that
permits all input artifacts which are guaranteed to support success-
ful executions. If for a given context we cannot construct such a
workflow, then probably we cannot use the goal-directed approach
to workflow construction in that context.Q3 provides a more ro-
bust approach to goal-directed workflow construction thanQ2. By
permitting exceptions, answers toQ3 can guarantee that every exe-
cution throughP that satisfiesγ is supported. The workflows con-
structed for bothQ2 andQ3 can give insights, at design time, about
the properties of a goalγ, which can help the goal designer to un-
derstand whether the goal is capturing his/her intended semantics.

3. A MODEL FOR WORKFLOWS
In this section, we present several definitions that are needed to
study the three workflow construction problems raised in the previ-
ous section.

The artifact workflow model follows the spirit of the model intro-
duced in [6], however, it is tailored to the focus of the technical

problems studied here. Notably, we focus here on workflows for a
single artifact; we also leave out artifact states. On the other hand,
we allow checking if an attribute has an assigned value and exam-
ining its value in service pre-/post-conditions and rule conditions.
(Extensions for multiple artifacts will be discussed in Section 4.)

LetL be a first-order logic language andS be a first-order structure
of L with a universeU . We assume some familiarity with standard
logic notions (formulas, sentences, quantifiers, satisfiability, etc.)
for L andS. Intuitively,L andS are used to model individual data
values in artifacts manipulated in workflows.

We assume the existence of the following two disjoint, countably
infinite sets:

• ATT = {A,B,A1, ...} of attributes, and

• SERV = {σ, σ1, ...} of service names.

Without loss of generality, each attribute inATT is also assumed
to be a variable inL, called anattribute variable. To deal with
attributes with no assigned values, we extend the universeU with a
special symbol “⊥”.

DEFINITION. An (artifact) schemaA is a finite set of attributes
in ATT . An artifact of A is a mappingo fromA toU ∪ {⊥}.

Terms(over a schemaA) include variables inL, constants inU ,
and for each attributeA in the schemaA, A andA′ (the primed
attributeA′ is used to denote the new attribute value immediately
after a service invocation). Similarly, ifo is an artifact, we useo′

to denote the artifact as the result of invoking a service ono.

Atomic formulas(over a schemaA) include DEF(A), DEF(A′)
whereA ∈ A is an attribute variable, and atomic formulas built
using predicates inL and terms in the standard manner. A formula
is attribute-onlyif each variable occurring in it is an attribute vari-
able or its primed version.

An assignmentis a mapping from variables toU and (primed) at-
tribute variables toU ∪ {⊥}. Satisfaction of a formula (overS)
is defined in the standard manner, except thatDEF(A) (DEF(A′))
is true if A (resp. A′) has a value (i.e.,6= ⊥). A pair of arti-
factso, o′ satisfies a formulaϕ under an assignmentµ, denoted as
(o, o′) |= ϕ[µ] if S |= ϕ[µ〈o, o′〉] whereµ〈o, o′〉 is an assignment
modified fromµ by mapping attribute variables to coincide witho
and primed attribute variables to coincide witho′. Whenϕ has no
primed attribute variables, we also use “o |= ϕ[µ]” to mean thato
satisfiesϕ, or technically,(o, o′) |= ϕ[µ] for everyo′.

We next introduce the notion of a “service”, which captures an
available task that may be performed automatically or by humans.
Services are the building blocks for assembling workflows. Since
the focus of this paper is on workflow schemas that act on a single-
artifact class, we also simplify the notion of a service; a more gen-
eral notion can be found in [6].

DEFINITION. Let A be an artifact schema. AserviceoverA is
a tuple(σ,R,W, π, ρ), whereσ ∈ SERV is a service name,R,W
are finite sets of (respectively, read, write) attributes inA, π and
ρ are quantifier-free, attribute-only formulas representing the pre-
and post-condition (resp.).

Given a service(σ,R,W, π, ρ) and an artifacto, thesemanticsof



the service is intuitively defined as follows. If all attributes inR
are defined ino ando satisfiesπ, the serviceσ may be invoked and
if σ is invoked, its execution ono modifieso into o′ such that (1)
A = A′ for each attributeA ∈ A−W , and (2)o′ satisfiesρ (with
a slight abuse of notation). In this case, we denoteo ⊢

σ

o′.

DEFINITION. A pre-workflow (schema)is a pairP = (A,S)
whereA is an artifact schema andS a finite set of services overA.
For a pair of artifactso1, o2 of A, o1 deriveso2 in P, denoted as
o1⊢P o2, if o1 ⊢

σ

o2 for some serviceσ ∈ S.

From a pre-workflow schema, a workflow can be assembled by
defining a set of “(business) rules”. Roughly, a rule specifies which
service is to be executed on which artifact and when.

We view the logic languageL as a set of formulas. Asub-language
of L is a subset ofL, e.g., the set of quantifier-free formulas inL.
In the following discussions, letL′ be a sub-language ofL.

DEFINITION. An L′-conditionof an artifact schemaA is a for-
mulaϕ in L′ with only attribute variables occurring free. AnL′-
conditionϕ is testableif it can be determined whethero satisfiesϕ
for each artifacto.

Consider a few candidates for the domain logic languageL, which
were studied in constraint databases [30]: (1) dense or discrete total
order (with6), (2) linear arithmetic, (3) real arithmetic (with6, +,
×), (4) integer arithmetic (with6, +, ×). Conditions for (1)-(3)
are testable (with various complexity), while not testable for (4).

DEFINITION. Given a pre-workflow schemaP, anL′-rule is an
expression with the form “if ϕ invoke σ”, whereϕ is a testable
L′-condition, andσ a service inP. An artifacto2 is derived from
another artifacto1 using a ruler, denoted aso1 ⊢

r

o2, if o1 |= ϕ
ando1 ⊢

σ

o2. An L′-rulesetis a finite set ofL′-rules.

As we noted in the previous section, when a rule is applicable in a
situation, it does not have to be applied since only one of multiple
applicable rules is applied. Such non-deterministic behaviors are
often results of external decisions in business workflows.

DEFINITION. A workflow (schema)is a tripleW = (A,S,R)
whereP=(A,S) is a pre-workflow schema andR a finite set of
rules overP. W is said toextendP. An artifacto1 derivesanother
artifacto2 in W, denoted aso1 ⊢W o2, if o1 ⊢

r

o2 for some ruler
in R.

LetP = (A,S) be a pre-workflow schema. Aninput (set)for P is
a subsetAinit ⊆ A. In general, we shall consider a pre-workflow
P and a given inputAinit . A goal for P is a satisfiableL′-condition
overA.

A path for a pre-workflowP = (A,S) with input Ainit is a se-
quence of artifacts~o = o1, ..., on where

1. o1 |= DEF(A) iff A ∈ Ainit for eachA ∈ A,

2. For each1 6 i < n, oi ⊢P oi+1.

Let γ be a goal. The path~o is γ-safeif on |= γ.

LetW = (A,S,R) andAinit be an input parameter set for(A,S).
A patho1, ..., on for (A,S) with inputAinit is anexecutionof R if

for eachi ∈ [1..(n− 1)], oi ⊢
r

oi+1 for some ruler in R. We also
refer to such asexecutionsof W.

4. WORKFLOW CONSTRUCTION
In this section, we formulate and study the workflow construction
problems in a general context. We study ProblemsQ2 andQ3; we
give detailed definitions needed for ProblemQ2, based on which
it is relatively easy to formulate definitions forQ3. A key step
of construction of a “maximallyγ-safe ruleset” is the computa-
tion of “weakest pre-condition” of a service to guarantee that a
given condition is satisfied after the service execution. We consider
two kinds of weakest pre-conditions and formulate the computa-
tion process using quantifier elimination. In the following, we first
present the weakest pre-condition and its computation, and then
define and study the problems.

4.1 Weakest pre-conditions
First some technical considerations. We treat each (primed) at-
tribute variable as a normal variable in the logicL. However, since
these variables may have undefined values, we use a distinct (new)
variable for each of them and one fixed element inU which we
nameNULL to “encode” the undefinedness. For example, ifA′ is a
primed attribute variable,xA′ = NULL holds iff DEF(A′) is false.

For each formulaϕ in L, we denote byϕd the formula obtained
fromϕ after the following substitutions: For each occurrence of an
atomic formulaθ involving an attribute variableA (or A′), (1) if
θ is DEF(A), it is replaced by¬(xA = NULL), (2) otherwise it is
replaced byθ ∧ ¬(xA = NULL).

DEFINITION. Thecoreof a service(σ,R,W, π, ρ) is defined as
core(σ) = 〈R,W, πd, ρd〉.

For convenience, we denotecore(σ) as〈π(x̄), ρ(x̄ȳ)〉 wherex̄ and
ȳ are enumerations of variables for attributes inR and primed at-
tributes inW (resp.).

Similarly we replace a goalγ by γd but write it asγ(x̄ȳ). We now
define the notions of “weakest precondition” [15], which is a key
to solveQ2 andQ3 for the serviceσ that will guarantee that the
result of executingσ always satisfies the goalγ.

DEFINITION. Let 〈π(x̄), ρ(x̄ȳ)〉 be the core of a serviceσ and
δ(x̄ȳ) a (sub-goal) condition. A∀-precondition ofσ, δ is a formula
ǫ(x̄) such thatǫ logically impliesπ andS |= ∀x̄(ǫ(x̄)→∀ȳ(ρ(x̄ȳ)
→ δ(x̄ȳ))); an∃-precondition ofσ and δ is a formulaξ(x̄) such
thatξ logically impliesπ andS |= ∀x̄(ξ(x̄)→∃ȳ(ρ(x̄ȳ)∧δ(x̄ȳ))).

A ∀-(or∃-)precondition isweakestif it is logically implied by every
∀-(or ∃-)precondition.

Let σ be a service andδ be a condition. We denote the weakest
∀-precondition (resp. weakest∃-precondition) asWP∀(σ, δ) (resp.
WP∃(σ, δ)).

We note here that a weakest precondition in [15] corresponds to
∀-precondition in our setting. (The concept was formulated by
Dijkstra in the programming language context, see details in Sec-
tion 6. The notion of weakest precondition has also been used var-
iously in AI and termed “regression” [42].)



LEMMA 4.1. For each serviceσ with core〈π(x̄), ρ(x̄ȳ)〉 and
each conditionδ(x̄ȳ),

π(x̄) ∧ ∀ȳ(ρ(x̄ȳ)→ δ(x̄ȳ)), and

π(x̄) ∧ ∃ȳ(ρ(x̄ȳ) ∧ δ(x̄ȳ))

are the weakest∀-(resp.∃-)precondition ofσ andδ.

The lemma can be easily proved from the definitions.

4.2 Building maximal workflow schemas
As we shall see,∀-preconditions can help to solveQ2, while ∃-
preconditions can help to solveQ3. We now discuss ProblemQ2.

DEFINITION. LetP be a pre-workflow,Ainit an input, andR and
R′ sets of rules (inL′) for P. ThenR subsumesR′, denotedR �
R′, if each execution ofR′ overP andAinit is also an execution
of R.

Letγ be a goal. A path (execution) isγ-dead-endif it is not a prefix
of anyγ-safe path (resp. execution). When it is clear, we may use
dead-end instead ofγ-dead-end.

DEFINITION. Let P=(A,S) be a pre-workflow,Ainit an input
set, andγ a goal forP. An L′-rulesetR for P is γ-safeif (1) each
execution ofW is γ-safe and (2)W = (A,S,R) has no dead-
ends.

An L′-rulesetR for P is maximallyγ-safe (inL′) if it is γ-safe,
and for everyL′-rulesetR′ for P that isγ-safe,R � R′.

Q2: (Fix a languageL′ ⊆ L) Is there a maximallyγ-safe rulesetR
for P andAinit? Is there an algorithm that constructs such a ruleset
if it exists?

In the remainder of the section, we explore the problemQ2 in the
general setting in order to understand the theoretical underpinnings
for the problem.

Consider a service(σ,R,W, π, ρ) and a goal conditionγ. In a
naive approach,Q2 could be solved with the following intuitive
idea: search for a serviceσ1 and compute the weakest∀-precondi-
tion γ1 of σ1 for γ, and then search for another serviceσ2 and
compute the weakest∀-preconditionγ2 of σ2 for γ1, and so on so
forth until a precondition over the input set is obtained. At each
step, each weakest∀-precondition is used to create a rule.

In the following, we state that for the general case whenL′ = L,
solving problemQ2 is not easier than the complexity of the first
order theory of the structure.

PROPOSITION 4.2. If ProblemQ2 is solvable forL, then the
first order theory ofS is decidable.

Proof: (Sketch) Given a sentenceϕ in L, we construct a ser-
vice with no input/output and precondition and effects being true.
Clearly the weakest∀-precondition is the condition for the rule.
The weakest∀-precondition is true iffϕ is true.

We now considerL′ to be the set of quantifier-free formulas ofL,
denoted asLQF. In the following, we introduce an “invoke once”
property of pre-workflows that express that the pre-workflow does
not admit executions in which the same service is used more than
once.

DEFINITION. A pre-workflowP is invoke-onceif there is no se-
quence of servicesσ1, . . . , σn for which there exists a patho1, . . . ,
on of P such thatoi ⊢

σi oi+1 for eachi ∈ [1..n−1] and for which
there is somei, j, i 6= j, whereσi = σj .

Speaking intuively, there are many ways that a pre-workflow might
“enforce” the invoke-once restriction. For example, in the restricted
setting of Section 5, each service can write only one attribute, and
can be invoked only if that attribute is currently undefined. As
another example, the artifact schema might hold attributes which
essentially perform book-keeping about which services have been
invoked, and prevent multiple invocations.

THEOREM 4.3. For invoke-once pre-workflows, ProblemQ2 is
solvable forLQF if the first order theory ofS is decidable and ad-
mits quantifier elimination.

Proof: (Sketch) LetP be an invoke-once pre-workflow. Since each
service is executed at most once in executions ofP, consider all
possible sequences of service invocations. For each such sequence,
we compute weakest preconditions one by one starting withγ from
the end of the sequence. At each step, a weakest∀-precondition
is used to form a rule in the ruleset, that allows to invoke the cor-
responding service. (See Algorithm 5.2 below for a more detailed
description of a variant of this algorithm, that works in a specialized
context.) LetR be the ruleset formed, and letW be the workflow
created fromP andR.

To see thatR is γ-safe and dead-end free, suppose thato1, . . . , on

is a path inP andR whereo1 is initial, n > 1, andon cannot be
extended inP andR. (We know that each path has bounded length
becauseP is invoke-once.) We argue thaton satisfiesγ. Suppose
otherwise. Consider the ruleif α invoke σ that is used to move
from on−1 to on. Since this rule is inR, there is some sequence
σ1, . . . , σm with weakest∀-preconditionsα1, . . . , αm, and where
α = α1 andσ = σ1. If m = 1, thenon = σ1(on−1) satisfiesγ, a
contradiction. Som > 1 andon satisfiesα2. Further,if α2 invoke
σ2 is inR. This means thatσ2 can be applied toon, that is,on can
be extended after all, again a contradiction.

To see thatR is maximal, suppose that there is some rulesetR′

that isγ-safe and dead-end free. Suppose further that there is some
initial artifacto for which there is an execution inP andR′. where
that execution uses the sequence~σ = σ1, . . . , σn. Theno will
satisfy the weakest∀-precondition at the head of this sequence, and
one can use the rules inR that were created for~σ to moveo to an
artifact that satisfiesγ. That is, the execution ono by R′ is also an
execution forR.

COROLLARY 4.4. For invoke-once pre-workflows, ProblemQ2
is solvable forLQF whenL is (1) dense or discrete total order (with
6), (2) linear arithmetic, (3) real arithmetic (with6,+,×).

PROPOSITION 4.5. If ProblemQ2 is solvable forLQF then the
first-order theory ofS is decidable and admits quantifier elimina-
tion.

Proof: (Sketch) Consider a formulaψ = ∃yϕ(y, x1, ..., xk) where
ϕ is quantifier free. We construct a service with core〈true, DEF(y)〉
and letϕ(y, x1, ..., xk) be the goal. Clearly, the weakest∃-precon-
dition is a quantifier-free formula equivalent toψ.



It is open if the converse of Proposition 4.5 is true in the general set-
ting. The main difficulty is that the constructed workflow may have
recursion, and thus the naive approach of performing an exhaustive
search may not terminate.

4.3 Constructing workflows with exceptions
We now present a brief, informal discussion about an algorithm for
resolving ProblemQ3 for the case of invoke-once pre-workflows.
The key difference fromQ2 is that the use of exception services for
bad cases means that it is not necessary to insist thateveryexecu-
tion from a given input leads to aγ-safe endpoint. Thus, at the outer
level Q3 can be solved by using weakest∃-preconditions. Impor-
tantly, a solution toQ3 must also identify dead-end executions as
quickly as possible, and direct them toEXC.

To provide a bit more detail, recall from Section 2 the extension of a
pre-workflowP = (A,S) into a pre-workflowPEXC = (Aexc,S ∪
{EXC}) with theEXC service. The algorithm used now is similar to
the one described in the proof of Theorem 4.3 with one modifica-
tion and an added step at the end. The modification, as noted above,
is to use the weakest∃-precondition rather than the∀-precondition
in the construction of the rules discussed in the proof. LetR1 de-
note the ruleset obtained from these. It can be shown that each
γ-safe path ofP = (A,S) is an execution ofR1. However, there
may also be dead-end executions permitted byR1. To satisfy the
definition of maximalγ-safe with exceptions, we need to “shift” an
execution to theEXC service as soon as it cannot be extended to be
aγ-safe execution.

In general, an executiono1, . . . , on is dead-end for a set of rules
if no rule can be applied toon. By construction ofR1, it is fur-
ther true that for an executiono1, . . . , on, if there is not extension
of this execution that reachesγ then the path is already dead-end.
Thus, patho1, . . . , on is dead-end forR1 iff on does not satisfy the
condition of any rule inR1. Let ∆ be the set of all conditions of
rules inR1, and letϕ = ∨{δ | δ ∈ ∆}. Let α be the ruleif ¬ϕ
invoke EXC, and letR2 = R1 ∪ {α}. This rule has the desired ef-
fect of moving artifact instances to theEXC service once there is no
possible way to continue execution to a point whereγ is satisfied.
ThusR2 provides a solution toQ3 for PEXC andγ.

As a final remark, we note that the technique described above can
be applied to multiple artifacts with “fixed-link structures” [6]. Sup-
pose further that the artifacts linked together have same (similar)
lifespan. In this case, one can merge the artifacts into a single fat
artifact and the algorithms for ProblemsQ2, Q3 can be applied.
It is interesting to explore situations when the linked artifacts have
very different lifespans.

5. COMPLEXITY OF A SPECIAL CASE
We now consider the concepts presented above in a specialized con-
text, which is both relatively simple and practically motivated. The
context assumes that the underlying domain has just one sort, which
is a dense linear order. It also imposes a number of restrictions on
the services used, which in turn restricts how the services can be
sequenced. The examples of Section 2 essentially lie within this
context. In particular, the services of Section 2 do satisfy the re-
strictions. As for the underlying domain, the use of finite domains
(e.g., Boolean) is easily simulated in the context of the dense linear
order, and one can view the percentage and dollar amount domains
as being dense.

We show here that even in the restricted context the problem of

finding a maximalγ-safe ruleset isPSPACE-complete; develop a
constructive algorithm for creating maximalγ-safe rulesets (both
with and without exceptions) and consider its running time; and we
describe some restrictions which can be used to reduce that running
time. We discuss the collection of restrictions made in this previous
section at length in Subsection 5.4.

5.1 A simple framework
This section focuses on a model called thesimple quantifier-free
dense linear order artifact-based workflow framework, and denoted
W

QF ,<. This was illustrated in Section 2. As underlying first-
order logic structure we assume a single sort (domain) which has
a dense linear order, which we denote asL6 . In W

QF ,< it is
assumed that each service writes exactly one attribute.

In W
QF ,< the service pre-conditions and the conditions for rules

are quantifier-free formulas inL6 . The service post-conditions
have the form ofconditional effects, that is, each post-condition
is a conjunction of formulas of formα→ β (as in the examples of
Section 2). Further, each antecedentα is a quantifier-free formula
in L6 , and eachβ is an atomic expression having one of the fol-
lowing forms:DEF(A) for attributeA; or t1 ◦ t2 where exactly one
of t1, t2 is the attributeA and the other is a constant, and where◦
is one of{=, 6=, >,>, <,6}.

Our final restrictions focus on preventing arbitrary permutations of
the service invocations, and thereby reducing somewhat the num-
ber of weakest preconditions that need to be computed. To be-
gin, a serviceσ is well-formedif the pre-condition has formπ =
ϕ ∧

V

{DEF(B) | B occurs in the pre-condition or the antecedent
of some conditional effect} ∧ ¬DEF(A), whereA is the attribute
defined byσ andϕ is a quantifier-free formula over the read set
of σ. In this case, we say thatσ requiresDEF(B) for each of the
B’s mentioned. Further, ifA is the attribute defined byσ, it is as-
sumed for each artifacto1 that satisfiesπ that (a) there is at least
one artifacto2 such thato1 ⊢

σ

o2, and (b) all artifactso2 satisfying
o1 ⊢

σ

o2 haveo2.A defined. (Intuitively, this says that if you can
enter serviceσ then you will exit from it with a defined value for
A.) Note that under these assumptions, at most one service that
defines attributeA can be invoked in an execution. A pre-schema
P = (A,S) is well-formedif each service inS is well-formed.

We say that a well-formed pre-schemaP = (A,S) admits an
attribute orderingif there is some orderingA1, ..., An of the at-
tributes such that for eachi ∈ [1..n] and each serviceσ that defines
attributeAi, σ requires only attributes in{A1, ..., Ai−1}. Such an
ordering is calledadmissible. Each workflow inW

QF ,< is as-
sumed to admit ordering of attributes.

5.2 Complexity
We consider first the complexity of finding maximal rulesets in
W

QF ,<.

Problem: Coverage byγ-safe Ruleset
Instance: A pre-workflowP = (A,S) in W

QF ,<, a fixed set of
attributes to be initialized, and a goalγ. (The input to this problem
is considered to have size equal to the length of the string of sym-
bols used to specify all ofA, P, andγ.)
Question: Is there aγ-safe rulesetR for P that permits all input
artifacts to enter(A,S,R).

THEOREM 5.1. The problem of Coverage byγ-safe Ruleset is
PSPACE-complete.



Proof: Suppose that artifact schemaA, pre-workflowP = (A,S).
and goalγ are given. LetL denote the size of the input.

We show first that the problem is withinPSPACE. We start by creat-
ing the algebraic cell decomposition [29] forP andγ. To this end,
letA = {A1, . . . , An}, letC be the set of constants appearing inP
orγ, and letc = |C|. Assignments1 ν andµ of the attributes inA to
the underlying domainU∪{⊥} are said to beequivalentif for each
i, j ∈ [1..n] and constantd ∈ C, we have (a)ν(Ai) is undefined iff
µ(Ai) is undefined, (b)ν(Ai) 6 d iff µ(Ai) 6 d, (c) ν(Ai) > d
iff µ(Ai) > d, and (d)ν(Ai) 6 ν(Aj) iff µ(Ai) 6 µ(Aj). A cell
is an equivalence class of assignments. Each cell can be specified
by writing a sequence of all attributes and constants, separated by
either< or =, where they appear in the sequence according to their
ordering as in some (any) assignment in the equivalence class iden-
tified by the cell. That is, each cell can be specified in length which
is inO(c+ n) and thus inO(L).

As an aside, we note that the total number of cells is inO((c+n)n).
To see this, imagine assigning each attributeAi to a location in
the sequence that represents a cell. For the first attribute there are
2c + 1 choices, and for thekth attribute there are no more than
2(c+ (k − 1)) + 1 choices.

A symbolic executionthroughP is an execution where cells rather
than artifacts are used. It is easily verified that there is a natural ho-
momorphism (bisimulation) from true executions to symbolic exe-
cutions, and that to check for the existence of theγ-safe ruleset we
need consider only rulesets using constants occurring inS andγ,
and consider only symbolic executions.

We shall describe a non-deterministicPSPACEcomputation that de-
termines whether there is aγ-safe rulesetR for (P,S) that permits
all input artifacts to enter(A,S,R). From this, we can apply Sav-
itch’s theorem to conclude that this test can be performed in deter-
ministic PSPACE. While the test for existence of aγ-safe ruleset is
within polynomial space ofL, the ruleset itself might have size on
the order of the number of cells in the algebraic cell decomposition.

The computation shall be guided by a treeT that is described now.
Intuitively, this is a tree with alternating levels of ‘and’ and ‘or’
nodes, where the children of ‘and’ nodes are labeled with selected
cells and the children of ‘or’ nodes are labeled with selected ser-
vices fromS. Let B1, . . . , Bk, C1, . . . , Cm be an admissible or-
dering of the attributes inA, where the attributesB1, . . . , Bk are
the initialization attributes forP.

The treeT has height2m+ 1. For a nodev of T , we usev.cell to
denote the cell labelingv (if there is one), andv.service to denote
the service labelingv (if there is one).

The root ofT (level 0) is an ‘and’ node, and has a child for each
cell α which has values forB1, . . . , Bk and has null for each of
C1, . . . , Cm. Given a nodev at an odd leveli = 2j + 1, j ∈
[0..m− 1], v is an ‘or’ node. Further, there is a child ofv in T for
each serviceσ ∈ S such that (a)σ defines attributeCi+1, and (b)
v.cell satisfies the pre-condition ofσ. If v is at an even leveli =
2j, j ∈ [1..m], thenv is an ‘and’ node. Further, there is a child of

1The reader will note that term ‘assignment’ used here is actually
co-extensive with the term ‘artifact’. We use ‘assignment’ to avoid
confusion, since the way assignments are used in this proof is quite
different than how artifacts are used in workflow executions.

v for each cellα that (a) has values for{B1, . . . , Bk, C1, . . . , Cj}
and null for the remaining attributes, and (b) that could result from
the application ofv.service on v′.cell, wherev′ is the parent of
v. It can be verified that there is aγ-safe rulesetR with the de-
sired properties iff the following holds, whereNi denotes the set of
nodes ofT at leveli, i ∈ [1..2m+ 1]:

(†) ∀v1 ∈ N1 ∃v2 ∈ N2 ∀v3 ∈ N3 . . .
∃v2m ∈ N2m ∀v2m+1 ∈ N2m+1

[vi+1 is a child ofvi for eachi ∈ [1..m− 1], and
v2m+1.cell satisfiesγ]

The treeT can now be used to guide a non-deterministic computa-
tion, in space polynomial ofL, to check property(†). At each step,
the computation will hold one partial path from the root, including
the services and cells associated with the nodes along that path. The
computation performs a depth-first search across all relevant paths.
For a pathp of lengthi = 2j+1, j ∈ [0..m−1], for the first entry
into nodepi one child ofpi (i.e., one service definingCj+1 that
has true pre-condition forpi.cell) is non-deterministically chosen
and recorded. This is becausepi is an ‘or’ node. Given a pathp′ of
lengthi = 2j, j ∈ [0..m], each child ofp′i must be processed (i.e.,
the sub-trees below have to be processed), becausep′i is an ‘and’
node. Ifj = m, then each child ofp′i.cell must satisfyγ. It can
be verified that there is a successful non-deterministic computation
iff property (†) holds. Note that the amount of storage required is
on the order of the space needed to storem assignments, which
is at most a quadratic ofL. This completes the argument that the
Coverage problem is withinPSPACE.

We now show that the problem isPSPACE-hard. We perform a re-
duction from Quantified Boolean Formulas (QBF). Let
α = Q1x1Q

2x2 . . . Q
nxnβ(x1, . . . , xn), where eachQi is either

∀ or ∃, andβ(x1, . . . , xn) is a Boolean formula overx1, . . . , xn.

We shall build a pre-workflowP = (A,S) and goalγ that is related
to α. Interestingly, we shall need only one constant in this pre-
workflow. It will be shown thatα is valid iff there is aγ-safe ruleset
that permits all inputs to enter into an execution. Thus,α is valid
iff each maximalγ-safe ruleset permits all input artifacts to enter
into an execution.

For the artifactA, we have attributes

ai i ∈ [0..n]
bi, ci i ∈ [1..n] andQi = ∃

Attribute a0 will act as the input parameter, and is ignored during
the execution of all services of the workflow.

For i ∈ [1..n], attributeai will correspond to variablexi. The
bi’s andci’s will be used for bookkeeping. We allow 0 (zero) to
be a constant in the domain of these attributes. Intuitively, if during
execution we haveai > 0, this will correspond toxi being assigned
the valuetrue, and if a1 6 0 this will correspond toxi being
assigned the valuefalse.

We use the following family of services

σi : ai for i ∈ [1..n] whereQi = ∀
pre-condition:DEF(ai−1)
post-condition:true→ DEF(ai)



τT
i : bi for i ∈ [1..n] whereQi = ∃
pre-condition:DEF(ai−1) ∧ ¬DEF(ci)
post-condition:true→ DEF(bi)

τF
i : ci for i ∈ [1..n] whereQi = ∃
pre-condition:DEF(ai−1) ∧ ¬DEF(bi)
post-condition:true→ DEF(ci)

σi : ai for i ∈ [1..n] whereQi = ∃
pre-condition:DEF(bi) ∨ DEF(ci)
post-condition:DEF(bi) → ai > 0

DEF(ci) → ai 6 0

It is easily verified that the pre-workflow just described is inW
QF ,<.

Intuitively, if Qi = ∀, thenσi can yield a value bigger or less than
0 for ai, i.e., it can “produce” the value true or false forxi. If
Qi = ∃, then the rules can be used to determine which ofτT

i or
τF

i can be invoked (and only one of them will succeed in any case).
This in turn permits the rules to “control” whetherxi becomes true
or false.

Assume that inβ there is no negation except on variables. We
constructγ from β by replacing each non-negative termxj in β by
aj > 0, and each negative term¬xj in β by aj 6 0.

Suppose first thatα is not valid. This means that¬α is satisfiable.
Let R be a maximal ruleset forP andγ. Suppose thatR permits
some execution. This means that for at least one value ofa0, an ex-
ecution can be started forR. Using the facts that¬α is satisfiable,
thatR does not permit dead-end executions, and that the services
σi can yield any output, it is now possible to construct an execution
valid for R which ends with all of theai’s defined, but withγ not
satisfied. This is a dead-end execution after all, a contradiction.

Suppose now thatα is valid. We shall construct a rulesetR for P
that isγ-safe and that permits all input artifacts to enter the system.
Let i ∈ [1..n] be fixed, whereQi = ∃. If ν is a truth assignment for
{x1, . . . , xi−1}, letν+{xi/true} denote the extension ofν where
xi is assigned totrue, and defineν + {xi/false} analogously.
Create a Boolean formulaϕT

i (x1, . . . , xi−1) such that

ϕT
i [ν] = true iff

Qi+1xi+1 . . . Q
nxnβ(x1, . . . , xn)[ν + {xi/true}] = true

Analogously, createϕF
i (x1, . . . , xi−1) such that

ϕF
i [ν] = true iff

Qi+1xi+1 . . . Q
nxnβ(x1, . . . , xn)[ν + {xi/false}] = true

In general, we will not haveϕF
i ≡ ¬ϕT

i . However, suppose that
ν is chosen so thatQixi . . . Q

nxnβ(x1, . . . , xn)[ν] is valid. (This
is trivial for the case fori = 1, sinceα is assumed valid.) Since
Qi = ∃, at least one ofϕT

i [ν] orϕF
i [ν] is true.

Assume thatϕT
i andϕF

i have no negations except on variables.
Let ϕ̂T

i (a1, ..., ai) be constructed fromϕT
i by replacing each non-

negative termxj byaj > 0 and each negative term¬xj byaj 6 0.
Constructϕ̂F

i (a1, ..., ai) analogously.

Build the rulesetR as follows.

for i ∈ [1..n] with Qi = ∀, include
ri = if DEF(ai−1) then σi

for i ∈ [1..n] with Qi = ∃, include
rT

i = if DEF(ai−1) ∧ ϕ̂T
i (a1, . . . , ai−1) then τT

i

rF
i = if DEF(ai−1) ∧ ¬ϕ̂T

i (a1, . . . , ai−1)
∧ ϕ̂F

i (a1, . . . , ai−1) then τF
i

It is straightforward to show that ifα is valid, then on any input
there are successful executions that satisfyγ, and no dead-end ex-
ecutions.

5.3 A constructive algorithm
This subsection describes a constructive algorithm for building max-
imal γ-safe rulesets forWQF ,< pre-workflows. This is described
so that we can discuss a contributor to the high running time of
the ruleset construction, and identify restrictions that reduce that
running time.

Recall that pre-workflows inWQF ,< admit ordering of the at-
tributes. LetA1, . . . , An be one such ordering. In this case, to
perform the construction of rules as in the proof of Theorem 4.3,
we can focus on a directed graph which hasn layers (wheren is the
number of attributes). Theith layer will consist of all services that
define attributeAi, and for eachi ∈ [1..n] edges are included from
each service at layeri−1 to each service at layeri. As will be seen,
although the full number of paths in such a graph is exponential in
n, the number of rules needed to solveQ2 (or Q3) is equal to the
number of services.

The main algorithm is now given. In the algorithm it is assumed
that the weakest pre-condition formulas that are computed are trans-
formed to be quantifier-free.

ALGORITHM 5.2. Maximalγ-safe ruleset forWQF ,<

Input: P = (A,S) andγ in W
QF ,<,

and initialization attributesI
Output: maximalγ-safe rulesetR for the above
Procedure:
1. Assume thatA1, . . . , An is an ordering of the
2. attributes so that each service definingAi requires
3. only attributes fromA1, . . . , Ai−1.
4. For each serviceσ that definesAn, create the
5. ruleRS = if wp∀(σ, γ) then invokeσ.
6. Do for eachi ∈ [1..n− 1] in reverse order:
7. Letσ1, . . . , σk be the services that defineAi+1,
8. and letRj = if αj then invokeσj be the
9. rule already constructed by the
10. algorithm forσj

11. For each serviceσ that definesAi, create the
12. ruleRσ = if α then invokeσ where
13. α = thewp∀ of σ and the disjunction of
14. the formulasαj , j ∈ [1..k].

It is straightforward to verify that this algorithm is correct.

We have developed constructive algorithms for computing quantifier-
free formulas equivalent towp∀(σ, ϕ) and wp∃(σ, ϕ); these in-
volve a detailed analysis of the formulaϕ and the pre- and post-
conditions ofσ, which essentially comes down to removal of exis-
tential quantifiers.



As noted previously, Algorithm 5.2 constructs one rule for each ser-
vice inP. The astute reader will have noticed, however, that there
is the potential for the size of the conditions in the rules to grow
to be size exponential in the number of attributes. This is because
the condition for the rule of a service definingAi is based on a
conjunction of formulas, one for each service that definesAi+1.

We now explore the question of whether further restrictions on the
pre-workflows inWQF ,< can help to limit the size of the condi-
tions in the rules, thereby reducing the overall running time and
space of the algorithm. A key factor is the number of attributes that
are involved in the construction ofwp∀ formulaα in line 14 of the
algorithm.

Suppose that theσ in the loop of line 11 is at leveli, let p > i, and
suppose thatσ′ is a service at levelp. If A is an input attribute for
σ′, andA = Aq for someq < i, thenA can occur in at least one
of the formulasαj mentioned in line 14. AttributesA from γ that
are defined above leveli can also occur in one of theαj ’s.

More generally, definefree(i) to be{Aq | q < i andAq appears
in γ or is an input attribute for someσp with p > i}, and define
width(i) = |free(i)|. Let w = max{width(i) | 1 ∈ [1..n]}. It
can be shown that the time required to computewp∀[σ, α] in line
13 is bounded by some constantc = f(b), wheref is no more
than doubly exponential inb times (b plus the number of constants
appearing inS andγ). (The latter multiplicand is included because
it helps to control how many atoms can be constructed using the
variables inα.)

Intuitively, the value ofwidth(i) corresponds rather coarsely to the
amount of “scratch paper” that an execution needs to retain just
after computing the attributeAi. A pre-workflow with small maxi-
mum width is one that produces attribute values and then consumes
them (for the last time) fairly quickly, and a pre-workflow with
large maximum width is one that will produce many attribute values
before it uses them for the final time. The discussion above indi-
cates that for pre-workflows that have a very small maximum width
the computation of the maximalγ-safe ruleset can be performed
with runtime at a smaller exponential than for the pre-workflows
which have high maximum width.

5.4 Discussion
This subsection briefly reviews the restrictions made for the results
obtained in this section, considers how realistic they are, and what
might be involved in relaxing them. The key assumptions for the
technical results are (a) focus on a single artifact type; (b) each
service writes exactly one attribute; (c) services are well-formed;
and (d) the pre-workflow has an admissible attribute ordering. The
combination of (b) and (c) imply an “invoke-once” semantics for
services, that is, each service can be invoked at most once in an
execution. Restriction (c) also implies a “write-once” or “mono-
tonicity” property, i.e., that each attribute can be written at most
once.

Consider first the focus on single artifacts. A key consideration
here is the “life expectancy” of an artifact [8], e.g., some arti-
facts, such asordermight have a life expectancy of days or weeks,
where as other artifacts, such ascustomer, which would focus on
the overall experience of customers over time, might have a life
expectancy of years. The results of this section can be extended
to work with a bounded set of artifact types that have a similar
life expectancy, by simulating them with a single “super”-artifact,

containing all attributes contained by the original artifacts (some re-
naming may be necessary). For example, this approach is discussed
using the notion of “fixed-link structures” in [6], and also used in
[14]. However, if two artifact types have substantially different life
expectancy, then there will typically be many artifacts of one type
for just one artifact of the other type. In this case, the “super”-
artifact would essentially involve a set-valued attribute, and as seen
in [14] this can significantly complicate the formal properties of the
model. It remains open what restrictions would need to be made on
set-valued attributes and/or artifacts with differing life expectan-
cies in order to achieve results analogous to the ones obtained in
this section.

Restriction (b) alone, that services write just one attribute, is in-
cluded mainly for technical convenience. For example, if a service
may write more than one attribute, then complex tautological rea-
soning is sometimes required when performing an optimized com-
putation of the weakest precondition. Intuitively, this is because
certain combinations of effects may lead to tautologies (which would
lead to satisfiable weakest preconditions), even when the weakest
precondition for each affected sub-formulae in isolation would be
equivalent tofalse. In general, restriction (b) can be dropped with-
out impacting thePSPACEresult.

The well-formedness restriction (c) is quite strong; together with
(b) it implies that each service can be executed at most once. The
restriction enables Algorithm 5.2 to be relatively straightforward.
If multiple invocations of a service were permitted, then executions
could potentially have arbitrary length. Although the overall mem-
ory of the system at each point in time is bounded (by the space
available in the artifact for storing values), it is unclear how the al-
gorithm could be generalized to this case. Further, it remains open
whether thePSPACEupper bound of Theorem 5.1 will hold in the
context of multiple service invocations. (In principle, one might
have to keep track of computations whose length is on the order of
the number of cells in the algebraic cell decomposition.)

Restriction (d) concerning admissible ordering of the attributes is
also quite strong. It implies that the attributes can be organized into
a DAG, and that service invocations must be sequenced according
to some topological sort of the DAG. This assumption significantly
simplifies both the proof of thePSPACEupper bound and the con-
struction of Algorithm 5.2. However, the DAG assumption does
not appear to be critical to either of these, as long as each service is
known to be invoke-once.

We finally consider whether the results obtained in this section can
be applied in practice. On the one hand, experience in the field [5,
7] has shown that there are typically artifact types of different life
expectancies, and that there are often cycles in the lifecycle of an
artifact. Assuming that we focus on a single artifact, then it is often
the case that the cycles are “local”, and can be encapsulated to be
viewed as essentially a single service. Many services are invoke-
once, and in many situations the high-level flow of services in a
lifecycle is DAG-based. Further, at IBM Research there is active
work on developing a hierarchical approach to specifying lifecy-
cles, where the work units in a given level of the hierarchy can be
organized in either a declarative or more procedural manner. This
suggests that the results developed here might be applied directly
in selected contexts within a practical system. It is clear, however,
that much research remains to be done.



6. RELATED WORK
We describe here related work in the following areas: the use of
weakest pre-conditions in formal verification and synthesis, veri-
fication of artifact-based workflow, constraint-based systems, se-
mantic web services, AI planners for workflow synthesis, and de-
cision theory as found in AI and operations research.

The notion of weakest condition, which originated in [23] and sub-
sequently studied in [15], has been used widely in formal verifica-
tion and the theory of program derivation (synthesis). In verifica-
tion [12], algorithms have been developed to deal with program-
ming constructs as arise in general programming languages. The
problems studied are thus quite general, and typically have high
complexity. Techniques such as BDDs help with practical situa-
tions. With regards to program derivation, work such as [34, 36]
build upon and extend the initial ideas in [15] to develop a general
theory for derivation of programs involving the assignment state-
ment and control structures. In contrast, the services in our work
are more general than assignment statements (which can be viewed
as services of specific types) and we distinguish∀-preconditions
and ∃-preconditions. Also, we focus on the complexity aspect
which the earlier work did not address. On the other hand, the
techniques for reasoning through control flow constructs in their
work may have a potential use in workflow construction, but this
is not exactly clear due to the different style of “programming” in
the declarative workflow setting. One interesting note is that the
avoidance of “dead-end” seems to resemble Dijkstra’s concept of
“free of miracles” [34, 36].

Work on formal analysis of artifact-centric business processes in
restricted contexts has been reported in [6, 18, 19]. Properties in-
vestigated in these studies include reachability [18, 19], general
temporal constraints [19], and the existence of complete execution
or dead end [6]. Citations [18, 19] are focused on an essentially
procedural version of artifact-centric workflow, and [6] is the first
to study a declarative version, albeit at a very abstract level in which
attributes are either defined or undefined (i.e., the values associated
with attributes are not considered in the formalism). Both [14] and
the current paper extend that model by letting attribute values range
over a dense linear order, and incorporate non-deterministic ser-
vices with pre-conditions and conditional effects specified in terms
of the underlying domain. Unlike the current paper, [14] permits
set-valued attributes, interaction of multiple artifacts (in limited set-
tings), and a static external database that services can refer to. That
paper studies static analysis of properties specified in a first-order
extension of linear temporal logic, and maps the boundaries of de-
cidability.

A key technical ingredient in this paper is the use of constraints,
e.g., in modeling and reasoning about services. Constraints have
been used in logic programming [27], databases [28], and verifi-
cation (e.g., of hybrid systems [16]). In particular, our model of
services is reminiscent of constraint relations [28, 22, 30]. How-
ever, one key difference is that the semantics are very different: a
constraint relation represents a set of points, while the pre- and post
conditions specify the set of possible input-output pairs. Also, it is
typical to manipulate constraint relations using first-order queries,
whereas the pre- and post-conditions of services are used to ensure
proper chaining of the services.

The declarative artifact-centric workflow model of the current pa-
per can be viewed as a specialized form of semantic web services
as in OWL-S [13] and subsequent efforts [2, 44]. In particular, the

use of non-determinism and pre- and post-conditions to character-
ize services is closely related to the use of Input, Output, Precon-
dition, conditional Effect (IOPE) in OWL-S. Similar to the current
paper, [35] develops an approach to create a composition of se-
mantic web services that satisfies a static goal; that work uses a
construction based on Petri nets. Another approach to automated
composition of web services is provided by the Roman model and
follow-up work [4, 17, 3, 39]. The Roman model focuses purely on
data-less activities, and the complexity of the composition problem
is in EXPTIME [4, 17]. The Colombo model can be viewed as a
substantial extension of the Roman model, which incorporates data
into a formal semantic web services framework in a rich way [3].
However, the complexity of the composition problem in Colombo
is EXPSPACE. Thus ourPSPACEresults for workflow construction
in the presence of data bring us one step closer to being practical.

Turning to the use of AI techniques in automated workflow de-
sign, [33] describes a system that uses a partial-order planner based
on UCPOP [38] to construct business processes. In that work, a
plan, which is essentially a use-once workflow schema, is built on-
demand for each individual set of inputs. While there are some
implicit conditionals in the plans, they have little flexibility once
an execution has started. Our approach, on the other hand, gen-
erates a general-purpose workflow schema that can be used for all
possible inputs, and is least restrictive in the sense that it leaves
maximal flexibility to its user. For example, the precise scheduling
of services is not fixed in advance, and could be varied to achieve
certain optimizations.

The planning approach to workflow design described in [40] uses
weakest pre-conditions (called “regression” there) in a manner sim-
ilar to the current paper. This work starts with a desired goal and a
family of “actions” (which are similar to our services but determin-
istic), and uses weakest pre-conditions to obtain a tree of all pos-
sible ways the goal can be achieved. This tree is used to generate
a policy, that is, a mapping from conditions to actions, where each
condition corresponds to a different possible state of the world. It is
shown in [20] that the worst case complexity is linear in the size of
the state space, which is exponential in the number of attributes
used in the environment. Our approach differs by permitting a
dense linearly ordered domain and non-deterministic services, and
by building a general-purpose workflow schema. Further, we have
identified some cases where our approach appears to be pragmati-
cally feasible.

Finally, we note that decision theoretic approaches to similar prob-
lems can be found in AI and operations research, e.g. [9, 10].
These differ from our perspective in that they consider stochastic
uncertainty, and also explicit costs and rewards of actions. In that
framework, the objective is to maximize the expected accumulated
reward.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we formulate the technical problem of goal-directed
workflow construction in the context of declarative artifact-centric
workflow, and develop results concerning the general setting, design-
time analysis, and the synthesis of workflow schemas from goal
specifications. The work is among the important initial steps along
the path towards eventual support for tools that enable substantial
automation for workflow design, analysis, and modification.

In terms of future work, one area is to consider the same prob-
lems but with different settings. For example, how do we handle



recursive workflows, i.e., not satisfying “invoke once”. How do
we generalize to cases with multiple artifacts which are linked to-
gether but have very different life expectancies? To what extent can
we permit set-valued attributes? What if different underlying do-
mains are used (e.g., the integers)? What if limited quantification is
permitted in the specification of services or rules? As noted in Sec-
tion 5, there is currently active work at IBM Research on incorpo-
rating hierarchy into lifecycle specifications in the artifact-centric
approach; perhaps this can be leveraged to reduce the complexity
of automated workflow synthesis.

A rich area is to extend the goals used here to include temporal op-
erators. We expect that traditional approaches (e.g., [1, 11]) could
be used to transform temporal goals into end-state goals such as
used here, perhaps with the overhead of adding new attributes to
the artifact type. It is unclear how many attributes would be needed,
and how temporal goals would impact results such as thePSPACE

completeness.

Another direction concerns whether incremental modifications to
goals could be translated in an incremental fashion into new work-
flow schemas. This would be especially useful in the context of
workflow evolution, in cases where relatively modest modifications
are being made. Separate techniques might be useful for the some-
what distinct cases of adding/removing attributes from the artifacts
and modifying the business goals or constraints about how or when
certain attributes are to be computed.

In the model used in this paper, the services read only from artifacts
and modify only artifacts. In the general case, of course, workflow
services may use or impact the “outside world”. It will be inter-
esting to explore how the results and techniques obtained here can
be generalized to the case with external databases that can be read
and/or updated, and other side-effecting operations.

A final promising area is to see whether techniques developed in
the current paper have relevance in the area of execution optimiza-
tion of declarative artifact-centric workflow schemas. As discussed
in [8], it appears useful to structure the implementation and opti-
mization problem in three layers: conceptual layer (the rules-based
workflow schemas generated in the current paper), logical imple-
mentation layer, and physical implementation layer. (These layers
are analogous to relational database query implementation, with
SQL at the conceptual layer, the relational algebra at the logical
implementation layer, and the details of indexing and relational op-
erator implementations at the physical implementation layer.) In-
deed, it appears that the conceptual model described in [37] might
provide a starting point for the logical implementation layer. It
would be an interesting exercise to “compile” the rules of a declar-
ative artifact-centric workflow schema into artifact workflows in
the model of [37], which can then be implemented in a fairly direct
manner. Optimization criteria, e.g., around resource limitations or
the prioritization of particular artifact instances, could be incorpo-
rated into this compilation process. Techniques from [25] and from
AI planning may also be relevant here.
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