
INTEGRATING DECISION-THEORETIC PLANNING AND
PROGRAMMING FOR ROBOT CONTROL IN HIGHLY

DYNAMIC DOMAINS

von
Christian Fritz

{Christian.Fritz@rwth-aachen.de}

Diplomarbeit

im Fach Informatik
vorgelegt an der

Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinisch-Westfälischen Technischen Hochschule Aachen

im Herbst 2003

Hiermit versichere ich, daß ich die Arbeit selbständig verfaßt und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

1

Acknowledgments
First of all I would like to thank our whole ROBOCUP team, the AllemaniACs, for
the great work we did in preparation of, and the success we had at the ROBOCUP 2003
World Cup at Padua, Italy. I am especially grateful for being given the opportunity
of applying the presented approach to our soccer playing robots at a world cup tour-
nament, and thank everybody for trusting in this approach although it sometimes was
rather unclear whether it would lead to success. Special thanks goes to Alexander Fer-
rein for all the ups and downs we went through and for never loosing faith in our suc-
cess. Also for the endless and exhaustive discussions especially at the beginning of this
work I would like to thank him. Last but not least, I want to thank Prof. Lakemeyer for
the discussions concerning options and for giving me the opportunity to present parts
of this work at an important international conference on artificial intelligence.

2

Contents

1 Introduction 5
1.1 Autonomous Agents . 5
1.2 Goals and Contribution . 7

1.2.1 Extending DTGolog with Options 7
1.2.2 Merging extended DTGolog and icpGolog to ReadyLog . . . 8
1.2.3 Evaluation of the interpreter 8

1.3 Outline of this Thesis . 9

2 Example Domains 10
2.1 Grid Worlds . 10
2.2 ROBOCUP Soccer Simulation . 11

2.2.1 Soccer Server . 11
2.2.2 UvA Trilearn . 13

2.3 Mobile Robotics . 14
2.3.1 Mid-Size League . 14
2.3.2 Architecture . 15

3 Markov Decision Processes and Options 17
3.1 Markov Decision Processes . 18

3.1.1 Actions, States and Transitions 18
3.1.2 Events . 19
3.1.3 Costs, Reward and Value . 21
3.1.4 Policies and Expected Value 22
3.1.5 Solution Methods . 23

3.2 Options . 24
3.2.1 Options and Multi-Time Models (Sutton et al.) 25
3.2.2 Abstract MDPs (Hauskrecht et al.) 27

4 Situation Calculus and Golog 33
4.1 The Situation Calculus . 33

4.1.1 A Solution to the Frame Problem for Deterministic Actions . 34
4.1.2 Basic Action Theory . 35

4.2 Golog . 37
4.2.1 icpGolog . 38
4.2.2 DTGolog . 42
4.2.3 Online DTGolog . 47

3

4

5 ReadyLog 48
5.1 Decision Theory . 48

5.1.1 Modeling Uncertainty . 49
5.1.2 Specifying the Implicit MDP 55
5.1.3 Solving the Implicit MDP 56
5.1.4 Policy . 63

5.2 Options . 66
5.2.1 Defining local MDPs . 67
5.2.2 Local MDPs: Solution and Model 70
5.2.3 Using Options . 75
5.2.4 Problems and Restrictions 77

5.3 Preprocessor and Implementation . 77
5.3.1 Compiling Conditions . 78
5.3.2 Processing Elements of the Language 82
5.3.3 Conclusion . 84

6 Experimental Results 85
6.1 Grid Worlds . 85
6.2 ROBOCUP Soccer Simulation . 89

6.2.1 Comparing to ICPGOLOG 90
6.3 Mobile Robotics: ROBOCUP Mid-Size League 91

6.3.1 Problem Implementation . 91
6.3.2 Agent Behavior . 92
6.3.3 Experiences at ROBOCUP 2003 94

7 Conclusion and Future Work 99

A ReadyLog Interpreter 101
A.1 definitions.pl . 101
A.2 Transition Semantics . 101
A.3 Decision-theoretic Planning . 101
A.4 Options . 101
A.5 Preprocessor . 101

Chapter 1

Introduction

1.1 Autonomous Agents

The design of autonomous agents, like mobile robots, has become a key issue in ar-
tificial intelligence. Autonomous mobile robots are commonly able to fulfill certain
so-called low-level tasks, such as collision avoidance or localization. Basic actions,
as for example driving to a specified location, are thus possible for it to perform. In
general, the designer’s motivation is to use the robot to fulfill more complex tasks, e.g.
to deliver mail or to play soccer. If the robot is technically capable of performing all
necessary actions to carry out the task, the remaining question is how to tell the robot
what it should do and how. The same question arises for non-physical robots, so that
in our considerations we will talk more generally about an agent, denoting the concept
of physical robots and non-physical agents that act in simulated worlds or any other
kind of non-physical environment. An example of non-physical agents could be trad-
ing agents acting at on-line markets or stock exchanges or computer players in some
kinds of games. The special term autonomous agents is used to point out that these
agents are not controlled from the outside, but instead fulfill tasks on their own. Then
a designer has to think of how to make these agents act intelligently.

Mainly, two paradigms for specifying the behavior of autonomous agents exist
which are mostly treated independently: programming and planning.

The programming approach aims at specifying an agent through an explicit pro-
gram. That is, the designer strictly defines the behavior of the agent. Imaginable would
be a simple sequence of actions the agent performs or some use of conditionals to de-
cide on different possible courses of action depending on some condition. Other control
constructs include loops and procedures. After all, however, the behavior of the agent
is completely decided by the designer. In particular, whatever situation the agent might
get into, it just sticks to its program.

Here is the main limitation of this approach: as the complexity of the agent’s task
increases, the designing task for the agent programmer gets more and more difficult,
meaning that there are more and more situations the programmer has to provide an
appropriate action for. Still, during execution situations might be encountered that the
programmer have not borne in mind. Then the agent would probably behave differently
from what would be desired. Furthermore, even small changes in the agent’s task may
require a lot of modifications in the program. On the upside this approach is typically
fast, as the agent usually does not have to “think” a lot.

5

CHAPTER 1. INTRODUCTION 6

Specifying an agent according to the planning paradigm is completely different.
Instead of explicitly specifying how to behave, the agent is left with the decision on
an appropriate course of action. In general, the designer defines only the actions and
their effects, describes an initial state and a goal state. From that the agent is forced
to create a plan how to reach the goal. This always involves some kind of search.
Subtleties exist in various forms: systems exist that allow for uncertainty about the
effects of actions, assigning certain probabilities to the outcomes considered possible.
Others formulate goals not explicitly as some sort of desirable state to reach, but instead
assign utilities to states such that the agent aims at maximizing the utilities along its
path. Put together, those approaches constitute decision-theoretic planning, which will
be the kind of planning considered in this work.

The planning approach overcomes the problem with programming mentioned
above. As long as the models describing the effects of the actions are adequate1 and the
description of the goal and the initial state or the assignment of rewards to situations in
the case of decision-theoretic planning correctly describe the desires of the program-
mer, the agent will always be able to behave as intended. However, this advantage
comes along with a huge computational complexity. Instead of simply following the
strict instructions given by the programmer, the agent has to project the effects of all
possible courses of action up to a certain horizon. Only after these projections have
been generated, the agent can determine the expected rewards for each of them and
select the most promising for execution. Projection, however, takes time. The com-
plexity depends directly on the number of possible actions determining the branching
factor of the thereby defined search tree that is traversed in planning. Additionally, in
domains with uncertainty, which mobile robotics certainly ranks among, the branching
factor is further increased by the number of possible outcomes an action can have. This
fact immediately restrains the application of planning in real-time systems when time
to decide on the next action is limited.

Yet, there are approaches to combine the two paradigms. Boutilier et al. [5] recently
proposed DTGOLOG. DTGOLOG combines programming and planning by integrat-
ing Markov Decision Processes [31] (MDPs) into the logic programming language
GOLOG [25]. MDPs are commonly used in decision-theoretic planning for modeling
the problem. GOLOG is based on the situation calculus [26], second order logic which
can be used to model worlds where changes in the world are only due to actions. Be-
sides these primitive actions, GOLOG offers common programming constructs such
as conditionals, loops and procedures. Using the underlying situation calculus, pro-
jecting sequences of actions can be done very naturally which is the main benefit of
GOLOG.

The idea by which DTGOLOG integrates planning into programming is that the
user can leave certain decisions in his program up to the agent. At any point in the
program the user may decide that instead of determining what to do, to enumerate a
couple of alternatives and let the agent pick the best one. This can be very useful in
cases when the designer has a good idea of the structure of the problem but not of an
explicit solution. The structure of the problem is defined via models of the agent’s
actions plus some sort of reward to assess situations. The agent is then encouraged
to find ways to reach situations with high reward. Seen from the point of view of
programming, DTGOLOG introduces non-determinism with an implicit optimization
semantics. From the perspective of planning, on the other hand, it enables the designer

1Problems in designing models arise for example from the qualification- and the frame problem which
we will discuss in Section 3 and Section 4.1, respectively.

CHAPTER 1. INTRODUCTION 7

to restrain the set of possible plans and thereby decrease the time needed to find out
which is the best.

However, DTGOLOG has some shortcomings which severely limit its use for realis-
tic applications. The only implemented example reported in [5] was very simple in the
way that the use of non-determinism was kept to a minimum. In larger planning prob-
lems the performance of DTGOLOG in solving the modeled MDP is poor compared
to state-of-the-art algorithms of MDP literature, which themselves are computationally
expensive. Another disadvantage is that DTGOLOG is an off-line interpreter. Programs
have to be interpreted to the end before any action can be performed in the real world.
Also sensing actions, actions querying sensor hardware and reporting the results, are
not supported.

Fortunately, some of these disadvantages have already been discussed in the liter-
ature. One idea of speeding up planning in MDPs is to introduce so called options
as discusses for example in [38, 21]. The idea is to increase the planning granularity
by performing the planning not over primitive actions but over more complex actions.
These complex actions, denoted options, are created using primitive actions and having
the models of these primitive actions, models about the new options can be generated.
Reducing the planning granularity by planning over options decreases the necessary
horizon and may, depending on the problem and the implemented option, also help
reduce the branching factor of the search tree. This way even exponential speed-ups
are possible.

On the other hand, various on-line extensions of GOLOG have been developed
and successfully tested [12, 18, 22]. These base on an incremental interpretation of
programs, performing basic actions immediately when interpreted. Also sensing is
supported. In particular, we will base our considerations and also the implementations
on ICPGOLOG [22], which also includes some other useful extensions of GOLOG.

1.2 Goals and Contribution

The goal of this work it to tackle the disadvantages of DTGOLOG so that it can be
applied to realistic and highly dynamic domains. Therefore, a new language is devel-
oped and an interpreter is implemented in ECLiPSe Prolog [10] and evaluated in three
example domains.

1.2.1 Extending DTGolog with Options

As a first step, the idea of options is introduced into DTGOLOG [16]. The user is able to
define so-called local MDPs to describe sub-problems. These MDPs are in turn solved
producing a policy for the sub-problem. Such policies are called options. Further,
for each such option a model is created which describes the effects of following this
policy depending on the current situation. This enables the user to use options just
like primitive actions. In particular, it is possible to, in turn, use options in describing
other sub-problems via another local MDP. Thus, it is possible to create hierarchies of
options, abstracting from the original fine-grained problem further and further.

In the MDP literature there are different suggestions how options can alleviate the
global task. All these have in common that a new MDP is defined and differ only on the
therein used set of states and actions. But by fixing the MDP in which the options are
used, a certain amount of flexibility is lost. Yet, in our system, due to the flexibility in
combining programming and planning, the user can decide freely how to use options.

CHAPTER 1. INTRODUCTION 8

This way, knowledge about the structure of the problem can be applied to further prune
the search tree.

1.2.2 Merging extended DTGolog and icpGolog to ReadyLog

As we pointed out, we are interested in an on-line interpreter. One way of accom-
plishing this, is to extend DTGOLOG to an on-line interpreter like Soutchanski [37].
However, we instead aim at extending an existing on-line interpreter with the key fea-
tures of DTGOLOG. We choose ICPGOLOG [22] for this. The reason is simple:
ICPGOLOG already comprises many useful features that have been developed to en-
hance GOLOG. These are mainly the following: concurrency [13], continuous change
[19], probabilistic projection of plans [20], and the progression of the knowledge base
[15, 22].

De Giacomo and Levesque [12] discuss the problems of large agent programs con-
taining both nondeterminism and sensing. They argue why an on-line execution style
seems the only reasonable way of dealing with such programs. In this execution style
actions get executed in the real world before advancing in the interpretation of the
program. Then it is possible to react to the results of sensing actions. To still allow
nondeterminism, which requires some kind of projection to make a reasonable deci-
sion between the alternatives, they introduced an off-line search operator Σ which can
do just that. If applied to a program the operator searches for an execution trace to a
successful termination of it. Although we are not simply interested in finding any way
of terminating the program but finding the best one, the context stays the same: po-
tentially large programs containing both nondeterminism and sensing. Thus, we want
to go the same way of supporting nondeterminism in our programs, though, with a
different semantics of finding the best choice. Hence, we will introduce new operators
similar to Σ.

As a side condition, we want our interpreter to be fast enough to even in highly
dynamic domains allow the use of nondeterminism in more than just a trivial amount.

1.2.3 Evaluation of the interpreter

In the following example domains the interpreter is evaluated. The selection of these
example domains aims at setting up a broad range of different conditions and require-
ments set at the interpreter.

1. Grid worlds
Commonly considered in MDP literature are the so called grid worlds. These
are discrete navigation problems, where an agent living in a grid of cells is prin-
cipally able to move to adjacent grid cells. Walls between cells or obstacles
occupying them may exist to prevent moves between these cells. A common
task for the agent would then be to find a shortest way from a certain initial cell
to some kind of goal cell. Sometimes properties are assigned to some of the cells
to make them behave differently from normal or additional rewards and costs are
assigned to cells and actions.

Grid worlds have the advantage of being simple enough so that new ideas can
easily be tested. For instance, the idea of options was, to the best of our knowl-
edge, yet only applied to grid world examples.

CHAPTER 1. INTRODUCTION 9

2. RoboCup Soccer Simulation
The ROBOCUP soccer server [27] is a simulation software to simulate two teams
of eleven software agents playing a soccer match against each other. A more
detailed introduction to the simulator will be given in Chapter 2. The reason for
us to choose this domain to be in our set of examples is because of its extremely
high dynamics, it is a continuous world and most sensor information and ac-
tuator effects are uncertain. The task an agent faces in this domain is further
complicated by the adversarial and cooperative component of having opponents
and teammates.

We want to use this domain to test the applicability in highly dynamic envi-
ronments, where decisions have to be taken quickly and the state of the world
changes rapidly and often in an unexpected way. Real-time decision making is
needed.

3. Mobile robotics
Here especially the ROBOCUP Mid-Size League will be considered. In this
league physical robots play in teams of four and the field is approximately five
times ten meters. More details about this league will be given in Section 2.

This is an example of the kind of domains we are interested in after all: a highly
dynamic domain where physical agents act autonomously.

1.3 Outline of this Thesis

The outline of this thesis is as follows. In the next chapter we will introduce our ex-
ample domains in more detail. In Chapter 3 we will give an introduction to Markov
Decision Processes and the concept of options in the literature. Chapter 4 describes the
situation calculus and GOLOG. The most relevant GOLOG extensions are also in-
troduced. Chapter 5 introduces READYLOG and its components in detail. Also, some
implementational issues of the interpreter are discussed. Chapter 6 presents experimen-
tal results with the new interpreter in the example domains. We will show how options
can be used to save exponentially in time, and how the new interpreter can even in very
complex domains like ROBOCUP Simulation and mobile robotics be used to control
agents successfully. We conclude in Chapter 7 and point out possible future work.

Chapter 2

Example Domains

In this chapter we introduce our example domains. They are used to evaluate the in-
terpreter under different conditions and were choosen as to maximize the scope of
possible requirements at the interpreter. Throughout this thesis we will show examples
in these domains for illustration.

2.1 Grid Worlds

Grid worlds are virtual environments defined by a grid of cells representing locations.
In these domains agents are able to move to adjacent cells as long as these are not
separated by a wall and are not occupied. Figure 2.1 shows two example grid world.
They are composed by different “rooms” which are connected by “doors”.

x

1

1

2

2

3

4

5

6

7

8

9

3 4 5 6

y

10

11

(a) (b)

Figure 2.1: (a) The Maze66 example taken from Hauskrecht et al. [21] together with
the coordinate system we use. (b) The maze frequently used by Sutton et al. [29, 30, 38]

These kinds of worlds are commonly used for examples in MDP literature. In gen-
eral, the task an agent faces in such a environment is a navigation problem, i.e. finding
the best way from one specified initial cell to another specified cell, often denoted as

10

CHAPTER 2. EXAMPLE DOMAINS 11

the goal cell.1 The main characteristic of this domain is that it is discrete. The environ-
ment itself usually does not change, thus different situations are distinguished by the
position of the agent in the grid.

2.2 ROBOCUP Soccer Simulation

The ROBOCUP is an international initiative to foster education and research in the areas
of artificial intelligence and mobile robotics. By providing a standardized environment
it is possible to compare different approaches to the problems arising. The problem
given in the ROBOCUP domain is that of playing soccer in a team of agents competing
against another team.2 There are different leagues for different kinds of agents: For
example, in the Sony Legged Robot League the teams consist of four Sony Aibo dog
robots playing on a field of approximately two times four meters. For our research
we consider the Simulation and the Mid-Size League, which we will describe in more
detail in the following. In all leagues the robots are completely autonomous, i.e. there is
in particular no human interaction during the games except for cases of malfunctioning
of robots. Annually there is a world cup and several regional tournaments where the
research groups meet to test and evaluate their approaches against each other.

In the simulation league the teams consist of eleven software agents playing in a
simulated environment, called the soccer server [27]. A match lasts two times five min-
utes. The rules are mainly the same as in human soccer, taken from the official FIFA
rules, with off-sides, throw-ins, corner kicks and so on. Additional rules regulate all
other aspects of the simulation not present in human soccer. In particular, although sev-
eral software agents may run on the same machine, it is forbidden to use inter-process
communication. Via the soccer server the agents can broadcast (shout) short messages
which can be heard by surrounding players. But this way of communicating is very
limited: In particular, it is not possible to let one agent create an entire team strategy
and command all other players accordingly. As a consequence each player has to make
his own decision without usually knowing about the intentions of his teammates.

2.2.1 Soccer Server

The soccer server simulates a pitch of 105 times 68 meters. The players positions are
represented as triples (x, y, θ) with x and y being the positions on the field with a pre-
cision of 0.1 meters, i.e. the field is discretized at steps of 10cm, and θ the agents angle
with precision 0.1 degree. Similarly the ball position comprises x and y. Assigned
with each object is further a velocity vector denoting the speed in x and y direction.
The server does not broadcast any position informations to the agent programs. In-
stead, only the visual information each agent is able to perceive (see) from its current
position is provided. Thus, the agent knows of the relative positions of other players,
goalposts and some additional markers which are placed around the field. Using this,
the agent can approximate its own position. The agent can only see objects within a
certain cone in front and up to a certain distance. To look into another direction he can
turn his entire body and/or his neck up to 90 degrees left or right from his current body

1In Chapter 3, when introducing MDPs more in detail, we will see that the best way not necessarily has
to be the shortest way.

2In fact, the ROBOCUP initiative now also includes the so called ROBOCUP RESCUE where the task is to
conduct rescue missions in some kind of catastrophe scenario. Since so far we are only concerned with the
soccer leagues we will not further describe the other leagues.

CHAPTER 2. EXAMPLE DOMAINS 12

angle. Figure 2.2 shows an example screen shot of the soccer monitor, which is used
to constantly view the current situation of the soccer server, i.e. watch the game.

Figure 2.2: Screen shot of the soccer monitor. In the example our team (AllemaniACs)
plays again an older version of the 2003 world champion UvA-Trilearn

Ignoring the neck angles and velocities there are (680 ·1050 ·3600)22 ·680 ·1050 ≈
7.5 · 10212 different situations. This is the number of possible (x, y, θ)-positions a
player can be at (680 · 1050 · 3600), to the power of the number of players (22), times
the number of possible positions for the ball (680 · 1050). Since this is way to big to
take as a state space for methods requiring a finite search space, like many planning
algorithms do. But, because of the high precision of the positions, the domain can be
treated as continuous.

During play an agent can perform the following base actions3, which amounts to
sending the soccer server a message stating his wish to perform such an action:

• (dash Power) – accelerate in forward (Power > 0) or backward (Power <
0) direction with a certain power

• (turn Moment) – turn by a certain moment

• (kick Power Direction) – kick the ball into a certain direction with a
certain power (this action only affects the ball if it is in reach)

• (turn neck Angle) – look into a direction relative to the body

• (say Message) – shout a message; note that the message size is currently
restricted to 10 bytes

The effects of the first three actions are nondeterministic. In all cases noise is added
to the parameters in form of a random number uniformly distributed over a certain
range, which can be configured in the soccer server parameters files. The soccer server
simulates the movement of objects according to their velocities at time steps (cycles) of

3we are leaving out some less important commands since they are irrelevant to our considerations

CHAPTER 2. EXAMPLE DOMAINS 13

currently 100ms. Also this movement underlies uncertainty: for instance, in a situation
at time t where the ball is at position (xt, yt) and moves with velocity (vxt , v

y
t), the

position at the next time step t′ will be (xt′ , yt′) = (xt, yt) + (vxt , v
y
t) + (r, r) with r

being a random number whose distribution is uniform over a range around 0 depending
on the current velocity. This noise constitutes the uncertainy of the system in the effects
of actions and the future positions of moving objects.

Since immediately using the command set of the soccer server to control the players
is tedious, it is common to create and use a base system which, based on the primitive
server actions, offers more complex actions (often called skills, abilities or behaviors).
Some of the research groups participating in the simulation league have published their
base systems to help new teams in the league getting started ([9, 40]). For our work we
have chosen to use the base system released 2002 by UvA Trilearn [40, 11], who won
the World Cup at Padua (Italy) in 2003.

2.2.2 UvA Trilearn

The UvA Trilearn base system offers a world model, a set of hierarchical skills and
implements the communication with the soccer server. In addition, if a player sees the
ball, it immediately communicates its position to all teammates.

World Model

The world model comprises a large amount of data about the current and partially also
on the last situation. In particular, the position and velocity of the agent himself and
of all other players and the ball are provided. Usually the player will not see all other
players and the ball. He then remembers the last known positions and velocities to
estimate the positions of these objects. The so called confidence value for this object
is then decreased to express the uncertainty whether the object still remains at this
position/trajectory.

Apart from such world information, the world model also offers a number of func-
tions to calculate different kinds of information based on the available data. For exam-
ple, the closest opponent to the own player can be calculated or the expected position
of the ball after a certain number of cycles in the future can be estimated.

Skills

The skills in the base system are divided into three levels of abstraction: low-level
skills, intermediate level skills and high-level skills. The skills of each level are based
on skills of any lower lever and the primitive soccer server actions. Also data from the
world model is used.

The low-level skills work on primitive actions. Examples are

• dashToPoint(pos) – performs a (dash Power) such that the agent gets
as close as possible to the position pos,

• turnBodyToPoint(pos) – performs a (turn Moment) such that the
player afterwards faces position pos,

• freezeBall – performs a (kick Power Direction) such that the ball
(if reachable) stops immediately. This is basically done by kicking in the inverse
direction of the current ball movement.

CHAPTER 2. EXAMPLE DOMAINS 14

Intermediate skills are more complex as they often involve different kinds of ac-
tions and last more than one cycle. The duration of skills however is not implemented
explicitly, instead, such a skill has to be called over various cycles to reach its aim.
The task of the skill, thus, is to recognize what to do next in order to reach its global
aim and then to perform the corresponding action. This is repeatedly done based on
the current world model only, i.e. ignoring all previous actions. For example the inter-
mediate skill moveToPos(posTo, angWhenToTurn) performs the steps to take
the player to a position posTo. To do so, in each cycle it first determines the angle
between the body orientation and the direction to the target. Then, if the angle is ab-
solutely less then angWhenToTurn, it performs a dashToPoint(posTo) or else
calls turnBodyToPoint(posTo).

Even more complex are the high-level skills. Here are some examples:

• intercept – intercept the (moving) ball,

• dribble(angle) – move with the ball into a certain direction,

• directPass(pos) – pass the ball towards a certain position.

It is possible to specify the agent behavior by only using the high-level skills together
with information from the world model.

2.3 Mobile Robotics

In the domain of mobile robotics we consider mobile cognitive autonomous robots, that
is robots that can freely change places in their environment (mobile), use sensors to per-
ceive information from the world (cognitive) and react accordingly without immediate
human interaction (autonomous). In this domain we again focus on ROBOCUP.

2.3.1 Mid-Size League

In the ROBOCUP Mid-Size league two teams of four robots measuring at most 40cm
× 40cm × 80cm (width, length, height) play on a field of approximately five times
ten meters. The current rules prescribe coloring one goal yellow and the other one
blue. Poles at the corners of the field have similar color codings to make them easy
to distinguish for vision systems. Some changes from the common sense soccer rules
should be mentioned: throw-ins and corner-kicks do not exist in their common form,
instead, when the ball moves out of bounds, the referee simply places the ball back
onto the touch line. In particular, the team who forced the ball out of bounds may
immediately take possession of the ball again. Charging, pushing opponent robots
intentionally, is disallowed. This is especially reasonable as weight and power of the
robots differ immensely. Stronger robots could otherwise simply push opponents away.
Manual interference on the field and directly controlling robots remotely is strictly
forbidden. In case of malfunctioning, robots may be taken out for repairs and be put
back into play after at least 30 seconds have passed.

Different from the simulation league in the mid-size league the robots may com-
municate freely using wireless LAN or similar wireless communications. Also the set
of allowed sensors is not strictly specified. Only satellite based localization (GPS) and
changing the environment, for example by setting up active radio transmitters at certain
points around the field, is disallowed.

CHAPTER 2. EXAMPLE DOMAINS 15

Figure 2.3: Setting up for kick-off: our AllemaniACs mid-size team (in front) vs. CoPS
Stuttgart

2.3.2 Architecture

Both hardware and software of the robots with which we are participating in the mid-
size league have been developed at RWTH Aachen (University of Aachen).

Hardware

The hardware ([41]) has been developed by the Chair for Technical Computer Science
([36]). The aim was to have robots both competitive in ROBOCUP and usable for
service robotics applications in office environments. Five robots were produced, one as
substitute and one especially designed as a goal keeper. They are of size 39cm×39cm
with height of approximately 55cm. Two modular Pentium III PCs at 933 MHz running
Linux are on-board, the needed power is supplied by two lead-gel accumulators. These
PCs are accessible by WLAN communication using the IEEE 802.11b standard at a
maximal speed of 11Mbit/s. At the front side of the robots, some additional plates are
mounted to improve controlling the ball while traveling with it.

The robots use the wheels and motors of an electronic wheel chair for moving
(high-speed is 3m/s). A shooting mechanism at the front side can accelerate a ball
which is not more then approximately 5cm away to a speed of about 2m/s. Also the
following sensors are available:

• The odometry of the motors giving a good approximation of the distance each
wheel moves,

• a 360 ◦ laser range finder which can run a scan resolution of 0.75 ◦ at a 20Hz fre-
quency, providing the distances to any objects at height 28cm above the ground
(= mounting height of the laser), and

• a camera on a pan-tilt unit.

CHAPTER 2. EXAMPLE DOMAINS 16

Software

Our software consists of various modules. On one computer these communicate via
a communication system using shared memory which we call blackboard. Via UDP
communication, individual modules can remotely access a blackboard on a different
computer. In this manner it is also possible to synchronize different blackboards.

The following modules are running on each robot during play:

Collision avoidance: takes coordinates relative to the robot, calculates the shortest
collision-free trajectory to that target, and sends adequate commands to the mo-
tor to move along this path;

Localization: uses the distance measures of the laser scanner to estimate the current
location of the robot on a given map of the environment;

Object tracking: from the distance measures and a map the robot finds objects that do
not occur in the map and reports them as dynamic objects – this way we sense
the position of opponent robots on the field;

Computer vision: from the images of the camera it tries to extract the ball and deter-
mine its relative position – this module runs alone on one of the two on-board
computers connecting remotely to the other where all other modules are running;

Skill module: offers complex skills which form the set of actions being performed by
the high-level controller like going to a certain position or performing a kick;

High-level control: this is where our interpreter is used to specify what the robot
should do with regard to the actions available from the skill module.

On a control computer outside of the field certain data of each robot is collected
and processed: Each robot reports its belief about its own position and whether and
where it sees the ball. The different believes about the ball position are then fused into
one global position estimate. This and the reported positions are then broadcast to all
robots. Thus, even if a robot cannot see the ball for itself, it knows where it is expected
as long as some teammate has spotted it. Furthermore, via the control computer we
can communicate changes of so-called play modes (e.g. goals, game restarts, kick-
offs..) to the robots which they are not able to notice themselves. This computer also
allows us to watch and record the transmitted data. The hereby generated log-files can
be replayed after the match to analyze the game itself and how the robots behaved in
certain situations. This will be discussed in Chapter 6 in greater detail.

Chapter 3

Markov Decision Processes and
Options

In realistic settings an agent almost never has complete knowledge about its environ-
ment. Thus, it has to act under uncertainty. This uncertainty can, for example, consist
of not knowing which state the agent is in exactly or what the effects of performing a
certain action will be. Under these circumstances it is not possible to guarantee that an
agent will reach its goal with a certain plan. Sequential plans – a sequence of actions
to take – are likely to fail. Instead conditional plans are more promising. This kind of
plans include conditionals to react on-line to the actual state of the world: During plan
execution, certain previously unknown details about the world are sensed and based
on the sensing result a certain sub-plan is taken. For example consider the problem of
going by car to a far city X, but you do not know how much gas you have left. Then
a conditional plan like “first check your gas, then, if it is enough, just drive to X, else,
drive to a gas station, then refuel, then drive to X” would seem appropriate. However,
such a plan will not guarantee success in general, but only if certain assumptions are
met, such as: the gas station has not run out of gas, my car has not been stolen, the road
to city X has not been destroyed by an earthquake... This is called the qualification
problem arising from the impossibility of stating all the preconditions under which an
action will have its expected effect in the real world. However, such disqualifications
should be assumed away as even trying to account for all of them would make the
problem intractable. Imagine for the given task the agent would try to come up with a
conditional plan like the following:

1 if (my car has been stolen)
2 then buy a new one, check the gas,
3 if (enough gas)
4 then if (road to X has been destroyed)
5 then search new road to X, goto X,
6 else goto X,
7 else if (gas station has run out of gas)
8 then search gas station with gas,
9 refuel, goto X,

10 else refuel, goto X,
11 ...

17

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 18

Obviously, this would be complicating things more than necessary. However, the agent
should be aware of this problem and be ready to re-plan in case of surprising events.
We will discuss this issue in greater detail in Section 5.1.

3.1 Markov Decision Processes

Many of the problems of planning under uncertainty can be modeled as Markov Deci-
sion Processes (MDPs) [31] which also have become the standard model for decision-
theoretic planning. We formally define an MDP as a tuple M = 〈A,S,Tr ,R〉, with:

A : a set of actions

S : a set of states (often called state space)

Tr : S ×A× S → [0, 1] a transition function

R : S ×A→ IR a reward function

In the following we will describe these elements in more detail and explain certain
assumptions we make about them together with their consequences.

3.1.1 Actions, States and Transitions

A state can be defined as a compact description of the world at a certain time-point. We
assume that states comprise all relevant information about the world the agent needs for
decision-making. The world is assumed to evolve in stages, which can be understood
as time points. The transition function defines connections between the states of subse-
quent stages: for a state s1 the transition function Tr(s1, a, s2) defines the probability
that the system changes to state s2 after executing a given action a. Thus, for a stage
t from the set of stages T it defines the probability Pr(St+1 = s2|St = s1, A

t = a)
where St is the state at stage t, St+1 the state at stage t + 1 and At the action taken
at stage t. This implies the Markov assumption that the next state only depends on the
current state and the performed action. In particular, the history of states and actions
are irrelevant for predicting the next state. Note, however, that information of earlier
states may be included in the current state.

We take over the term stage used by [6] to denote the steps in which the system
evolves. The transition of a stage t to a stage t + 1 is marked by an event such as an
action taken by the agent (see Section 3.1.2). As we will not consider events that do not
affect the state, we can equate stage transitions with state transitions. Assuming that
no such event terminates instantaneously, stages can be thought of as different time
points. We make the assumption that the stage does not influence state transitions. The
model is then called stationary. Such an MDP can be depicted as a directed graph like
in Figure 3.1.

Likewise, it is possible to represent the transition function Tr as a set of transition
matrices Trai , one for each action ai ∈ A. The entries of the matrix for action ak
would then be pakij = Tr(si, ak, sj).

We assume that not all actions are executable at every state, but still we do not
distinguish over stages. Then, for each state s ∈ S we get the feasible set As ⊂ A of
actions executable in that state. This is in analogy to action preconditions in other AI
planning approaches. In our example MDP of Figure 3.1 there are four states (s1, .., s4)
and two different actions (a, b). In all states both actions are executable, except state

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 19

a, 0.8

b, 0.1

b, 0.9a, 0.2
b, 1.0

b, 1.0

a, 1.0

a, 1.0

a, 1.0

s1

s2

s3

s4

Figure 3.1: A simple example of a (stationary) MDP depicted as a graph. The arrows
are labeled by actions and the probability for the transition to happen if performing this
action.

s4 which got As4 = {a} as its feasible set. The row for s4 in the transition matrix of
action b then only contains 0.0’s in contrast to rows of actions in the feasible set which
always sum up to 1.0.

State s4 is also special in the sense that it is an absorbing state saying that once you
entered this state there is no way of leaving. More technically speaking Tr(s4, x, s) =
0.0∀x ∈ As4 , s 6= s4. A subset C ⊂ S which enjoys this property, that is, C has no
transitions leading out of it with probability greater 0.0, is called closed set. It is called
proper closed set or recurrent class if there is no proper subset of C which again is
closed. Thus, in our example the set C = {s2, s3, s4} is a closed set, but not a proper
closed set, since s4 as an absorbing state forms a special case of closed set. States that
do not belong to any proper closed set are called transient.

We are only interested in so called fully observable MDPs. In a fully observable
MDP the agent always knows which state it is in. In particular, there is no uncertainty
about his initial situation. In partially observable MDPs (POMDPs) the agent does not
know the exact system state, but at each stage has a probability distribution over the
state space. Although POMDPs are more general and even seem more appropriate for
some of our domains, they are left out of consideration here as they would increase
complexity and thus computational costs even more.

In the literature almost exclusively finite state and action sets are considered and
the most popular and well investigated methods for solving MDPs (value iteration and
policy iteration) require this property. Nevertheless we will also see an algorithm that,
under certain circumstances, solves an MDP without this requirement (cf. Section
4.2.2).

3.1.2 Events

We think of an event as either an action taken by the agent or any exogenous event
changing the system state and whose occurrence is not under the control of the agent.
However, the probability of occurrence depending on the state might be known. An
example could be an action taken by another agent or a natural process, such as a vase

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 20

which, after falling from a cupboard, breaks as it hits the floor. Although not controlled
by the agent, events of this kind have to be taken into account for decision making.

In real world domains and, above all, multi-agent systems like ROBOCUP, exoge-
nous events play an important role. Understanding how events can be modeled in the
MDP context will help us in later sections to explain the reasons why uncertainty is
modeled in a special form (cf. Section 5.1.1). We, therefore, discuss that topic rela-
tively detailed here.

If a robot pushed a vase from the cupboard and this vase breaks on the floor, this
could be seen as an effect of the robot’s pushing action. Thus, the effect is composed of
the immediate effect of pushing the vase from the cupboard and the subsequent events
of falling and breaking. Such an action model is called an implicit event model, as the
subsequent events are implicitly modeled in the robot’s push action. A possible decom-
position of this process could for example result in a robot push action, an event of
falling taking place in the situation after pushing, and an event describing the eventual
breaking at the moment the falling vase hits the ground. If the effects of an action are
seen in this fashion, we speak of an explicit event model.

Although the explicit model seems to be more natural and is in general more in-
tuitive to generate, for decision making the implicit model is needed. The reason is
obvious: if a chosen action besides its intended effect also triggers another event or
makes it more likely, the impact this event has on the success criteria has to be taken
into account in the decision. Yet it is not generally easy to determine the transition for
an action and a number of events, since their interaction can be rather complex. The or-
der of temporal occurrence of action and events can influence the outcome: Imagine a
mail delivery robot having a number of deterministic actions, one of which is checking
the inbox for new mail. New mail may arrive at every stage with probability 0.1. Then
the explicit event of mail arrival can be combined with the effects of the other actions to
obtain an implicit event model. Thus, each action now has two possible outcomes: the
original effect with probability 0.9 and the conjunction of the original effect together
with new mail with probability 0.1. For any action not affecting the status of the inbox
this is no problem. But consider the check-inbox action, which checks the inbox for
new mail and if there is some takes it out for delivery. Here the way of combining the
new mail event and the action is crucial for the outcome: if first the event happens and
then the action, the robot would have mail and the inbox would be empty. On the other
hand, if the action takes place before the event, the mail would remain in the inbox.

Even worse is the case where events can happen simultaneously. Then the outcome
may not even be a sequence of the individual effects.1 This problem is especially likely
to occur in multi-agent systems with continuous time and where actions have a duration
instead of terminating instantaneously.

One method to combine explicit events and actions is the following: For each event
and action we specify transition probabilities for when they occur in isolation. This
can be represented as a transition matrix as above. We do allow that an event does not
change the state with some probability. If that is 1.0, we can think of it as the event
not being possible in that state. Similarly, if this probability is, e.g. 0.7, we say that
the event in this state only occurs with probability 0.3. In addition to these transition
probabilities a combination function is required. As pointed out, this can get very
complex or in the case of real simultaneous events even unrelated to the individual
effects. Here we adopt an interleaving semantics for events and action (compare to
[13]). Further we assume that events are commutative, that is, for every two events

1For an example see [6].

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 21

ei, ej and every state s applying ei to s and then ej has the same effect as first applying
ej and then ei. The implicit transition probabilities can then simply be calculated by
the multiplication of the independent transition matrices Tr ei and Tr ′a of the events
and the action a, i.e. Tra = Tre1 · . . . · Tren · Tr ′a.

3.1.3 Costs, Reward and Value

The user’s preferences are defined by the reward function R : S × A → IR which
defines the desirability of executing a certain action in a certain state implying any
possible reward for simply being at this state. To better understand this function and
to alleviate its definition we separate it into two functions, a new reward function R :
S → IR and a cost function C : S × A → IR. The new reward function is understood
to express the desirability of being in a certain state, whereas C assigns (punitive) costs
to actions depending on the state where they are executed.2 Then the original reward
function is simplyR(s, a) = R(s)− C(s, a).3

For decision making the agent is interested in the overall quality of a sequence of
actions, thereby passing by certain states. We define the system history at stage t as the
sequence:

〈〈S0, A0〉, . . . , 〈St−1, At−1〉, St〉4

and denote the set of all system histories by HS . Then we can define a value function
V : HS → IR to evaluate system histories. Commonly in MDP literature value func-
tions are defined as the sum of all rewards and costs along the way as defined by the
corresponding functions. Such a value function is called time-separable and additive,
as it is a combination of the values accrued at each stage/time-point (time-separable)
and this combination is a simple addition (additive). Then the value of a history h of
length T is defined as ([4]):

V (h) =

T−1∑

t=0

[R(st)− C(st, at)] +R(sT).

This is an evaluation for a course of action over T stages. T is called the horizon of
the problem. We distinguish finite-horizon problems, where T is a natural number less
then infinity, and infinite-horizon problems, with T =∞. In infinite-horizon problems
the value as defined above could be unbound, saying that a policy, if executed for long
enough, can be infinitely good or bad. Since such a value function does not seem to
be of much use and assuming that we prefer earlier rewards to later, it makes sense to
introduce a discount factor 0 ≤ γ < 1 which is multiplied to rewards (and costs) of
later stages. Then the value for such an expected total discounted reward problem is
defined as ([4, 1]):

V (h) =
∞∑

t=0

γt[R(st)− C(st, at)]

ensuring a bound value.
In addition to finite- and infinite-horizon problems there are so called indefinite-

horizon problems. These are problems that terminate after a finite number of stages, but

2The function C is understood to assign only action related costs.
3Note that both R and C can be negative in which case their meaning is somewhat inverted (negative

rewards are punitive, negative costs are beneficial).
4Since we are dealing with fully observable MDPs we can leave observations out of consideration

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 22

different from finite-horizon problems this number is not known in advance. Instead
of simply breaking execution after a certain number of stages, in indefinite-horizon
problems certain states are terminal (having an empty feasible set), preventing any
further action and, thus, any reward gain or cost accumulation. It is required that one
of these absorbing states is eventually reached with certainty from any state in the state
space. This implies that there must not be any proper closed set (recurrent class) apart
from the absorbing states. Indefinite-horizon problems are common in classical AI
planning where only a certain goal is to be reached.

3.1.4 Policies and Expected Value

The decision problem the agent is facing is that of finding an optimal plan, that is one
that maximizes the overall value. Such a plan at each stage can be conditioned on
the system history until then. To capture the intention behind such a plan we define a
policy π to be a mapping from the set of all system histories to actions, i.e. π : HS →
A. Intuitively, a policy π tells the agent for each possible system history what to do.
Following a policy makes certain system histories more likely than others. Hence, it
induces a probability distribution over system histories, Pr(h|π). Then the expected
value of a policy π is defined as:

E(π) =
∑

h∈HS
V (h)Pr(h|π).

The expected value of a policy can be used as a criterion to base the decision on: choose
the policy that maximizes the expected value.

The set of system histories is infinite (as long as we do not set a limit on the length
of the histories) which may lead to complex policies. Luckily, under the assumptions
of full observability and a time-separable value function, the optimal action depends
only on the current state and the stage. Consequently, policies can be represented in
the much simpler form π : S×T → A, that is, assigning each state-stage combination
an action to execute in that case. Such a policy is also called Markov policy. Figure 3.2
illustrates how intuitive such a policy can be represented, when additionally stages are
ignored.

G

Figure 3.2: The arrows form a possible representation of a policy for the Maze66 where
each action (right, left, down, up) has cost 1 and at G there is a high positive reward.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 23

3.1.5 Solution Methods

Solving an MDP is understood to be the problem of finding a policy π that maximizes
the expected value. Let a fully-observable MDP with a time-separable, additive value
function be given, i.e. a state space S, an action space A, a transition function Tr ,
and a cost and a reward function C and R. Then, for a finite-horizon T and t the
number of stages to go, we define the value function V π

t for policy π as follows: set
V π0 (s) = R(s) for all s ∈ S and then:

V πt (s) = R(s)− C(s, π(s, t)) +
∑

s′∈S
[Tr(s, π(s, t), s′)V πt−1(s′)] (3.1)

Recall that π maps state-stage combinations to actions and thus π(s, t) denotes an
action. We can now define an optimal policy: A policy π is called optimal for horizon
T if and only if V πT (s) ≥ V π

′
T (s) for all policies π′ and all states s ∈ S. The value

function of such an optimal policy π is called the optimal value function.

The most common algorithms for solving MDPs of that kind are value iteration
and policy iteration. Both are dynamic programming approaches [4] exploiting the
following property of the optimal value function:

V ∗t (s) = R(s) + max
a∈A
{−C(s, a) +

∑

s′∈S
[Tr(s, a, s′)V ∗t−1(s′)]} (3.2)

Value Iteration

Setting V ∗0 (s) = R(s),∀s ∈ S the value iteration algorithm computes the optimal
value functions for any t > 0 by iteratively applying Equation (3.2). From that, the
elements π(s, t) of an optimal policy π can be generated by taking any maximizing
action a of the equation for value V ∗t (s).

For infinite-horizon problems intuitively the stage does not matter for the decision
as there are always infinitely many stages remaining. Indeed, Howard [1] showed
that in such a case there is always an optimal stationary policy, i.e. a policy only
depending on the state (π : S → A). Then, with the discounted expected value as
one’s optimization criterion, the optimal value function satisfies the recurrence:

V ∗(s) = R(s) + max
a∈A
{−C(s, a) + γ

∑

s′∈S
[Tr(s, a, s′)V ∗(s′)]}. (3.3)

To generate an optimal policy in that case, one can use a slight modification of (3.2):

Vt+1(s) = R(s) + max
a∈A
{−C(s, a) + γ

∑

s′∈S
[Tr(s, a, s′)Vt(s

′)].} (3.4)

For an arbitrary initial assignment V0 the functions Vt converge for t → ∞ linearly to
the optimal value function V ∗ (see [31] for a proof).

For indefinite-horizon problems the same iteration procedure as for the infinite case
can be applied.

Policy Iteration

Although we are not going to use policy iteration, we here describe it briefly for com-
pleteness. While value iteration aims at calculating an optimal value function and from

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 24

that extracts the optimal policy, the policy iteration algorithm directly operates on the
policy. Beginning with an arbitrary policy5 π0 the iteration takes place in two steps:

1. Policy evaluation: compute the value function V πi(s) for all s ∈ S
2. Policy improvement: at each state s ∈ S, find an action a∗ as to maximize

Qi+1(a, s) = R(s)− C(s, a) + γ
∑

s′∈S
[Tr(s, a, s′)V πi(s′)]

and set πi+1(s) = a∗.

The iteration eventually ends when ∀s ∈ S .πi+1(s) = πi(s). The algorithm converges
at least linearly to an optimal policy. For a further discussion of policy iteration and a
comparison to value iteration, we refer to the literature ([31]).

3.2 Options

In artificial intelligence the need for hierarchical planning and abstraction from prim-
itive actions has been recognized. In classical AI planning so called macro operators
(or simply macros) have been investigated to enable reuse of sub-plans and raise the
level of abstraction for planning. Macros, classically, are fixed sequences of actions
that are considered for frequent use. That is, if sub-problems occur several times in re-
lated problems, a macro solving this sub-problem can be reused saving computational
effort. Designing macros in a way that they can be used just as primitive actions, it is
possible to hierarchically build macros over macros.

In stochastic settings, like the one’s we are concerned with, simple sequences of
actions (like macros) are not of much use as said at the beginning of this chapter. The
term option (sometimes also macro-action) is used to denote a concept similar to a
macro for stochastic environments and generalizes from action sequences to policies.
In analogy to our discussion of sequential and conditional plans, options can be thought
of as conditional sub-plans, whereas macros form sequential sub-plans. Hence, the
advantages of conditional plans over sequential plans apply to options when compared
to (sequential) macros.

To get across the intuition behind options we consider a first example for an option
in the Maze66 environment.

Example 3.2.1 Figure 3.3 shows the Maze66 environment with numbers assigned to
the rooms. Assume we are generally interested in navigation problems in this
domain. Then the agent will frequently be located in a room different from the
room the goal is in and the agent’s decision can be abstracted to deciding on the
door by which to leave this room. After this decision being made, the agent only
needs to find the best (e.g. shortest) way through the room to that door. Such a
sub-plan forms an option. Thus, we could create two options for Room 1: one
option taking the agent out to the right (Room 2), one option taking it to Room
3. Since options are entire policies instead of only sequential plans, they are
applicable from every position in Room 1.

In MDPs, options have been considered from different perspectives. Sutton et al.
[29, 30, 2, 38] take a reinforcement learning point of view, whereas Hauskrecht et al.
[21] continue Sutton’s investigation focusing on planning with options.

5Note that policy iteration is applicable to infinite-horizon problems only. Hence, a policy can ignore the
stage and, thus, has always size |S|.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 25

3 4

5

6 7

21

Figure 3.3: The Maze66 example with numbers assigned to the rooms.

3.2.1 Options and Multi-Time Models (Sutton et al.)

Sutton et al. [38] define an option O over an MDP M = 〈A,S,Tr ,R〉 as a tuple
〈I, π, β〉, with:

• I ⊆ S the initiation set,

• π : S ×A→ [0, 1] a policy, and

• β : S → [0, 1] a termination condition.

The initiation set determines the states where the option is applicable. The policy π
defines for each state s a distribution π(s, ·) over actions. On execution, the next action
to take at a stage t is chosen according to π(st, ·). The mapping β assigns to each state
a probability that the option terminates if this state is reached. One natural assumption
is that for all states swith β(s) < 1.0 this state is also included in I. Consequently, any
state s′ outside of the initiation set (s′ ∈ S−I) would have a probability of termination
equal 1.0 (β(s′) = 1.0). Hence, it would suffice to define the policy π over I instead
of over entire S.

The key insight of the work by Sutton and his colleagues is that with an appropriate
transition model and a reward for an option, one can treat the option just like a primitive
action. In particular, it can be used in planning. Sutton et al. call the models providing
this information multi-time models. A multi-time model consists of a reward prediction
vector r and a state prediction matrix P. The vector r contains the truncated expected
reward for each state s ∈ S, which is the discounted accumulated reward along the
way when executing the option. Matrix P can be seen as a transition matrix, stating
for all states the probabilities of ending in it when the option is executed in a certain
state. Note that this prediction is not for one step, but for a yet unspecified duration:
the execution of an option usually lasts several stages, where the exact number is not
known in advance. Formally the elements of these predictions for an option o are
defined as:

ros = E
{
rt+1 + γrt+2 + . . .+ γk−1rt+k | E(o, s, t)

}

poss′ =

∞∑

j=1

γjPr {st+k = s′, k = j|E(o, s, t)}

where t + k denotes the random time of termination of the option, E(o, s, t) denotes
the event of starting option o in state s at time t.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 26

In [30] theoretical results of dynamic programming are extended for the use of
options: Let O be a set of options – here options may also be primitive actions. Os
denotes the set of options available in state s. The set of possible policies over options,
which are mappings defining the probabilities of taking a certain option in a certain
state, is denoted ΠO. Then the authors define the optimal value function, given the set
O, as:

V ∗O(s) = sup
π∈ΠO

V π(s), ∀s ∈ S.

The authors show the following: The value function for any Markov policy π ∈ ΠO
satisfies the Bellman evaluation equations:

V π(s) =
∑

o∈Os
π(s, o) (ro(s) + Po(s) ·Vπ) , ∀s ∈ S,

where the policy π(s, o) states the probability with which option o is chosen in state
s, ro(s) is the entry for state s in the reward prediction vector and Po(s) similarly the
corresponding row in the state prediction matrix for option o. V is the vector notation
for the value function V , defined by V[i] = V (si), where V[i] denotes the i-th entry
of the vector. The thereby defined system of equations then has the vector Vπ as
its unique solution. Further, the value function also satisfies the Bellman optimality
equations:

V ∗O(s) = max
o∈Os

{ro(s) + Po(s) ·V∗O} , ∀s ∈ S.

Here again V ∗O(s) is the unique solution. Also it is shown that there exists at least one
optimal policy π∗, defined as a policy whose value function is optimal, i.e. V π∗(s) =
V ∗O(s).

An essential role in the proof of these results plays a theorem about the relationship
between the model of a composed option and the models of its component:

Theorem 3.2.1 (Composition Theorem) Given two options a and b together with
their models ra, Pa and rb, Pb, then for all states s:

rab(s) = ra + Pa(s) · rb
Pab(s) = Pa(s)Pb

where ab denotes the composed option of first performing option a and then
option b.

From these results it follows that known algorithms like value iteration are applicable
for computing value functions also for a given set of options. This is the key to planning
with models of options and forms the theoretical basis for all our further considerations
of options.

The examples presented in [30] consider the use of options together with primitive
actions. They show how this speeds up convergence of value iteration. Figure 3.4
compares value iteration using only primitive actions (top) and using options (including
primitive actions) (bottom). Here, similar to our previous example, options have been
defined for leaving each room through a certain door. Such an options is defined as I =
“all states in room X”, π an appropriate policy (e.g. like in Figure 3.2), β(“hallway
states”) = 1.0 and β(s) = 0.0 for all other states s. As options in one step can provide
values for an entire rooms, already after the second iteration there have been values
assigned to all states. Usual value iteration over primitive actions, on the other hand,
has until then only reached states at distance two from the goal.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 27

Figure 3.4: Taken from [2]: comparing value iteration with and without options. The
size of the dots represent the value of the corresponding state (if yet any is assigned).

3.2.2 Abstract MDPs (Hauskrecht et al.)

Inspired by the work of Sutton and his colleagues, Hauskrecht et al. [21] further investi-
gated the use of options (which they call macro-actions) for planning. For solving large
MDPs they propose an hierarchical model using an abstract MDP which abstracts from
the original state space reducing its size significantly. Since our own work is closely
related to the investigations of this group we will present their approach more in detail.

Hauskrecht et al. define a macro-action simply as a policy for a certain region
(subset of the state space). This policy can then, intuitively, be executed within this
region and terminates as soon as leaving it. With regard to the more general definition
of options by Sutton et al., a macro-action can be defined as an option O = 〈I, π, β〉,
where:

• β(s) =

{
0.0, s ∈ I
1.0, otherwise

• π : I ×A→ {0, 1} and can thus be represented as π : I → A.

The approach of [21] relies on a region-based decomposition of the MDP. This is
basically a partitioning Π = {S1, . . . , Sn} of state space S, where the Si are called
the regions of the MDP. Furthermore, exit states and entrance states for a region are
defined. The set of these states are called the exit periphery (XPer(Si)) and the en-
trance periphery (EPer(Si)), respectively. Intuitively, the exit periphery of a region
is the set of those states outside the region which can be reached from inside by some
action with probability greater zero. Similarly, the entrance periphery consists of all
states inside a region reachable from the outside. Figure 3.5 shows the set of peripheral
states marked by gray dots for a decomposition of the Maze66 example environment
where each room defines a region.

Based on that, the required models for planning can be defined (taken from [21] to
our notation):

Definition 3.2.1 A discounted transition model Tr i(·, πi, ·) for a macro-action πi

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 28

3 4

5

6 7

21

Figure 3.5: The periphery (set of all peripheral states) marked by gray dots for a room-
oriented decomposition of the Maze66 environment – each room equals one region.

(defined on region Si) is a mapping Tr i : Si ×XPer(Si)→ [0, 1] such that

Tr i(s, πi, s
′) = Eτ

(
γt−1Pr(sτ = s′|s0 = s, πi)

)
,

=
∞∑

t=1

γt−1Pr(τ = t, st = s′|s0 = s, πi)

where τ denotes the time of termination of πi. A discounted reward model
Ri(·, πi) for πi is a mapping Ri : Si → IR such that

Ri(s, πi) = Eτ

{
τ∑

t=0

γtR(sτ , πi(s
t)) s0 = s, πi

}
.

The discounted transition model defines for each state in the region Si the probability
of leaving the region through a certain exit state if following the policy πi. These
probabilities are discounted by the expected time until leaving the region. By the proof
of the Composition Theorem (3.2.1) (see [30] for the proof), Sutton et al. showed that
this discounting makes it possible to use these transition models in place of normal
transition matrices in algorithms like value iteration.6 Similarly, the discounted reward
model specifies the expected discounted reward obtained when acting according to the
policy starting in a certain state until termination, i.e. leaving the room. These models
are in analogy to the state prediction matrix and the reward prediction vector of Sutton
et al., except they are restricted in their predictions to the exit states, in accordance with
the assumptions made about the termination condition β.

Generating Models

As mentioned, it is essential for planning to have appropriate models of the options
we want to use. Thus, generating these models is a crucial step: For all s ∈ S, s′ ∈
XPer(Si) the discounted transition probability for macro πi satisfies:

Tr i(s, πi, s
′) = Tr(s, πi(s), s

′) + γ
∑

s′′∈Si
Tr(s, πi(s), s

′′)Tr i(s
′′, πi, s

′).

6In fact, the discounting is used to guarantee a contraction mapping in the update formulas used in policy
and value iteration, such that a unique solution can be ensured (compare [31] and the Banach-Fixed-Point
Theorem).

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 29

By this, for each exit state s′ a system of linear equations is defined, each of which
containing |Si| equations with |Si| unknown variables. Note the difference between
Tr and Tr i: the former is the usual transition model of the global MDP, while the
latter is the discounted transition model for macro πi. Hence, they differ in the type of
their second argument: Tr takes an action, recall that πi(s) ∈ A, whereas Tr i takes a
policy as its second argument.

Similarly the expected discounted reward Ri(s, πi) for following πi in state s sat-
isfies:

Ri(s, πi) = R(s, πi(s)) + γ
∑

s′∈Si
Tr(s, πi(s), s

′)Ri(s
′, πi).

Again a set of linear equations is defined. Solving these systems, either directly or by
iterative methods, can be done in

O(|XPer(Si)| · |Si|3︸ ︷︷ ︸
transition probabilities

+ |Si|3︸︷︷︸
exp. reward

).

Creating Macros

So far, only the construction of models for given macros, i.e. policies, was discussed.
However, the aim is to have options/macros generated automatically, that is, for a given
region create some “good” policies. To judge the quality of macros one has to keep in
mind their purpose: In the long run, we want to solve an MDP using these macros
to save computational effort. Thus, a macro should be of use for this purpose. But
when is a macro of use for solving an MDP? Of course, a macro can only be any help
in the region of the MDP it is defined in. If the MDP is solved conventionally, not
using macros, an optimal behavior (sub-policy) for this region would be computed.
Hence, if there would be a (pre-computed) macro with exactly this policy, it would be
of major help in solving the MDP, as it could simply be plugged in for this region. But,
what does the policy depend on? In general, a policy entirely depends on the present
values of all states. If the optimal value function is known for all states, the action
to take in each state (policy at this state) can simply be choosen as the action leading
to the adjacent state with the highest value, where adjacency is defined with regard to
connecting actions. This similarly holds for regions: the policy for a region depends
on the values of adjacent states, i.e. the exit states of the region, plus the values of all
reachable states within the region. Therefore, if we knew the optimal value function for
all these states, we could produce perfect macros. However, if we knew that function,
the MDP would already have been solved and there would not be any need for macros.
Also, the computational investment of creating macros does not pay off for solving one
single MDP, and so what we are really after is to reuse such macros for various related
MDPs. In these, the actual value function will certainly differ and thus the values the
policy of the macro depends on should be general enough to keep the macro applicable
to all these MDPs.

Before going on with this discussion, let us formalize how to obtain a macro for a
given value assignment to the exit states of its respective region. This problem can be
considered an, usually indefinite horizon-, problem which can be modeled as an MDP
itself (taken from [21] into our notation):

Definition 3.2.2 Let Si be a region of MDP M = 〈A,S,Tr ,R〉 and let
σ : XPer(Si) → IR be a seed function for Si. The local MDP Mi(σ) asso-
ciated with Si and σ consists of:

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 30

(a) state space Si ∪XPer(Si)∪{α} where α is a new reward-free absorbing
state7,

(b) actions, dynamics, and rewards associated with Si in M ,

(c) a reward σ(s) associated with each s ∈ XPer(Si),

(d) an extra single cost-free action applicable at each s ∈ XPer(Si) that
leads with certainty to α.

Then the solution to this local MDP provides us with an optimal policy for this region
given the values for the exit states.

To overcome the problems of not knowing the right value function for the exit states
at the time a macro is computed, one could go about creating a large number of macros
for different value functions, as discussed in [21]. However, this, in general, can get
very expensive and usually unprofitable. Also, it would only make sense if the range
of the value function is known.

Instead, heuristic approachs are considered, both by Hauskrecht et al. and Sutton
and his group. One makes the assumption that the agent always wants to leave his
current region via a certain exit. Thus, assigning a high positive value to only one exit
and solving the corresponding local MDP, provides us with a policy for achieving this.
This can be done for all exit states individually producing a set of macros.8

Abstract MDPs

Yet, the application of options/macros has only been discussed by intuition. One of the
models of usage proposed in [21] is the following:

Definition 3.2.3 Let Π = {S1, . . . , Sn} be a decomposition of MDP
M = 〈A,S,Tr ,R〉, and let A = {Ai : i ≤ n} be a collection of macro-
action sets, where Ai = {π1

i , . . . , π
ni
i } is a set of macros for region Si. The

abstract MDP M ′ = 〈A′, S′,Tr ′,R′〉 induced by Π and A, is given by:

• S′ = PerΠ(S) =
⋃
i≤nEPer(Si)

• A′ =
⋃
iAi with πki ∈ Ai feasible only at states s ∈ EPer(Si)

• T ′(s, πki , s′) is given by the discounted transition model for πki , for any
s ∈ EPer(Si) and s′ ∈ XPer(Si); T ′(s, πki , s

′) = 0 for any
s′ 6∈ XPer(Si)

• R′(s, πki) is given by the discounted reward model for πki , for any
s ∈ EPer(Si).

This seizes our intuition about the general idea of options: We abstract from the original
state space to a much smaller one, namely the set of peripheral states. These build some
kind of interfaces between the regions. The actions used for planning are the options
(macros) defined for the different regions. The models, transition model and reward
function, are the discounted models that have been presented. Recall that these form
the crucial part in planning at the level of options. We point out that this reduction of
complexity, which will finally speed up computation as we will see, comes at the cost
of possibly finding only a sub-optimal solution.

The examples in [21] have been conducted in a grid world which is depicted in Fig-
ure 3.6. This navigation task, where negative rewards are to be minimized, was solved

7Alternatively, one can define the local MDP without the additional state α and instead make all exit
states absorbing with an empty feasible set.

8[21] also allows for the goal of staying in a region, modeled by low values for all exits.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 31

(a) Maze121 (b) peripheral states

Figure 3.6: Taken from [21]: The example environment for testing the abstract MDP
against the original MDP; (a) The agent can move in any compass direction or not
move at all. Moving is uncertain: with some small probability the agent may move
in another direction than intended. Each cell gives negative reward, except the upper
right cell, which is absorbing and thus forms the goal. Shaded squares have a higher
negative reward, on patterned squares moving is even more uncertain (probability of
failure is higher). Shaded circles denote absorbing states with high negative reward;
(b) peripheral states for a decomposition into 11 regions (rooms).

with the original MDP as well as with the abstract MDP. Additionally an augmented
MDP was tested which we are going to leave out of consideration here. For the ab-
stract MDP the set of macros was created based on the heuristic approach described
above – one macro for each region-exit state combination, plus one for staying in the
room.9 Value iteration was applied to solve the different MDPs. Figure 3.7 shows the
value for one particular state and how it improves over time. Clearly, with the abstract
MDP the value function converges much faster. But, recognizable from the limit of
the value function, the abstract MDP finds only a suboptimal solution: It finds a policy
which takes the agent to the goal with expected costs (negative reward) of over 20,
while the original MDP finds a way where less than 20 are expected. Nevertheless, the
computational saving seem worth the drawback on solution quality.10

Hybrid MDPs

The main interest of Hauskrecht et al. is the reuse of macros which would justify the
computational overhead of creating macros. To have a set of macros applicable to a
set of related MDPs, these MDPs must bear sufficient similarities. In particular, it
might happen that a goal moves within one specific region, leaving all other regions
unchanged. This case is considered in [21]. To still be able to plan at the level of
options, they argue to use a hybrid MDP. This kind of MDP is still composed by

9There are actually many ways of staying in a room. However, [21] does not provide any more detail on
this question.

10Unfortunately, the speed up is only illustrated by figures in [21] and in particular no explicit numbers
describing the speed up are given.

CHAPTER 3. MARKOV DECISION PROCESSES AND OPTIONS 32

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

va
lu

e
fu

nc
tio

n

time

base level MDP
augmented MDP

abstract MDP

(a)

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

va
lu

e
fu

nc
tio

n

time

base level MDP
augmented MDP

abstract MDP

(b)

Figure 3.7: Taken from [21]: Shown is the improvement of the value (negative reward)
for one particular state over time during the value iteration process on the different
MDPs; in case (a) the value for this state was initially overestimated, whereas in case
(b) it was underestimated.

regions, but in those regions where changes are likely to happen the corresponding part
of the original MDP is used, while in all other parts abstraction is applied.11

11To be precise, it would then seem better to merge all change-unlikely regions into one new region where
abstraction is applied.

Chapter 4

Situation Calculus and Golog

The programming language GOLOG forms the basis for our considerations of the pro-
gramming approach. In this chapter we will first present the situation calculus which
GOLOG is based on. Later, after formally introducing GOLOG as it was initially
proposed, we present those extensions of it which are relevant for our work, namely
ICPGOLOG and DTGOLOG.

4.1 The Situation Calculus

The situation calculus is a second-order language that was first proposed by McCarthy
[26]. The intention for this language was to represent and reason about dynamically
changing worlds. The general idea was that a world only evolves due to the execution
of primitive actions beginning in an initial situation. Three sorts are distinguished: ac-
tions, situations and normal objects. The initial situation is denoted by the constant S0.
This is the situation where yet no action has taken place. Further, the binary function
symbol do(a, s) denotes the successor situation after executing action a in situation
s. Fluents represent properties of the world that change over time. We distinguish
two types of fluents: relational fluents and functional fluents. For example, we could
model the current student status of Bob as the relation student(Bob,Now), where
we use the special symbol Now to denote the current situation. A functional fluent
working hours(Bob,Now) = 70, could state that Bob is currently working 70 hours
a week.1

For each action there is an action precondition axiom stating the conditions under
which the action can be executed. They can be represented in the form
Poss(a(~x), s) ≡ Φ(~x, s), where ~x are the arguments of a. For example, the action
accept job(x, y) might have the precondition axiom

Poss(accept job(x, y), s) ≡ ¬student(x, s) ∧ job vacancy(y, s),

stating that x can only accept a job at y if and only if x is not a student and at y there is
a job vacancy. Note that by this approach the qualification problem is simply ignored.

Further, the effects of an action have to be defined. This can happen via effect
axioms describing the impact of actions on the world, i.e. the (truth-)values of fluents.

1Note that in our formulas symbols starting with an upper case letter denote constants, while variables
start with a lower case letter. One exception is the special symbol Now which is always replaced by the
current situation and in particular is not part of the language.

33

CHAPTER 4. SITUATION CALCULUS AND GOLOG 34

For a relational fluent F , for example, positive and negative such axioms can define the
conditions under which the fluent is true (φ+(~x, s)), respectively false (φ−(~x, s)), after
an action a is executed:

Poss(a, s) ∧ φ+(~x, s) ⊃ F (~x, do(a, s)),

Poss(a, s) ∧ φ−(~x, s) ⊃ ¬F (~x, do(a, s)).

For example,

Poss(enroll(x, y), s) ∧
university(y, s) ⊃ student(x, do(enroll(x, y), s)),

Poss(finish thesis(x), s) ∧
all exams passed(x, s) ⊃ ¬student(x, do(finish thesis(x), s)),

says that if person x can and does enroll at y and y is a university, then x will be a
student (positive effect). On the other hand, if x is able to and does finish his masters
thesis and he has passed all exams, then he will no longer be a student (negative effect).

While these axioms do describe the effects on certain fluents, they do not declare
all the non-effects on other fluents. Axioms describing these are called frame axioms.
The frame problem expresses the impossibility of stating and reasoning with all frame
axioms, i.e., all the non-effects of actions. There are far to many. Even apparently
ridiculous things, like “finishing one’s thesis does not change one’s gender” would
have to be captured by a frame axiom:

gender(x, s) = y ⊃ gender(x, do(finish thesis(x), s)) = y.

4.1.1 A Solution to the Frame Problem for Deterministic Actions

Ray Reiter [33] proposed a solution to the frame problem based on a completeness
assumption: For each fluent the impact of all (deterministic) actions2 on it are collected,
that is, all the effect axioms mentioning the fluent in question. From that, syntactically
one can generate a successor state axiom for the fluent which states the known ways the
fluent may change. The core of Reiters approach is to assume that these successor state
axioms are complete in that they list all possible ways by which the fluent can change.
The following would then be the successor state axiom for the fluent student(x, s):

Poss(a, s) ⊃ [student(x, do(a, s)) ≡ (a = enroll(x, y) ∧ university(y, s))

∨(student(x, s) ∧ ¬(a = finish thesis(x) ∧ all exams passed(x, s)))]

In the following we describe how Reiters solution applies to functional fluents3, for
relational fluents the computations are similar and can be found in [33]. The effect
axiom for a functional fluent f and action A have the form (~t are terms):

Poss(A, s) ∧ φf (~t, y, s) ⊃ f(~t, do(A, s)) = y

2This, only valid for deterministic actions, is the restriction that brought forth the addition “sometimes”
in [33].

3We chose to present the computation in detail for functional fluents, because it is the theoretical basis
for the automatic transformation from effect axioms to successor state axioms done by the preprocessor of
Section 5.3.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 35

Note that for functional fluents there are no positive and negative effect axioms like for
relation fluents, but only one axiom explicitly stating the new value (y) of the fluent.
Above formula can be rewritten to:

Poss(a, s) ∧ a = A ∧ ~x = ~t ∧ φf (~x, y, s)︸ ︷︷ ︸
Φf

⊃ f(~x, do(a, s)) = y

which can be done for all n effect axioms for fluent f . All these can then be joint into
a single normal form for the effect axiom:

Poss(a, s) ∧ [Φ
(1)
f ∨ . . . ∨ Φ

(n)
f] ⊃ f(~x, do(a, s)) = y, or (4.1)

Poss(a, s) ∧ γf (~x, y, a, s) ⊃ f(~x, do(a, s)) = y

The completeness assumption then expresses that if fluent f changes its value from
situation s to situation do(a, s), then φf (~x, y, a, s) must be true:

Poss(a, s) ∧ f(~x, s) = y′ ∧ f(~x, do(a, s)) = y ∧ y 6= y′ ⊃ γf (~x, y, a, s)(4.2)

Together with the assumption

¬∃~x, y, y′, a, s.Poss(a, s) ∧ γf (~x, y, a, s) ∧ γf (~x, y′, a, s) ∧ y 6= y′

Reiter shows that (4.1) with (4.2) is logically equivalent to:

Poss(a, s) ⊃ [f(~x, do(a, s)) = y ≡ γf (~x, y, a, s) ∨ (4.3)

f(~x, s) = y∧ 6 ∃y′.γf (~x, y′, a, s) ∧ y 6= y′]

which is called the successor state axiom for functional fluent f ([34]).

4.1.2 Basic Action Theory

Levesque et al. [24] propose to formulate a basic action theoryD to describe the world
and its dynamics:

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0

with

• Σ the set of (domain independent) foundational axioms for situations (e.g. S0 6=
do(a, s));

• Dss a set of successor state axioms, one for each fluent;

• Dap a set of action precondition axioms, one for each action a;

• Duna a set of unique name axioms for actions;

• DS0
a set of axioms describing the world in the initial situation S0.

To illustrate how to formulate such a theory, we lay it out with our student example:

DS0
= { student(Bob, S0),

all exams passed(Bob, S0),

gender(Bob, S0) = Male,

CHAPTER 4. SITUATION CALCULUS AND GOLOG 36

working hours(Bob, S0) = 70,

university(RWTH −Aachen, S0),

job vacancy(Porsche, S0)}

Dap = { Poss(accept job(x, y), s) ≡ ¬student(x, s) ∧ job vacancy(y, s),

Poss(enroll(x, y), s) ≡ TRUE,
Poss(finish thesis(x), s) ≡ student(x, s)}

Dss = {
[student(x, do(a, s)) ≡ (∃y.a = enroll(x, y) ∧ university(y, s))

∨student(x, s) ∧ ¬(a = finish thesis(x)

∧all exams passed(x, s))],

[all exams passed(x, do(a, s)) ≡ FALSE ∨
all exams passed(x, s) ∧ TRUE],

[gender(x, do(a, s)) = y ≡ FALSE ∨
gender(x, s) = y ∧ TRUE],

[working hours(x, do(a, s)) = y ≡
(∃z.a = accept job(x, z) ∧ y = 38.5) ∨
(∃z′.a = enroll(x, z′) ∧ university(z′, s) ∧ y = 70) ∨
(working hours(x, s) = y ∧
6 ∃y′.(((∃z.a = accept job(x, z) ∧ y′ = 38.5) ∨
(∃z′.a = enroll(x, z′) ∧ university(z′, s) ∧ y′ = 70)) ∧ y 6= y′))],

[university(x, do(a, s)) ≡ FALSE ∨
university(x, s) ∧ TRUE],

[job vacancy(x, do(a, s)) ≡ FALSE ∨
job vacancy(x, s) ∧ TRUE] }

The successor state axioms containing TRUE and FALSE are cases where no action
which affects the respective fluent exists. Consequently, there is no condition under
which the fluent becomes true or its value is changed. However, there neither is any
condition making it false. Thus, the fluent will always keep its original (truth-)value as
defined in DS0

. Here we left out the domain independent foundational axioms Σ and
the unique name axioms Duna which are straight forward to formulate.

Using the basic action theory we can derive the value of any fluent in the current
situation by what is called regression. Roughly, regression for a given fluent f and
situation do(an, do(. . . do(a1, S0) . . .) works like this: Applying the successor state
axiom of f once, will describe the current value of f possibly relative to its value in
the previous situation. If the value does not depend on the previous situation, we are
done. Otherwise, the value in the previous situation can again be computed by applying
the successor state axiom to that situation. This way, recursively the regression will
eventually end up in situation S0, where the value of fluent f can be determined from
the axiomatization of S0.

Naturally, the described algorithm takes more time the longer the situation term
gets (see Section 5.3 for a quantitative analysis). This can be a problem for realistic

CHAPTER 4. SITUATION CALCULUS AND GOLOG 37

domains, especially for those where the agent has a nonterminating program to run.
Fortunately, there has been approaches to circumvent this problem. In Section 4.2.1
one of these approaches is briefly described.

4.2 Golog

The action programming language GOLOG [25] is based on the situation calculus.
It can use it to project how the world would evolve if a certain sequence of primitive
actions was chosen. GOLOG offers the following common programming constructs
to formulate complex actions over primitive ones:

• nil the empty program;

• a, primitive actions (=̂ actions from the situation calculus);

• [e1, . . . , en], sequences;

• ?(c), tests: if condition c is true proceed

• if(c, e1, e2), conditionals: if condition c is true proceed with sub-program e1

else proceed with sub-program e2;

• while(c, e), loops: while condition c is true repeat sub-program e;

• e1|e2, nondeterministic choices: do e1 or e2;

• star(e), nondeterministic repetitions: repeat sub-program e an arbitrary number
of times;

• pi(v, e), nondeterministic choices of argument v: choose an arbitrary term t and
proceed with e, where all occurrences of v are substituted by t;

• procedures;

where the ei are legal GOLOG programs.
One way of defining the semantics of these constructs is by an evaluation seman-

tics like originally used in [25]: Formally the above statements are abbreviations for
formulas in the situation calculus. Their translation into formulas is defined via the
predicate Do(δ, s, s′) which states that executing program δ in situation s will result in
the new situation s′. Thus, an evaluation semantics is a set of definitions like:

Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s)

where a[s] is the action a with all fluents among the arguments evaluated in situation
s.4 This defines that an action a on execution in situation swill end in the new situation
do(a[s], s) if a[s] is possible in s. Likewise, for all other constructs δ, Do(δ, s, s′) is
defined. Conditions are also evaluated in the actual situation:

Do(if(c, e1, e2), s, s′)
def
= c[s] ∧Do(e1, s, s

′) ∨ ¬c[s] ∧Do(e2, s, s
′).

4Formally, a[s] states that all fluents appearing as an argument to a get s set as their actual situation
argument.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 38

Nondeterminism is simple defined by a disjunction:

Do((e1|e2), s, s′)
def
= Do(e1, s, s

′) ∨Do(e2, s, s
′).

For an arbitrary GOLOG program ∆ and a situation s a constructive proof of
Do(∆, s, s′) would return a situation statement in s′ of the form
do(an, do(an−1, . . . do(a1, s)) . . .). This implicitly contains the action sequence
a1, . . . , an which is a possible course of action to get from situation s to situation
s′. In a nutshell, what GOLOG does is to find such a constructive proof for any input
program p and situation s, where the instantiated new situation s′ is considered the
result.

To illustrate the original intention for nondeterminism, consider the following legal
program:

E = [a, (b|a), ?(φ)].

Let a and b be primitive actions and φ a condition. Suppose φ is initially true and
action a toggles its truth-value each time a is executed and b does not affect φ. Then
the only proof for Do(E,S0, s

′) will return s′ = do(a, do(a, S0)) as this is the only
way of making φ true after already having executed a at the beginning. Thus, the
nondeterminism is resolved as to proof the entire program. Note that if in the above
case both alternatives would have made φ true, there would be two possible proofs and
there would be no decision rule stating preference for a or b.

When looking for an action sequence to achieve some kind of goal, for example
formulated as a condition, GOLOG can be used to restrict the search space: instead
of always only nondeterministically choosing among the primitive actions, the control
constructs can be used to provide some form of plan skeleton. This can be used to
reduce branching and thus computational effort in finding a (linear) plan for achieving
the goal.

In fact, GOLOG has successfully been used to control the museum tour guide robot
Rhino ([8]) at a museum in the city of Bonn, Germany.

4.2.1 icpGolog

Unfortunately, the expressiveness of the original GOLOG was not strong enough to
model some of the properties of realistic domains, especially mobile robotics, which
from the beginning was one of the main application domains for GOLOG. Conse-
quently, many extensions of GOLOG have been proposed such as [13, 12, 23, 19, 20].
Many of these extensions have recently been merged into a new derivative called ICP-
GOLOG and an interpreter has been implemented in ECLiPSe Prolog [10].

The following previously proposed ideas and extensions of GOLOG have been
incorporated into ICPGOLOG:

on-line : The ICPGOLOG interpreter is an on-line interpreter. The characteristic
of such an interpreter is that programs are executed right during interpretation
(on-line). The interpreter works incrementally, that is, after the interpreter did
a step in the program it commits to it by executing the respective action in the
real world. This fashion of interpretation was first proposed by Levesque and
De Giacomo [12] and was required to avoid delays in the execution of long pro-
grams containing nondeterministic choices. Imagine a long program were at the
beginning a nondeterministic choice is to be made and assume that this choice
influences a test at the end of the program. Then, to guarantee the successfull

CHAPTER 4. SITUATION CALCULUS AND GOLOG 39

termination of the entire program, it would be necessary to project the program
to the end, possibly for both choices, before making a decision. The execution
of the first action cannot wait until program interpretation terminates. It even
happens that programs are non-terminating, assigning the robot a job to do con-
tinuously.

Also, an incremental proceeding naturally supports sensing5: Certain properties
of the world may initially be unknown6, but can be sensed during execution
using sensors. We understand sensors as any kind of mechanism that can provide
the agent with information of any kind which is currently true in the world. In
robotics, sensors are typically laser range finders, cameras, sonars, microphones
or bumpers, but can also be more abstract like direct user input or a mechanism
to query websites with current stock information. The need for sensing becomes
obvious in the following example: Consider the task of catching a plane at the
airport. You may know how to get to the airport and how to reach a certain gate.
But what you usually do not know in advance, that is before reaching the airport,
is the particular gate the plane is leaving. Thus, this information has to be sensed
when the execution of the plan has advanced to the moment where you reach the
airport.

Additionally, the interpreter takes so-called exogenous actions into account. Ex-
ogenous actions are actions that are beyond the control of the agent. The agent
can neither execute them, nor can it in general predict their occurrence. Nonethe-
less, these actions change the world and therefore the values of fluents. The inter-
preter supports these actions as long as their effects are known. Then, whenever
such an action happens, the interpreter changes the values of the fluents accord-
ing to the described effects. Exogenous actions can be compared to sensing
actions as both provide the agent with information about the world. From that
point of view, the difference lies in the conditions under which the information
is retrieved: sensing actions can be seen as polling, while exogenous actions
resemble an interrupt.

continuous change : Grosskreutz and Lakemeyer first proposed a notion for repre-
senting continuously changing properties of the world [19]. This extension is
directly added to the situation calculus and has mainly the following ingredients:

• a new sort Real ranging over the real numbers;

• a special functional fluent start with the intuition that start(s) denotes the
starting time of situation s;

• a new sort t-function representing functions of time;

• a new binary function val to evaluate a t-function at a given time;

• a new type of continuous fluents whose values are functions of time, i.e.
t-functions;

• a new action waitFor(τ) to advance the time, i.e., increase the value of
fluent start, in off-line mode to the least time point when the condition τ
holds.

Then we can model things like a continuously, 1-dimensionally moving robot
like this [18]: We create a new continuous fluent robotPos to denote the robots

5For a discussion on sensing and off-line interpreting see [23].
6This could, for example, be modeled by an incomplete axiomatization of the initial situation S0.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 40

position over time and a t-function linear(x0, v, t0) whose value at time t is
defined by val(linear(x0, v, t0), t) = x0 +v ·(t−t0). Then we assign the fluent
robotPos the value robotPos(S0) = linear(4.3, 1.0, 0.0) stating that initially
at time 0.0 the robot is at position 4.3 and moves with velocity 1.0. If the time
is now advanced to t′ = 2.0, off-line by performing an adequate waitFor(τ)
action or on-line by some externally determined passage of time, the value of
robotPos can be evaluated at the current time to val(linear(4.3, 1.0, 0.0), 2.0)
= 4.3 + 2.0 · (2.0− 0.0) = 6.3. For further details we refer to [18].

concurrency : ICPGOLOG has taken over the concept of concurrency like it was
first proposed for the CONGOLOG interpreter [13]. Concurrency is understood
as interleaving two programs and in particular does not consider actions being
truly simultaneous. This avoids problems like the precondition interaction prob-
lem (see [28]) and the otherwise necessary extension of the underlying situa-
tion calculus. However, the semantics of concurrency in ICPGOLOG is taken
over from Grosskreutz CCGOLOG [18] and differs from the semantics in CON-
GOLOG: concurrency of two programs σ1 and σ2 is expressed by the construct
conc(σ1, σ2). The general assumption is that actions should perform as soon as
possible. Thus, the next construct of both programs is considered. If both can
do an instantaneous transition σ1 is favored (compare to prioritized concurrency
of CONGOLOG). However, if one of the two transitions takes longer than the
other, the earlier terminating transition is favored. This kind of time dependent
selection was not possible in CONGOLOG, because it did not contain any con-
cept of time.

probabilism : In realistic domains uncertainty exists in various forms, one of which is
uncertainty about how the world evolves. This often can be modeled by a list of
possible outcomes together with a distribution defining their respective probabil-
ities, for example based on experience. This way of modeling uncertainty gave
birth to PGOLOG [20]. PGOLOG introduces a new construct prob(p, σ1, σ2)
with the intuition that with probability p sub-program σ1 gets “executed” and
with remaining probability (1 − p) σ2 is chosen. However, this kind of con-
struct is not intended for execution, but only for models used in projection:
PGOLOG offers a mechanism for probabilistic projection. The user can, given
a legal PGOLOG-program, query the probability that a certain condition is true
after executing that program. This in turn can be used for decision making.

Roughly, the following is suggested: Along with the program itself the user
provides a model for the low-level processes, like navigation in robotics. Then,
using concurrency as presented above and a special architecture for communicat-
ing with the low-level processes7, concurrently interpreting the low-level model
and the program projects the expectations about the effects of this program.

progression : Following the approach for progressing a database by Lin and Reiter
[15], Jansen [22] implemented a mechanism to progress the knowledge base in
ICPGOLOG according to the current situation. The motivation for progression
is simple: once an action has been performed in the real world, it cannot usu-
ally be undone. Thus, situations before performing the action render irrelevant.
However, in realistic domains the situation term often grows rapidly over time,

7Confer [18] for details.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 41

requiring more and more space (memory) and computational time to perform re-
gression. Hence, it is suggestive to progress the knowledge about what was true
in situation S0 to what is true in the current situation.

It turns out that this feature is indispensable for realistic domains, for the argu-
ments that motivated it (time and space consumption).

Transition Semantics

Different from the original GOLOG, the semantics of ICPGOLOG is defined via a
transition semantics. The evaluation semantics of GOLOG was first replaced by the
transition semantics in [13] when introducing concurrency. The Do(δ, s, s′) predicate
of GOLOG assigns a semantics to the entire program δ recursively. This semantics is
based on the complete evaluation of the program, therefore its name. However, some-
times it is more convenient to specify the semantics by defining single computational
steps, which is the idea of a transition semantics. The semantics is defined via axioms
of a new four-ary relation Trans. Trans(δ, s, δ′, s′) holds if and only if one execution
step of program δ in situation s leads to situation s′ and remaining program δ′. A tuple
〈δ, s〉 with δ a program and s a situation is called configuration. Thus, Trans defines
transitions from one configuration to another.8

Moreover, we have to define what a termination configuration is, i.e., what are
configurations that we consider a successful termination of a program. This is done by
another predicate Final. Final(δ, s) holds if and only if we consider the configuration
〈δ, s〉 a legal termination. Here are some examples for Trans- and Final-definitions
(for a complete list see Appendix A.2):

Final(a, s) ≡ FALSE , where a is a primitive action

Final(if(φ, σ1, σ2), s) ≡ φ[s] ∧ Final(σ1, s) ∨ ¬φ[s] ∧ Final(σ2, s)

Trans(a, s, nil, s′) ≡ Poss(a[s], s) ∧ s′ = do(a[s], s)

Trans([σ1, σ2], s, δ, s′) ≡ ∃γ[Trans(σ1, s, γ, s
′) ∧ δ = [γ, σ2] ∨

Final(σ1, s) ∧ Trans(σ2, s, δ, s
′)

For modeling probabilism in PGOLOG the transition relation Trans was formally
converted to a function transPr which returns the probability for the given transition.
However, this is usually equal to 1.0 except for prob statements. For example:

transPr(a, s, δ, s′) = q ≡
Poss(a[s], s) ∧ δ = nil ∧ s′ = do(a[s], s) ∧ q = 1.0 ∨
¬(Poss(a[s], s) ∧ δ = nil ∧ s′ = do(a[s], s)) ∧ q = 0.0

transPr(prob(p, σ1, σ2), s, δ, s′) = q ≡
δ = σ1 ∧ s′ = do(tossHead, s) ∧ q = p ∨
δ = σ2 ∧ s′ = do(tossTail, s) ∧ q = 1− p

Here, tossHead and tossTail are pseudo-actions introduced to make the resulting
situations different. They have no effect on any fluent and are always possible.

8It is noteworthy that a transition semantics requires the reification of programs as first-order terms in the
logical language. This is basically because one needs to quantify over programs. For the Do definitions that
was not necessary, since these we simply (recursive) abbreviations for formulas over s and s′. However, we
omit any detail of encoding programs as first-order terms, as it does not affect our issues, and refer to the
literature [13, 18].

CHAPTER 4. SITUATION CALCULUS AND GOLOG 42

Decision Making

Probabilistic projection can be used for decision making. Jansen [22] shows examples
for this in the ROBOCUP Simulation League: Suppose the agent has the ball under
its control, wants to play a pass and is considering possible pass receivers. Then it
can use a model for the low-level action “pass” to project the possible outcomes for
passing to a certain teammate and query the probability for certain properties in these
outcomes. Jansen suggests to use a condition stating that the teammate successfully
received the pass: The agent queried the probability for each possible pass to succeed.
This was iteratively done for some ordering of some teammates. The first one which
had a probability greater than some threshold was chosen.

However, this does not seem to be a sophisticated decision rule for a couple of
reasons: (a) the decision depends on the ordering of the teammates, (b) usually not the
best player will be selected, (c) if for no player the threshold is reached, the pass playing
agent has no clue what to do. What essentially is missing, is the support for a decision-
theoretic view on such decision, like in MDPs. This should be directly implemented
into the interpreter. While the above procedure works with a hand-coded decision tree
using if-then-else constructs, it seems suggestive to use nondeterministic constructs to
model the decision problem when the interpreter itself is capable of decision making.

icpGolog and Nondeterminism

However, ICPGOLOG does not contain nondeterministic instructions anymore.
Grosskreutz [18] explains the problems arising from the interplay of nondeterminism
and his semantics of concurrency. This lead to the complete omission of nondetermin-
ism in CCGOLOG, which was later taken over into ICPGOLOG. The arguments he
gave do not prevent reintroducing nondeterminism in general. Grosskreutz was only
concerned about counterintuitive results (see [18] for an example) that can only occur
when mixing concurrency and nondeterminism. His claim is that in such cases nonde-
terministic choices are, under certain circumstances, determined according to the least
time consumption. He believed that to be in contradiction to the intuition behind non-
determinism. Yet, when reintroducing nondeterminism we are going to prohibit the use
of concurrency with nondeterminism for similar reasons (see Section 5.1.3).

4.2.2 DTGolog

In [5] Boutilier et al. propose another GOLOG extension which they call DTGOLOG

(decision-theoretic GOLOG). Roughly, DTGOLOG integrates fully-observable MDPs
into GOLOG and this way allows combining explicit programming with decision the-
oretic planning.

MDP specification

Boutilier et al. do not specify the MDP formally, but the following describes how the
components of the MDP could be defined:

state space = situations : The set of states is the set of situations. Unfortunately, in
general the set of situations is infinite. To illustrate this, consider the vacuum
world of Figure 4.1. The vacuum cleaner can move freely between the two rooms
and in both rooms there is either dirt or they are clean. Then we can represent
the state space as the crossproduct of the three variables for the position of the

CHAPTER 4. SITUATION CALCULUS AND GOLOG 43

Figure 4.1: The vacuum world taken from [35].

robot, the presence of dirt in the left room, and the presence of dirt in the right
room. Such a state space is called factored (cf. [6]), as it is specified using more
than one state variable. The size of this particular state space is 2 · 2 · 2 = 8
which is simply the number of all possible combinations of values for the three
variable. However, in DTGOLOG the state space for this example is infinite:
assume there is only one action changeroom, which is always possible. Then,
after performing this action twice, the vacuum cleaner ends up in the room he
departed from. Intuitively, and according to our state description above, it is in
the same state as before. But this is not true for the situation: if the situation
initially was S0, it will now be do(changeroom, do(changeroom, S0)) which
of course is different. One approach to this rather undesired effect, is to specify
a list of fluents that are used as state variables. We will apply this approach in
Section 5.2 when constructing a finite state space for options.

action space = primitive actions : The actions of the MDP can simply be understood
to be the primitive actions in GOLOG. However, the situation calculus does not
allow for uncertain effects of actions (recall that Reiters solution to the frame
problem explicitly requires deterministic actions). Thus, to still be able to model
uncertainty, Boutilier et al. added a new type agentAction(a)9 and a new predi-
cate nondetActions(a, s,Ω) indicating that agent action a in situation s is non-
deterministic and has the outcomes which are listed in Ω, commonly called na-
ture’s choices. This list of outcomes consists of primitive actions of the situation
calculus. If an agent action is not nondeterministic, it is immediately a primitive
action of the situation calculus. Additionally, the new predicate prob(a, p, s)
states the probability p that primitive action a happens, if in situation s a nonde-
terministic action is executed with a being one of its outcomes. This approach is
similar to Reiter’s stochastic GOLOG [34].

In DTGOLOG, fully-observable MDPs are considered. Thus, it has to be guar-
anteed that the agent always knows the situation (state) it is. However, the cur-
rent situation is not individually sensible from the world. To illustrate this, we
once more consider the vacuum world: Assume the robot is in the left room and
it wants to determine its situation. The only information perceivable from the
world, assuming required sensors are available, are the values of the three state
variables (robot position, dirt left, dirt right). However, as pointed out, there
are several (in fact infinitely many) situations that correspond to a certain value
configuration. Or in short: the mapping from states to situations is not bijective.
Nevertheless, if the robot keeps track with its moves it can always memorize its
situation. For deterministic actions this is simple. For the newly added nondeter-
ministic actions, however, extra care is needed: after executing such an action,
the agent only knows which situation calculus actions may actually have hap-
pened. But it still has to determine which exactly it was. For each agent action

9We are using bold face for agent actions (a). All other actions are primitive actions.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 44

a, the user therefore specifies a sensing action senseEffect(a) which performs
all necessary sensing to distinguish the alternatives. Further, with every possible
outcome of action a, he assigns a sense condition which holds if and only if this
outcome has actually happened.

Concluding, full observability is assured by keeping track of what the agent is
doing. While for deterministic action the effects are certain, the agent uses par-
ticular sensing actions and conditions for determining the outcome for nondeter-
ministic actions.

transition function = SSAs: The transition function is trivially defined by the successor
state axioms and the new predicates nondetActions(a, s,Ω) and
prob(a, p, s). With these we can always tell the probability of reaching a cer-
tain situation when applying a specific agent action a.

reward function = reward(s, r): Another new predicate reward(r, s) specifies the re-
ward r assigned to situation (state) s. Since s is a situation term, it contains the
entire history and in particular the last action that has taken place. It is therefore
possible not only to judge the situation itself, but also to subtract costs based on
the last action.

A New Semantics for Nondeterminism

DTGOLOG, like GOLOG, has an evaluation semantics, defined by the predicate
bestDo(δ, s, h, p, v, t) with:

• δ a program (as before),

• s a situation (as before),

• h a natural number called the horizon,

• p the optimal policy for the next h steps in program δ when starting in situation
s,

• v the expected value for this policy,

• t the termination probability in the usual GOLOG sense for program δ when
following this policy.

Compared to Do(δ, s, s′) of GOLOG, the resulting situation s′ is missing. Instead a
policy is returned, reflecting the uncertainty of the system.10 This policy is a GOLOG
program only containing primitive actions, conditionals and tests. Since we are in the
special case of knowing where the agent starts, namely in situation s, we can represent
a policy as a conditional program, containing primitive actions and if-then-else state-
ments to account for the uncertainty of some of the actions. The policy implements the
mechanism for keeping up full-observability as described above.

The horizon h can be used to restrict the interpretation up to a certain number of
actions. Then, the interpretation returns either when reaching a termination situation,
just like in GOLOG, or when the horizon is reached.

10We will speak frequently of arguments being returned or distinguish between input and output argu-
ments. Although from a logical point of view there is no such type distinction, as all are only arguments of
a relation, this functional view on predicates is rather intuitive and should be helpful for understanding the
flow of control in the interpreter.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 45

Most of the Do clauses translate trivially to bestDo. The following are the most
relevant differences:

nondeterministic choice (user’s choice):

bestDo([(σ1| σ2), σ], s, h, p, v, t)

The interpreter recursively calls bestDo for both alternatives σ1 and σ2. Based
on the returned values and termination probabilities, it chooses the more promis-
ing, adds it to the policy, and returns its values. Thus, unlike GOLOG, where
nondeterminism was a simple disjunction, here the better alternative is used.

nondeterministic action (natures choice):

bestDo([α, σ], s, h, p, v, t)

For an agent action α, it is tested whether this action is deterministic or not.
Since the former case is equally treated as in GOLOG, we here only describe
the latter. In that case, the list of outcomes Ω for this action is retrieved from
nondetActions(α, s,Ω). As in the user’s choice case, for each entry of the list,
the remaining projection is run, i.e. bestDo is called. However, unlike the former
case, the interpreter cannot choose the best alternative. It is not in the hand of
the agent to decide, but nature’s choice. Accounting for that, the average of all
alternatives is returned. For value and termination probability this means that the
results of the alternatives are added where each alternative o is weighted by its
probability of occurrence, as defined by prob(o, α, s). The policy is constructed
from the sensing action senseEffect(α) and if-then-else constructs were the sense
conditions are used to detect the actual outcome.

This way of solving the problem is obviously different from the iterative algorithms
described in Section 3.1.5: The main difference is that the algorithm at hand solves the
problem only for a particular starting point, the current situation, instead of iterating
over the entire state space. The algorithm is known as decision tree search [6] or
directed value iteration [5], as the resulting policy is a decision tree rooted in the initial
situation. This is in contrast to the definition of a policy of Section 3.1.4 where a policy
was defined as a mapping from the set of states to actions. The great advantage of
the algorithm is that it can operate even on infinite state spaces. This is trivially true,
because by construction, the algorithm will only reach a finite number of states during
processing. This part of state space is explored as some kind of reachability graph from
the initial situation.

The disadvantage of this algorithm is the following: As described above, the al-
gorithm takes situations as states. Depending on the properties of the domain, it can
often happen that intuitively equal states are treated as different. This means that for
all these, the remaining projection is run, although it is always the same. In that case,
computational complexity is increased unnecessarily.11

From these properties it follows that this algorithm is especially useful for domains
with a continuous state space. There the described advantage has its effect, while the
disadvantage does usually not, since in continuous state spaces it is unlikely to pass
through a certain state more than once in a decision tree search.

11We present a solution to this problem in the Section 5.2.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 46

The central point of DTGOLOG is that nondeterminism can freely be combined
with common programming constructs. Seen from the perspectives where the compo-
nents (decision-theoretic planning and programming) originate, this can been under-
stood differently:

• Seen from the point of view of programming, DTGOLOG simply adds nondeter-
minism with a decision-theoretic semantics to the list of allowed constructs.

• From the standpoint of decision-theoretic planning, DTGOLOG allows to re-
strain the search space by incorporating domain knowledge, represented by de-
terministic decision rules. These deterministic decision rules are formulated in
terms of programming constructs.

An Example

To illustrate how in practice the combination of programming and planning can look
like, we present three different approaches to a simple navigation problem in the
Maze66 (cf. Figure 2.1 (a)). Starting in cell (1, 1) the agent can move in any com-
pass direction, where a move succeeds as intended with probability 0.91 and otherwise
leads to any other adjacent cell. Each move costs 1 and at position (4, 4) there is a high
positive reward.

1. A simple programming approach to this problem could be the following:
[while(y < 4, down), while(x < 4, right)]

which first goes down to the correct y coordinate, and then heads right.

2. A planning approach could leave all decision to the agent:
while(not(x = 4 \& y = 4), (down | right | up | left))).

That is, while the position is not (4, 4), choose nondeterministically to go in any
possible direction.

3. Finally an integrated approach could be:
([while(y < 4, down), while(x < 4, right)]
| [while(x < 4, right), while(y < 4, down)])

which nondeterministically chooses one of two ways to take to the goal.

All these approaches will find the best path to the goal cell. However, they differ in
quality: if we use the required computational time and the flexibility of the approaches
as quality criteria, the following picture is drawn: The programming approach takes
almost no time, but it is only applicable for exactly this problem and for deterministic
actions. If one of the two doors the robot has to pass through were closed, the program
would no longer reach the goal. Also if one of the used actions fails, the program will
loose its track and fail. The second approach is highly flexible and can, as long as the
uncertainty of the moves is known, handle nondeterministic actions. It will find a solu-
tion for any position of the goal if one exists. However, it is computational expensive
and, in particular when using the decision tree search algorithm of DTGOLOG, takes
prohibitively long. The third approach can be seen as the result of incorporating the
knowledge that one of the doors along the two possible shortest ways may be closed.
On the downside it neither supports nondeterministic actions. The somewhat higher
flexibility of the approach is paid by a little bit longer computation.

CHAPTER 4. SITUATION CALCULUS AND GOLOG 47

The example illustrates that using DTGOLOG it is possible to incorporate domain
knowledge to increase flexibility, by integrating planning with programming. It is up
to the programmer to decide on how much uncertainty to account for, by using more
nondeterminism in the program. This enables to react upon surprising changes in the
world, like a closed door in this case. Additionally it is noteworthy that even without
uncertainty in the domain, a planning approach is generally easier to implement and
finds the best possible solution if the world is correctly modeled.

4.2.3 Online DTGolog

In the introduction we sketched the shortcomings with DTGOLOG. One of which were
that the DTGOLOG interpreter is a pure off-line interpreter. In analogy to the mo-
tivation for an incremental GOLOG interpreter described in [12], Soutchanski [37]
recently proposed an on-line extension of DTGOLOG. He recognizes the need for
an incremental interpreter that allows for sensing actions. As for the incremental
GOLOG interpreter, he claims that solving a program to the end before executing
a first action takes too long and may even be unnecessary if the program is a sequence
of logically independent problems that can be solved one after another.

The solution Soutchanski suggests is that of adding another argument to bestDo
stating the remaining program after the first step of the policy has been executed. The
general execution semantics of the new interpreter is as follows: In each step, the re-
maining program is interpreted off-line up to a given horizon constructing a policy, just
like in DTGOLOG. Then the first action of the policy is executed and the process pro-
ceeds with the remaining program. This way, at each step a projection is performed.
This is even the case, if there is no nondeterminism used within the program up to the
given horizon. To better control the search, Soutchanski introduces two new constructs
optimize(σ) and local(σ). The former can be used in sequences to constrain the
search to the program σ ignoring any remaining program. If local(σ) is used, a policy
for σ is constructed (up to the given horizon) which then replaces the original program
σ.12 That is, the interpreter commits to this policy without having any second thought
while execution. Although this intuitively should allow to execute a larger sequence of
action without much computational expenses, this is only partially true: As the general
semantics of the interpreter always optimizes over the next steps up to the given hori-
zon, even after using local the interpreter will try to optimize the already deterministic
program which is the policy returned by local. Although projecting a deterministic
program is usually much faster than projecting a program containing nondeterminism,
it is completely unnecessary.

As a result for our work, it remains to say that Soutchanski’s work addressed the
right problems, but still appears to leave space for improvements. Our approach to the
issue of on-line decision-theoretic planning, which we will address in Section 5.1, will
follow the ideas of the incremental GOLOG of [12] for nondeterminism and using a
transition semantics. In particular, we not generally optimize a program before execu-
tion. Instead we will only search for a policy when requested by the user through a
search operator similar the one proposed in [12].

12Unfortunately, [37] does not explain how local(σ) behaves in case the horizon does not suffice to render
a policy for the entire program σ. If in that case still σ were replaced by the policy, the part of σ behind the
horizon would be discarded, which obviously cannot be intended.

Chapter 5

ReadyLog

Based on ICPGOLOG we have developed the language READYLOG and extended the
ICPGOLOG interpreter implemented in ECLiPSe Prolog accordingly. READYLOG ex-
tends ICPGOLOG by possibilities for decision-theoretic planning as in DTGOLOG.
This can be compared to the work of Soutchanski [37] as it deals with on-line planning
and plan execution. Yet, our solution differs from Soutchanski’s work by the direction
from which the problem is approached.

Moreover, the concept of options has been integrated: defining local MDPs, the
user can compute optimal policies for recognized sub-problems along with models
about the effects when following such a policy in a certain state. The result can be used
just like any other nondeterministic action and in particular the user can define options
over options.

Motivated by the need to increase performance, a preprocessor has been imple-
mented that translates READYLOG code to Prolog predicates. Finally, the preprocessor
is also used to allow a user-friendlier syntax and to automate the computation of options
from local MDPs.

We begin this chapter by presenting our approach of integrating decision-theoretic
planning into an on-line interpreter. Thereafter, options and especially their construc-
tion within our interpreter are discussed. We finish the chapter with some details about
the functioning of the preprocessor.

We use standard logical notation and present the definitions of predicates as for-
mulas (the implementation in ECLiPSe Prolog can be found in the appendix). We
assume standard semantics for arithmetics and lists. We use typewriter-font for
implementational details and when presenting example programs.

5.1 Decision Theory

As discussed in Section 4.2.1, ICPGOLOG does not include nondeterminism. We rein-
troduced nondeterministic action selection and nondeterministic choice of argument
with a semantics similar to that of DTGOLOG. Before we can formalize the MDP
implicitly defined by a program, we have to decide how to model uncertainty in our
system. Along with that comes the question of how to maintain full-observability. Af-
ter we have presented our answers to these questions and have formalized the implicit
MDP, we will direct our attention to questions arising from the new on-line context.

48

CHAPTER 5. READYLOG 49

5.1.1 Modeling Uncertainty

Both, ICPGOLOG and DTGOLOG have a notion of uncertainty, though the way uncer-
tainty is modeled differs with respect to the different applications. The two approaches
can be described as follows.

• ICPGOLOG models uncertainty using prob(p, σ1, σ2) statements, expressing
that with probability p the sub-program σ1, and with remaining probability 1−p
σ2 is executed. Uncertainty of that kind is used to perform probabilistic projec-
tion which is done as follows: In parallel, using the construct pconc for prob-
abilistic concurrency, a program σ and a low-level model λ of the base actions
of the system are interpreted. Thereby, the low-level model works as a simula-
tor of what would actually happen. When the program executes an action, the
model simulates its effects on the world, that is, it changes fluent values accord-
ingly. Since the low-level model can be an arbitrary program, particularly able
to use prob also within while-loops, it is not possible to foretell the number of
outcomes the simulation of one action may have. This causes problems for main-
taining full-observability as we will see below.1 Here are the advantages (+) and
disadvantages (–) of this approach:

+ The effects of actions can be described by complex programs using all com-
mon programming constructs. This allows to model very complex effects.

– The actions in the program and their effects described in the model are
not linked. This makes it hard to decide when a sensing action should be
executed to determine which outcome an action actually had.

– The concurrent interpretation comes along with a rather huge computa-
tional overhead. Also, as the low-level model by itself is a program, it has
to be interpreted to determine its impact on fluents. This is rather slow
compared to other possibilities.

– Care has to be taken by the user when implementing the low-level model
to assure it is only executable when intended. It has to intervene in the
program exactly when an action has to be simulated. This can be achieved
using a certain architecture (see Section 4.3 of [18]).

• We described the way DTGOLOG models uncertainty in Section 4.2.2 leaving
only the pros and cons to be mentioned:

+ It is straightforward to implement the possible outcomes/effects together
with each nondeterministic action.

+ Full-observability is maintained.

+ The effects of the possible outcomes of an action are already represented
by successor state axioms, which makes any more interpretation at time of
projection unnecessary and thus saves time.

– It is not possible to model complex outcomes. All effects have to be assem-
bled into the successor state axioms of the outcome-describing primitive
actions.

1Note that for the use of probabilistic projection as in ICPGOLOG, full observability is not an issue. This
is, because the intention of the projection is not to construct a policy. See [22] for details.

CHAPTER 5. READYLOG 50

We aimed at merging the advantages of both approaches. Our solution makes use
of the preprocessor which we will present in detail in Section 5.3. The main idea is
to generalize from nondeterministic primitive actions to nondeterministic procedures.
At time of execution the normal body of the procedure is used, while for projection
a model is applied. This leaves more freedom and includes the approach of DT-
GOLOG as a special case.

Stochastic Procedures

We first present the formal definition of stochastic procedures, before describing how
the user can define them more abstractly.

A stochastic procedure is a procedure p(~x) defined by proc(p(~x), bp(~x)), where ~x
are the arguments of p, for which

• a precondition axiom stoch proc poss(p(~x), s) ≡ ϕp(~x, s) exists, and

• an effect axiom of the form stoch proc outcomes(p(~x), s,Ω, ψ) ≡
γp(~x, s,Ω, ψ) exists, where Ω is a list of outcomes and ψ is a sensing pro-
gram which senses all necessary data to determine the outcome that actually
happened. The list of outcomes has elements of the form (ω, pr, φ), where ω is
an ICPGOLOG program describing the outcome, pr is the probability for this
outcome, and φ is the sense condition for this outcome, that is, a condition that
holds if and only if this outcome in the list has actually happened. The program
ω has to be deterministic and in particular must not contain prob-statements.

This constitutes the counterpart to the nondetActions(a, s,Ω) predicate of
DTGOLOG: we replace both, the action and the elements of the outcomes-list by
procedures. Furthermore, we integrate the definition of sense conditions and a sense
program into this definition, instead of keeping them seperate as in DTGOLOG (cf.
Section 4.2.2). The semantics of these axioms is similar2: if procedure p(~x) is exe-
cuted in situation s, the world will change to a new situation s′, where s′ is defined
by trans∗(ωi, s, ωifinal , s

′) with probability pri, where ωi is the program of the i-th
entry in list Ω, pri is the corresponding probability and trans∗ is the transitive closure
of the trans-predicate (cf. Section 4.2.1). That is, the programs are “executed” by the
trans predicate until a final configuration, where no more trans-steps are possible, is
reached. In this configuration the remaining program ωifinal is called final.

That way the outcome describing programs define a set of possible successor situ-
ations just like the outcome describing primitive actions in DTGOLOG. The difference
is that entire procedures, as used here, allow more flexibility than single primitive ac-
tions.3

However, this is the formal definition of a stochastic procedure. We do not require
the user to define these axioms, and in particular do not require him to implement
any Prolog code. Instead, the user can do all definitions in a GOLOG like meta-
language. These will than be converted by the preprocessor to the above form, thereby
also compiling as much as possible to Prolog to speed up the projection (see Section
5.3 for details about the preprocessor, its aim, and the way it works).

We now present a motivating example which is to present the intuition about the
definitions. Afterwards we go into some technical detail of defining stochastic proce-
dures.

2For a formal definition of the semantics of stochastic procedures see page 60.
3Without proving this claim any further, we remark, that this is because of the same reasons why while-

loops are not first order representable.

CHAPTER 5. READYLOG 51

Example 5.1.1 For example, the following procedure model could be defined:

1 proc_model(makeCareer,
2 [if(educationLevel=high,
3 sprob([(becomeProfessor, 0.4, employer=university),
4 (becomeManager, 0.6, employer=company)],
5 senseEmployer),
6 sprob([(becomeFireman, 0.3, drive=fire_truck),
7 (becomePoliceman, 0.5, drive=motorcycle),
8 (becomeAmbulanceman, 0.2, drive=ambulance)],
9 senseVehicle))]).

The intuition is the following: the procedure makeCareer has different out-
comes depending on the level of education of the agent (we assume that
educationLevel is a fluent and can have values high and low). If the
agent is well educated, making career will make it a professor with probability
0.4 and a manager with probability 0.6. After performing this procedure in the
real world, the agent can determine the actual outcome by sensing its employer:
If it is a university, it must have become a professor. Otherwise, if it is a company,
it turned out to be a manager. On the other hand, if the educational level is not
high, the agent will either become a fire fighter, a policeman or an ambulance
man.

The following details are rather technical and can be seen as a reference for using the
interpreter. They are in particular not essential for understanding the remainder of this
or any following chapters.

The user can define any procedure to be stochastic by providing

• a precondition ϕp, defined by proc poss(p, ϕp), and

• a procedure model mp, defined by proc model(p,mp),

where ϕp is a legal ICPGOLOG condition stating when the procedure is executable.4

A procedure model m is a possibly empty sequence of

• primitive actions,

• tests ?(ϕ), where ϕ is a legal ICPGOLOG condition,

• conditionals if(ϕ, a, b), where ϕ is a ICPGOLOG condition and a and b are
procedure models, and

• an optional sprob-statement at the very end of the sequence.5

An sprob-statement6 takes two arguments:

• a list of outcomes Ω where each element has the form (e, p, φ) with

– e an arbitrary ICPGOLOG program describing the effects of this outcome,

4See [22] for a formal definition of an ICPGOLOG condition.
5As soon as an sprob-statement is hit, the sequence is cut after considering this statement. If in fact such

a statement does not appear as the final element of the sequence, the preprocessor prints a warning to the
screen that any later instructions are being ignored.

6Read s-prob-statement, for sensible prob-statement.

CHAPTER 5. READYLOG 52

– p the probability for this outcome,

– φ a legal ICPGOLOG condition which holds if and only if this outcome in
the given list has happened.

• a sensing program which is an arbitrary ICPGOLOG program which is under-
stood to perform all required sensing actions to determine which outcome has
happened.

The probabilities in list Ω are assumed to sum up to 1.0.7 The sprob-statement has
a similar semantics as the prob-statement of PGOLOG [20] and ICPGOLOG. The
only differences are that in an sprob-statement we can have an arbitrary long list of
alternatives, each carrying its own probability, and that full-observability is maintained
by naming a sensing program (usually only one primitive action) and sense conditions
for all outcomes.

From these definitions, the preprocessor creates a stochastic procedure, by generat-
ing the required axioms. In particular, all appearing conditions are compiled to Prolog
code (see Section 5.3), which supersedes further on-line interpretation, saving time.8

While the previous example was particularly made up for illustration, to show the
use of if -statements in such models, and to show a case where effectively more than
one sprob-statement is permitted to appear, the following is an example that we actu-
ally applied in controlling robots.

Example 5.1.2 We used the following procedure model at ROBOCUP2003 (Padua)
Mid-Size tournament to describe our intuition about the possible outcomes when
a robot tries to intercept the ball.

1 proc_poss(intercept_ball(_Own, _Mode), not(f_ballInGoal)).
2
3 proc_model(intercept_ball(Own, _Mode),
4 [?(and([AngleToBall = angle(agentPos, ballPos),
5 NewPose = interceptPose(AngleToBall),
6 NewPose = [X,Y,Angle]])),
7 sprob([
8 ([set_ecf_agentPos(Own, [X,Y], [0,0]),
9 set_ecf_agentAngle(Own, Angle, 0)],

10 0.2, isDribblable(Own)),
11 ([], 0.8, not(isDribblable(Own)))],
12 exogf_Update)
13]).

The first definition expresses that intercepting the ball is possible if and only if
the ball is not in one of the goals. The first part of the procedure model is a test
in which the position is computed which would result from directly driving to the
ball from the current position of the robot. In the consecutive sprob-statement,
two possible outcomes are listed: either the robot successfully intercepts the ball
and ends up at the calculated position at the ball (set ecf agentPos(·) is
a primitive action setting the agent’s position to the given value) with a head-
ing towards the ball (set ecf agentAngle(·) is a primitive action set-
ting the agent’s angle to the given value). Or the interception fails leaving the

7Actually the preprocessor prints a warning to the screen if at compile time it can already recognize a
violation here.

8Note that for these definitions there is no formal semantics defined, since they are converted to a stochas-
tic procedure, for which we already described the semantics.

CHAPTER 5. READYLOG 53

robot where it is. The rather low probability of 0.2 for a success expresses
how difficult it is for the robot to securely intercept the ball. The condition
isDribblable(Own) holds if and only if the ball is close in front of the
robot. The empty program in line 11, used to denote a failure, is probably not
a good description of what really changes in the world if the interception fails.
However, it is very complex to account for all ways the action could fail. Yet, for
planning it mostly only matters that the robot remains without the ball.

Also the user can define (optional) costs connected with a procedure. This is done by
the predicate proc costs(p, costsp, ϕ) where ϕ is a condition under which the costs
are costsp.9 For example, costsp can be a variable which depends on the condition ϕ.
Then it is possible to connect different costs with different situations. For the example
above, we assigned higher costs in situations where the ball is in front of the own goal,
since intercepting the ball there is rather risky. Intercepting the ball in front of the
opponents goal, on the other hand, was even assigned a reward (negative costs).

Explicit Events

In Section 3.1.2 we discussed two types of action models: implicit- and explicit event
models. In a nutshell, implicit event models describe all events that can happen be-
tween two agent actions, as effects of the first action. Even if an event does not have
any causal relation to that action. Explicit event models, on the other hand, describe
such events as independent of agent actions by specifying their probability of occur-
rence and their possible effects depending on the system state. While the former is
required for an MDP, the latter is more intuitive to implement. If certain assumptions
are met, we described how an explicit event model can be transformed to an implicit
one. In READYLOG we allow the user to define explicit events and making the required
assumptions apply the described algorithm to automatically generate an implicit model
from that10. Explicit events are in addition to stochastic procedures a way to express
uncertainty of the system and can, for example, be used to model the behavior of other
agents in a multi-agent system.

Explicit events are defined very similar to stochastic procedures, but they lack a
procedure body, since such events are only intended for projection, not for execution.
The predicates event poss(ε, cε), event model(ε,mε), and event costs(ε, costsε)
are used to define an event. Intuitively, the semantics is as follows 11: at each step of
the projection, for each defined event it is checked whether this event is possible in the
current situation. If so, the projection is continued for each of its outcomes.

Then, for example, expected adversarial behavior can be modeled. Assume we
observed that in ROBOCUP mid-size the opponent goalie always stays on one line with
the ball. Then this can be modeled by something like the following:

1 event_poss(oppgoalie_event, true).
2 event_model(oppgoalie_event,
3 [?(and([position(opp_goalie) = [GX, GY],
4 ballPos = [BX, BY]])),
5 set_position(opp_goalie, [GX, BY])
6]).

9This will be converted by the preprocessor to a predicate stoch proc costs(p, c, v) ≡ ϕ̇, where ϕ̇ is
logically equivalent to ϕ, but is implemented in Prolog (see Section 5.3).

10In fact, no explicitly represented implicit event model is created. Instead the necessary transformations
are done on-the-fly in the projection algorithm.

11cf. page 57 for the formal semantics

CHAPTER 5. READYLOG 54

The alternative would be to require the user to implement already an implicit event
model, which in the given example would amount to folding this event into the models
of all actions, as described earlier. Thus, adding a new event would always require
modifications to all existing action models.

Explicit events can also be used to model some forms of concurrency and the oc-
currence of exogenous events.

The pros and cons of our approach to modeling uncertainty can be summarized as
follows:

+ Full-observability is maintained.

+ Because every sub-program can be encapsulated into a procedure, for any sub-
program a model can be defined. This enables the user to freely choose the level
of abstraction at which he likes to model nondeterminism and, thus, on which
level to perform planning.

+ Interpretational overhead is minimized.12

+ The definitions by the user are independent of Prolog. This is another step to-
wards freely choosing in which programming language to implement the inter-
preter or even a compiler.

– The usage of constructs is restricted compared to general PGOLOG programs
as can be used in the probabilistic projection of ICPGOLOG.

The restrictions of the last item arise from the need to maintain full-observability.13

Full-Observability

Some relevant considerations about full-observability, the ability of the agent to always
accurately determine the current state, conclude the discussion of modeling uncertainty.

As in DTGOLOG, full-observability in READYLOG is provided by keeping track of
what the agent does (confer Section 4.2.2). Recall, that this means that after perform-
ing an action which was declared nondeterministic, the agent performs one or more
sensing actions to determine which of the possible outcomes has actually happened.
The agent then always knows which primitive actions of the situation calculus have ac-
tually happened and thus knows the situation, that is, the state. Figure 5.1 (a) shows the
case of uncertainty which we permit: the box symbolizes a nondeterministic action. Its
procedure model, the content of the box, uses exactly one sprob-statement with three
possible outcomes. After executing this action in the real world, the agent can use the
sensing actions defined together with the sprob to determine which outcome actually
happened.

Suppose we permitted compositions of probabilistic branching, for example through
sequences or nesting of sprob-statements, this is illustrated by Figure 5.1 (b). Then we
would need to generate a sensing program and sense conditions to observe the overall
outcome. However, the user only specified how the alternatives at one branching point
(in one sprob-statement) can be distinguished. A naive attempt would be to sequence

12In fact, the Prolog code generated by the preprocessor is as fast as hand coded effects in DT-
GOLOG would be. See Section 5.3 for a quantitative comparison.

13cf. Section 4.2.2

CHAPTER 5. READYLOG 55

(a)

A

C

B

(b)

Figure 5.1: (a) a nondeterministic action with only one sprob-statement, indicated by
the circle; (b) a nondeterministic action with nested sprob-statements

the sensing programs and conjoin the sense conditions of sequential branchings. Unfor-
tunately, this does not work in general since an early sense condition might be voided
by a later effect. Technically, this is true, because a nondeterministic action of any kind
(treated as primitive or complex) is like a black box to the user and we need a sensing
program and a sense condition that can be used afterwards to decide which outcome
has happened, based only on the input. In particular, we cannot observe intermediate
states within the box. In the figure this means that we have no possibility to sense the
outcome of the sprob-statementA. This kind of uncertainty we do not permit. We only
allow uncertainty like the one of Figure 5.1 (a), with at most one sprob-statement at
the end of a sequence in a procedure model.14

Another approach to this problem which could be investigated in future work could
be the following: Instead of focusing on the moment of branching, one could create
conditions directly for the outcomes. This could for example be done by specifying a
set of fluents and to determine the values for these fluents for each possible outcome
according to the applied actions within the model (all described in one way or the
other in the situation calculus). After executing the nondeterministic program part –
action or procedure – the values for these fluents would have to be sensed and used
to decide on the actual outcome. This approach is motivated by the question which
of the listed outcomes describes the actual fluent values best. However, in realistic
domains where fluents are commonly real valued, it is mostly unlikely that the values
of the specified fluents in the model match with those in the real world. Thus, some
kind of classification is required. This certainly goes beyond the scope of this work. In
investigating this matter, it could be interesting to combine the research with on-line
learning techniques to improve the given models.

5.1.2 Specifying the Implicit MDP

Now that we have settled how to model uncertainty and in particular nondeterministic
actions, we can now in analogy to Section 4.2.2 specify the implicit MDP defined in a
READYLOG program, albeit only briefly, focusing on the differences to DTGOLOG.

state space = situations : This point stays unchanged.

action space = stochastic procedures + primitive actions : In addition to the primi-
tive actions, we have to formally add stochastic procedures to the set of MDP ac-
tions. This is because the models we have of them only apply to the procedures

14Note that in the earlier example on page 51, the two occuring sprob-statements appeared in disjoint
cases of a conditional and in particular are neither nested nor in sequence.

CHAPTER 5. READYLOG 56

as such, although the procedures usually contain primitive actions themselves.
Hereby the later defined options are included as they are compiled to stochastic
procedures by the preprocessor (see Sections 5.2, 5.3).

transition function = SSAs, procedure models, explicit events : The transition
function is not as simple as in DTGOLOG, where the successor state axioms
could directly be used for the transition function. For primitive actions it stays
similar to the extent that the successor state axioms can be used, but now all
possible explicit events have to be folded into the transition. It works as follows:
after the effects of the primitive actions have been applied, a new situation is
reached. The list of all events is traversed and all events that are possible in this
situation are applied one after another, which leads to new situations and finally
to the successor situations/states.15

This works similarly for stochastic procedures, though, for these no immediate
successor state axioms exist. Instead the defined outcome programs have to be
completely interpreted to obtain the possible successor situations. Due to the
transition semantics of ICPGOLOG, this is, however, very easy as we can im-
mediately use the transitive closure of the Trans predicate. That is, Trans is
applied to each outcome program repeatedly, starting in the current situation,
until a final configuration is reached. Afterwards the possible explicit events are
processed, just like for primitive actions.

This rather intuitive description is formalized by the predicate bestDoM in the
next section.

reward function = reward - costs : In addition to fluents, ICPGOLOG offers to de-
fine functions that take a certain value depending on some condition. Formally
a function is defined by function(f, v, ϕ), with the semantics that the function
f has the value v if the condition ϕ holds in the actual situation. In READY-
LOG, the user defines a special function Reward which is understood to as-
sign a value to each situation. For example function(Reward, v, v = 10 −
distance(Ball, Opponent goal)) could be a reasonable reward function for the
ROBOCUP Mid-Size League, based on the distance of the ball to the opponent
goal.

Costs, as before, additionally depend on an action and can be defined for stochas-
tic procedures. If no costs are defined for a procedure, it does not cause any costs.

5.1.3 Solving the Implicit MDP

The core extension we made to ICPGOLOG is precisely to solve MDPs implicitely
defined in the program as described above and to execute the resulting policy. In this
section we describe the developed and implemented algorithm for solving the MDP, in
the next we show how to represent and execute the resulting policy.

Unlike the approach of Soutchanski [37], we do not use a semantics of continuous
optimization. Recall, that his interpreter kept projecting the proximate future to create
a policy for it, but then only performed the first step of it before restarting the policy
construction. Our idea is closer to the construction of the incremental GOLOG in-
terpreter in [12]. General program execution is defined by the transition semantics of
ICPGOLOG. After each step of program interpretation, i.e., one call to Trans, the

15Note that by this semantics, the order of events matters.

CHAPTER 5. READYLOG 57

action is executed in the real world. To interrupt the on-line execution in order to
deliberate creating a plan, the user can use the new programming construct solve: a
transition step of solve(δ, h) changes to off-line mode and starts the projection process
for program δ up to a depth of h. Afterwards, the first step of the policy is executed,
leaving the rest of its execution to the remaining program returned by Trans. Not
all programming constructs of ICPGOLOG are supported within a solve-evaluation.
We call a program that is allowed with solve-statements a plan-skeleton. We allow
the following constructs in plan-skeletons: sequences, primitive actions, procedures
(in particular stochastic procedures), if-then-else, tests, while-loops, waitFor, nonde-
terministic action choice, and nondeterministic choice of argument (with and without
optimization, see below pickBest and pi respectively). In particular, we do not allow
constructs expressing concurrency, but allow some concurrency by defining explicit
events. Below we discuss the most relevant constructs and explicit events in detail.

The projection process, optimizing over the proximate future, works as in DT-
GOLOG by applying decision tree search. This is implemented by the recursive pred-
icate bestDoM . This predicate takes seven arguments, four of which we understand
as input arguments, the remaining three we call output arguments. These are the argu-
ments and their intuition:

1. The plan-skeleton δ to be optimized. It only makes sense to have plan-skeletons
that mention nondeterministic choices, since it is exactly these we are aiming to
optimize. That is, we want to decide which of the alternatives to take in order to
achieve the greatest possible overall reward.

2. The situation s where the deliberation is started. At the root of the bestDoM -
evaluation this is the situation where the execution of the global program was
interrupted. Seen from the perspective of MDPs, this is the state.

3. The remaining horizon h until the optimization process stops to report the results.

4. The optimal policy π returned by the process.

5. The expected value v for following the above policy.

6. The probability p of successfully terminating the plan-skeleton.

7. Another input argument α indicating whether for this projection step the list of
events has yet been processed or still has to be.

In the following, we will describe the definition of bestDoM for the allowed pro-
gramming constructs in plan-skeletons and for explicit events.

Explicit Events

The last argument of bestDoM is a boolean: If it is TRUE, the interpreter initiates
the processing of possible events. It starts by getting the complete list of defined events
Υ, which is created at time of preprocessing:

bestDoM(δ, s, h, π, v, p, α) ≡
α = TRUE ∧ h ≥ 0 ∧ ∃(Υ)events list(Υ) ∧
(Υ 6= [] ∧ bestDoM event(δ,Υ, s, h, π, v, p)

∨Υ = [] ∧ bestDoM(δ, s, h, π, v, p, FALSE))

CHAPTER 5. READYLOG 58

If this list is empty, it simply proceeds with program δ. Otherwise, it calls an auxiliary
predicate to process all entries of the list. Basically a tree as the one depicted in Figure
5.2 is spanned to create all of its leaves, where the normal projection continues. For

program

program

program

program

Situations

event 1

event 2

event n

Figure 5.2: The tree created by the explicit events. At the leaves the ordinary optimiza-
tion is continued.

spanning the tree we need two auxiliary predicates, one for iterating through the list of
all events, the other for iterating through all possible outcomes of one particular event.
The former is implemented as follows:

bestDoM event(δ, [], s, h, π, v, p) ≡
bestDoM(δ, s, h, π, v, p, FALSE).

bestDoM event(δ, [ε|Υ], s, h, π, v, p) ≡
(prolog event poss(ε, s) ∧ ∃(Ω, ψ)event outcomes(ε, s,Ω, ψ) ∧
∃(πlist, vlist)bestDoM event Aux(δ,Υ,Ω, s, h, πlist, vlist, p) ∧
∃(r, c)prolog function(Reward, r, s) ∧
(prolog event costs(ε, c, s) ∨ ¬prolog event costs(ε, c, s) ∧ c = 0.0) ∧
v = r − c+ vlist ∧ π = [perform(ψ)|πlist]) ∨
(¬prolog event poss(ε, s) ∧ bestDoM event(δ,Υ, s, h, π, v, p))

The first case, for an empty list of remaining events, constitutes a leaf of the tree. For
each leaf, the program δ is further projected. In the second case, it is first checked if
the event is possible in the actual situation. If so, the other auxiliary predicate is called
to create all outcomes and go on with projection for each of it. Further, rewards and
possible costs are computed and together with the subsequent value (vlist) combined
to the returned value. To later recognize which event outcome has happened, similarly
as for stochastic procedures, a sense program has to be executed at run time, which is
indicated by the perform(ψ) added to the policy.16

The second auxiliary predicate is defined as follows17:

bestDoM event Aux(δ,Υ, [(e, pe, φ)|Ω], s, h, π, v, p) ≡
16See Section 5.1.4 for details on the notion of a policy in READYLOG.
17For brevity we leave out the special case for the last outcome in the list. For the complete definition see

Appendix A.3.

CHAPTER 5. READYLOG 59

Ω 6= [] ∧ ∃(ρ, s′)trans∗(e, s, ρ, s′) ∧
∃(πtree, vtree, ptree)bestDoM event Aux(δ,Υ,Ω, s, h, πtree, vtree, ptree) ∧
∃(πrest, vrest, prest)bestDoM event(δ,Υ, s′, h, πrest, vrest, prest) ∧
v = pe · vrest + vtree ∧ π = [if(φ, πrest, πtree)] ∧ p = pe · prest + ptree

The tuple (e, pe, φ) describes an outcome, where e is a program describing the effects,
pe is the probability of occurrence and φ is a sense condition. These outcomes are
generated by the preprocessor from the user’s specifications. The transitive closure
trans∗ is used to compute the resulting situation s′ from applying that outcome pro-
gram in the current situation. Thereafter, the remaining outcomes are processed in a
recursive call and, starting in s′, further projection is initiated. The last line contains
the usual calculations for the returned expected value, policy and termination probabil-
ity. Expected value and termination probability are simply the values of the subsequent
projection (vrest, prest) weighted with the probability for this outcome (pe), plus the
similarly calculated values for the other outcomes (vtree, ptree). The policy includes
a conditional over the sense condition for this outcome to decide which sub-policy to
take depending on the actual outcome at run-time.

Here the same concerns about full-observability apply as discussed above. We
circumvent conflicting sense conditions of outcomes of different events, by requiring
independent events. This is under the responsibility of the user.

Nondeterministic Choice

By using the construct nondet(∆), where ∆ is a list of plan-skeletons, the user can
leave a decision to the agent, who is forced to decide depending on the expected reward
for each choice.

bestDoM([nondet([δ])|δ′], s, h, π, v, p, α) ≡
α = FALSE ∧ h ≥ 0 ∧ ∃(πrest)bestDoM([δ|δ′], s, h, πrest, v, p, FALSE) ∧
π = [match(nondet(0))|πrest]

bestDoM([nondet([δ|∆])|δ′], s, h, π, v, p, α) ≡
α = FALSE ∧ h ≥ 0 ∧∆ 6= [] ∧
∃(π1, v1, p1)bestDoM([δ|δ′], s, h, π1, v1, p1, FALSE) ∧
∃(π2, v2, p2)bestDoM([nondet(∆)|δ′], s, h, π2, v2, p2, FALSE) ∧
(greatereq(v1, p1, v2, p2) ∧ π = [match(nondet(0))|π1] ∧ p = p1 ∧ v = v1 ∨
¬greatereq(v1, p1, v2, p2) ∧ ∃(n, π2rest , n

′)π2 = [match(nondet(n))|π2rest] ∧
n′ = n+ 1 ∧ π = [match(nondet(n′))|π2rest] ∧ p = p2 ∧ v = v2)

The first case, for the last entry in the list, is rather trivial. The only thing to note is
that in further projection events keep being ignored. We understand events to happen,
if actually possible, only once at the beginning of each situation. Thus, we change
the value for the argument indicating whether events should be preocessed or not only
when reaching a new situation, after a primitive action or a stochastic procedure.

The second definition takes care of the branching: for the given alternative the
further projection is started and the predicate is recursively called for all remaining
choices. Based on the returned values, it is then decided which of the alternatives to rec-
ommend, that is, to write to the policy. This is done by the predicate

CHAPTER 5. READYLOG 60

greatereq(v1, p1, v2, p2), which expresses that the first expected value/termination
probability-combination is preferred to the second. Basically the two expected val-
ues are compared, as long as the corresponding termination probabilities are greater
zero. In the policy the index of the selected choice in the list is annotated.18

Nondeterministic Parameter Choice

Imagine a robot is to perform a certain action, but at least for one of the arguments it
is unclear which would be the best value to take from a certain set of possible values.
This could be modeled by using a nondet(∆)-statement where the list ∆ contains the
action for each of the possible arguments. However, especially for large sets of possi-
ble values and for more complex sub-plan-skeletons than just single actions, it seems
convenient to offer a more compact way for describing this problem. The construct
pickBest(f, r, δ) decides which replacement for all occurrences of f in plan-skeleton
δ is the best if the replacement is taken from the set r. In our implementation, r is
defined by a list of arbitrary elements and for two integer numbers a and b the ex-
pression a..b can be used to denote the range of integer numbers from a to b. The
bestDoM for pickBest(f, r, δ) works by simply substituting all possible values for all
occurrences of f in δ, performing projection for all of these, and afterwards selecting
the best one. Since this is very similar to the definition for the nondet(∆)-statement,
we omit the details for this expression (see Appendix A.3 for details).

Stochastic Procedures

Stochastic procedures are treated by bestDoM very similar to events. In fact, the only
difference is that stochastic procedures are called from the plan-skeleton, while events
just happen occasionally when they are possible. When they are not, it just means that
nothing happens. However, if a called stochastic procedure is not possible, the policy
has a dead end and projection terminates – for this branch.

bestDoM([a|δ], s, h, π, v, p, α) ≡
h > 0 ∧ stoch proc(a) ∧
(stoch proc poss(a[s], s) ∧ ∃(Ω, ψ)stoch proc outcomes(a[s], s,Ω, ψ) ∧
∃(h′)h′ = h− 1 ∧
∃(πrest, vrest)bestDoM stoch Aux(Ω, δ, s, h′, πrest, vrest, p) ∧
∃(r, c)prolog function(Reward, r, s) ∧
(stoch proc costs(a[s], c, s) ∨ ¬stoch proc costs(a[s], c, s) ∧ c = 0.0) ∧
v = r − c+ vrest ∧ π = [match(stoch proc(a[s])), perform(ψ)|πrest] ∨
¬stoch proc poss(a[s], s) ∧ prolog function(Reward, v, s) ∧ π = [] ∧
p = 0.0)

Where a[s] is the procedure call with all arguments evaluated in situation s according
to the situation calculus. The second part of the disjunction shows the case when the
stochastic procedure is not possible: The reward for the current situation still is earned,
but the policy from here is empty and the probability of successful termination is zero.

18Readers familiar with the policy representation of DTGOLOG, which is simply a legal DTGOLOG pro-
gram, might be wondering about the policy notation used. They are referred to the next section, where we
argue for a new kind of policy representation and policy execution.

CHAPTER 5. READYLOG 61

In the other case, again an auxiliary predicate is used, which, once more, we only show
partially:

bestDoM stoch Aux([(ω, pω, φ)|Ω], δ, s, h, π, v, p) ≡
h ≥ 0 ∧ Ω 6= [] ∧
(∃(ρ, s′)trans∗(ω, s, ρ, s′) ∧
∃(πrest, vrest, prest)bestDoM(δ, s′, h, πrest, vrest, prest, TRUE) ∧
∃(πtree, vtree, ptree)bestDoM stoch Aux(Ω, δ, s, h, πtree, vtree, ptree) ∧
π = [if(φ, πrest, πtree)] ∧ v = vtree + pω · vrest ∧ p = ptree + pω · prest ∨
6 ∃(ρ, s′)trans∗(ω, s, ρ, s′) ∧ bestDoM stoch Aux(Ω, δ, s, h, π, v, p))

What bestDoM does here, after all, is to start the projection for each possible outcome
and compute the expected value and expected termination probability over them ac-
cording to their probabilities of occurrence. Furthermore, using the sense conditions,
the policy is extended by a conditional branching to the corresponding sub-policy based
on the sensing result.

Figure 5.3 shows an example of the kind of tree created by interleaving nondetermin-
istic (user) choices and nature’s choices. A policy could be depicted similarly, but
reducing the outgoing edges from the boxes (user choices) to exactly one. The opti-
mization algorithm computes the maximum over all sub-trees in the boxes, while in the
circles it calculates the expected values over the sub-trees. The tree is traversed depth-
first, leaving a branch when either the horizon is reached or a state is entered where no
more actions are possible. Other ways of traversal could be imagined and investigated
in future work, for example to create an anytime algorithm. We come back to this point
in Section 7.

user’s choice

nature’s choice (averaging)

(maximizing)

horizon

Figure 5.3: An example tree created by nondeterministic choices (boxes) and stochas-
tic procedures (circles). Roughly, in the circles the expected value of all children is
computed and in the boxes the maximum is chosen.

CHAPTER 5. READYLOG 62

Other Supported Constructs

The yet presented constructs characterize the planning ingredient to our language. The
programming ingredient is characterized by the remaining supported constructs, which
are the following:

Sequence As in ICPGOLOG notated as a list [a,b,..].

?(ϕ) If the condition ϕ holds, the projection proceeds. Otherwise the branch is cut,
returning an empty policy, zero termination probability and only the local reward.

if(ϕ, δ1, δ2) If condition ϕ holds, the projection proceeds with sub-plan-skeleton δ1,
else with δ2. In the policy, the truth value of the condition is annotated together
with the remaining policy. See Section 5.1.4 for the reasons for that. As in
ICPGOLOG we use if(ϕ, δ) as an abbreviation for if(ϕ, δ, []).

while(ϕ, δ) While condition ϕ holds, the plan-skeleton δ is projected over and over
again. In the policy, each time the loop restarts is annotated. As in ICPGOLOG,
we use loop(δ) as a shorthand for while(TRUE, δ).

waitFor(ϕ) This advances the time, i.e. the value of fluent start, to the least time
point where the temporal condition ϕ holds. If no such time point exists, the
branch is cut. As in ICPGOLOG, we use whenever(ϕ, δ) as an abbreviation for
while(TRUE, [waitFor(ϕ), δ]) which performs δ whenever ϕ holds.

pi(x, δ) Technically, this sets all occurrences of x in δ to a fresh variable. From the
logical point of view this statement equals ∃(x)δ.

Primitive actions If the primitive action is possible, the projection continues for the
successor situation do(a, s), where a is the primitive action and s is the current
situation, and adds the reward for the current situation. If it is not possible, the
branch is cut. Primitive actions and stochastic procedures are, further, the only
constructs which decrease the remaining horizon.

Procedures are supported as usual in GOLOG by macro expansion, that is, the proce-
dure name is syntactically replaced by its body. One change, however, taken over
from ICPGOLOG is that the actual parameters of a procedure call are already
evaluated at the moment of replacement.19

Remember that these are only the constructs allowed in a plan-skeleton, used in a
solve-statement. In particular, we do not reduce the set of allowed constructs in gen-
eral, that is, every legal ICPGOLOG program is also a legal program in READYLOG.

Concurrency

Different from ICPGOLOG programs, in projection we do not allow constructs using
concurrency, which are pconc(δ1, δ2) and the macros tryAll and withPol. This is due
to similar reasons why Grosskreutz [18] removed nondeterminism in conjunction with
concurrency and continuous change. The problem is to find a reasonable semantics
for nondeterminism in concurrency. Concurrency in the model about the world is,
however, supported by means of explicit events.

19In other GOLOG versions like in the original, actual parameters were only substituted for the occur-
rences of the formal parameters in the procedure body.

CHAPTER 5. READYLOG 63

Optimize

In addition to the solve(δ, h)-statement, READYLOG offers the statement
optimize(δ, h, hexec) which equivalently starts the projection algorithm and performs
the first step of the resulting policy. The difference comes with the semantics of policy
execution: After a number of hexec steps have been performed from the policy, the re-
maining part is dropped and instead the remaining program is newly optimized. Then,
for example, optimize(δ, h, 1) would find a policy for plan-skeleton δ for h steps into
the future, but then only execute the first of these steps and then restart finding a policy
for what remains, again up to the given horizon. This special case, where hexec equals
one, is exactly the mode of operation Soutchanski [37] applies as the general case in
his approach.

5.1.4 Policy

A policy describes the “best” way of behaving in order to achieve a high reward. A
policy can be considered the solution of an MDP and needs to be represented and
brought to execution, which we will turn to now.

In DTGOLOG, a policy is simply a GOLOG program. The intention is, that this
program is computed as described and then executed in the real world instead of the
original program, which may have contained nondeterminism. Unfortunately, the mod-
els of the world that are used for planning tend to be imperfect. That is, sometimes the
world simply evolves different from what was considered possible. As discussed with
the qualification problem, it is generally impossible to guarantee that a policy achieves
its aim. However, since DTGOLOG is an off-line interpreter, the possibility of re-
planning in case something goes wrong, simply does not exist.

In our case, though, we are free to interleave plan generation and plan execution,
and it is thus possible to react upon unexpected evolution. To do so, we cannot, how-
ever, represent a policy simply by a program anymore. Moreover it is necessary to
somehow annotate the assumptions that have lead to this policy.

Example 5.1.3 Consider the problem of running to the ball in the ROBOCUP Simu-
lation League. The following program would usually be a promising approach
to this problem:

while(not(atBall), if(angleToBall > 20, turnToBall, dash))

With this deterministic program, the agent repeatedly dashes towards the ball if
the angle to the ball is not greater 20 degrees. Otherwise it turns to the ball.
Imagine this program is used within a plan-skeleton. Then the policy returned
would be based solely on the applied model of the world. In fact, the policy that
would be returned by DTGOLOG for such a program would be some sequence
of turnToBalls and dashes. However, this particular sequence would in
the simulation league almost never get the agent to the ball, as the uncertainty
in this domain is too complex to be modeled entirely in DTGOLOG. Thus, the
policy would perform unnecessarily bad compared to the original program. The
reason is mainly because the policy commits to the model and is unstable against
changes. In particular, the involved conditions (atBall and angleToBall
> 20) are evaluated based on the model and the resulting recommendation is
not conditioned on the result.

CHAPTER 5. READYLOG 64

We propose a completely different representation for policies. The aim in devel-
oping this, was to increase stability and flexibility upon changes. Instead of creating a
policy that itself is executable, we understand a policy only as an advisor for a partic-
ular program. The concept is best described by a metaphor: Consider a rally driving
team, that is, a pilot and a his co-pilot. The pilot will be the program executor and the
co-pilot will be the planner and provide the policy. The co-pilot has a map which sym-
bolizes the model of the world. Based on the map he will continuously search the way
ahead to determine how to steer at crossroads and other alternative ways. Yet, he will
not steer for himself, but instead only tell the pilot how to decide when choices arise.
Now, if something goes wrong, for example a road shown in the map is not usable due
to weather conditions, the team has to reconsider its plan. While in this very example it
is obvious that the original plan has to be discarded, because one of its elements is not
possible, in general it might not always be that clear. Imagine the plan is to repeatedly
go far left when choices arise, but different from the map a new junction to the left
exists somewhere. Then applying the plan is still possible, but the rally team would go
the wrong way without noticing. Thus, the task is to decide whether a plan is still valid
or should be reconsidered.

We suggest the following: we keep executing the original program and only query
the policy for advice when nondeterministic choices arise. To do that, we need to
synchronize the policy with the program, in order to find out into which branch of the
policy we have to go after some stochastic event, and to notice when the policy gets
illegal. It is, thus, not enough to write a policy simply as the sequence of decisions
to be made at the nondeterministic choices. Instead, all other elements should also be
annotated. For some of the constructs, we already mentioned their annotation in the
policy. In the following we give a complete list. Three different types of entries in the
policy exist: match(·) is used to synchronize program and policy and for giving advice,
perform(·) is used to indicate that the policy needs to perform a sensing program in
order to know which way to go, and if(·) is used to branch in the policy depending on
the sensing outcome.

• nondet(∆)→ match(nondet(i)) : where i is the index of the best alternative
from the list ∆.

• pickBest(f, r, δ) → match(pickBest(v)) : where v is the best value to pick
for f from the set r.

• stochastic procedure a→
match(stoch proc(a)), perform(ψ), if(φ1, π1, if(φ2, π2, ..)) : where a is the
name of the stochastic procedure, ψ is the corresponding sensing program, φi
is the sense condition for the i-th possible outcome, and πi the corresponding
sub-policy. If in reality the procedure is not possible, the policy is recognized to
be illegal.

• explicit event→ perform(ψ), if(φ1, π1, if(φ2, π2, ..)) : As for stochastic pro-
cedures, we need to branch in the policy depending on the actual outcome of an
event that happened.

• ?(ϕ) → match(?) : The policy is invalid if the condition ϕ does not hold in
reality.

• if(ϕ, δ1, δ2)→match(ifCond(ϕ̄, π)) : where ϕ̄ is the truth value of condition
ϕ in the model, and π is the corresponding sub-policy. If in reality the truth of
the condition changes, the policy is voided.

CHAPTER 5. READYLOG 65

• while(ϕ, δ)→ match(while(π)) : If the condition holds, this entry is made to
the policy. Otherwise, there is no entry for this construct. That is, the policy for
this construct ends (is final) and can go on for a possible follow-up construct if
used in a sequence.

• waitFor(ϕ) → match(waitFor(ϕ)) : If a least time point for the condition
exists, this entry is added. Otherwise, no entry is made.

• primitive action a→match(prim action(a)) : If the action in the real world is
not possible, the policy is discarded.

Whenever the policy gets illegal, re-planning is initiated for what remains.
This complex treatment is especially necessary, as in READYLOG like in ICP-

GOLOG we allow for exogenous actions. As said before, these can update the agents
view of the world without being triggered by the agent himself. That makes them dif-
ferent from sensing actions. In Soutchanski’s approach [37], this matter is not treated,
simply because he does not allow for exogenous actions. The only way the knowledge
changes in his interpreter, is by performing sensing actions, which are called by the
agent. Soutchanski suggests to start planning only right after sensing has been done
and up to the next sensing action. However, this is unrealistic for dynamic domains:
to perform well, frequent updates of the world model are necessary. In ROBOCUP it
is commonly about once every 100 milliseconds. Yet, the described approach would
restrain planning to only 100ms into the future, which does not make sense. In fact,
that would only result in almost purely reactive behavior. After all, we are aiming at
the contrary, namely deliberation. This clarifies why the approach described in [37]
does not apply for our requirements.

Policy Execution

The execution of a policy amounts to executing the program, synchronously advancing
the policy, and querying the policy for advice upon nondeterministic choices. The exe-
cution is defined in the transition semantics using the new construct
applyPolicy(δ, π, hexec, hreplan, hreexec):

• δ is the program to execute. This is exactly the plan-skeleton that was either used
with solve or optimize.

• π is the policy in the described notation.

• hexec is the remaining horizon of execution.

• If the execution horizon is reached (= 0), re-planning is initiated for the remain-
ing program with hreplan as planning horizon.

• The newly generated policy is then again executed with the new horizon of exe-
cution hreexec.

The difference between solve(·) and optimize(·) comes from the values initially set
for these parameters: solve(·) sets hexec and hreexec to −1. Thereby the policy is
executed until it terminates naturally, either successfully or unexpectedly in which case
re-planning is done. After a call to optimize(·), these values get set according to the
parameters of the call.

CHAPTER 5. READYLOG 66

The execution works as follows. In the general case, a Trans step of the program is
made and matched against the entry in the policy. If policy and program do not match,
the policy is cut and re-planning is started. However, there are some special cases to be
treated:

• When executing a stochastic procedure, the real procedure body is used, while
in projection only the model for this procedure was considered. Thus, there is
only one entry in the policy for matching the procedure call (stoch proc(a))
followed by the sensing and branching to be done after the procedure. Hence,
the steps taken in the body of the procedure cannot be matched. To indicate
that, when expanding the procedure body, it is encapsulated into an ignore(·)-
statement which is written to the program. Then applyPolicy simply performs
the program inside without trying to match.

• After a stochastic procedure has been executed completely, the sensing program
within a perform(·)-statement is executed.

• Following the sensing, the branching upon the outcome is done in the policy
by interpreting an if(φi, πi, π

′)-statement. If the sense condition φi holds, the
remaining policy is set to πi, otherwise it is set to π′ (which again can be an
if -statement).

• When the program hits a nondet(∆) decision, the policy, if nothing went wrong,
is at a match(nondet(i)) entry. Simply, then, the element of list ∆ with index i
is chosen.

• Similarly a pickBest(f, r, δ) is resolved through a match(pickBest(v)) entry,
where v is the value to chose from r.

5.2 Options

In Section 3.2 we introduced the concept of options and showed their potential for
speeding-up MDP solutions. The idea was to abstract from the level of primitive ac-
tions, understood as actions that the agent is able to perform immediately, to more
complex actions. These complex actions were called options or macro-actions.

We now want to present how we enable the definition and use of options in READY-
LOG. The aim, as in the literature, is to speed up the solution of the (implicitely) de-
fined MDP. We will show, how options nicely extend the set of nondeterministic actions
presented earlier in this chapter.

The crucial point for using options in planning, was the need of having models
for them describing their impact on the world. In fact, what we defined as stochastic
procedures, fits this notion: stochastic procedures are complex procedures defined over
primitive actions, and a model for them is provided by the user. However, we do
not understand stochastic procedures as options. Instead, we want to reserve the term
options for macros for which the corresponding model has been created automatically
based on the contained constructs and actions. These actions can themselves be options
or stochastic procedures, allowing hierarchical option construction.

The hierarchy is defined in levels of actions:

Definition 5.2.1 A basic action is either a primitive action or a stochastic procedure.

With this in place, we can define options in our context:

CHAPTER 5. READYLOG 67

Definition 5.2.2 An option of level n is a tuple 〈ϕ, π〉 where ϕ is a condition describ-
ing the situations where the option is possible, called the initiation situations,
and π is an ICPGOLOG program that is executable in all initiation situations
and only contains basic actions and options of levels ≤ n.

This definition requires that the policy-program π for every situation where the option
is possible names an action of lower level which to take in that situation. This could for
example be a decision tree of the form if(φ1, a1, if(φ2, a2, ..)) where the φi describe
situations and where for each initiation situation at least one of these conditions holds.

READYLOG supports the automatic creation of options via the solution of local MDPs.
We take over this idea from Hauskrecht et al. [21] as presented in Section 3.2.2: The
idea was to define local MDPs that describe sub-problems of the global task. Their
solutions define options.

5.2.1 Defining local MDPs

The automatic creation of options in READYLOG is restricted to local MDPs with
finite state space. This is in contrast to the global optimization mechanism, which
can work on infinite state spaces as it exploits the knowledge about the starting point.
However, options are not meant to start always from the same point. Therefore we
cannot exploit such information. Furthermore, explicitly enumerating the state space
avoids the problem of visiting apparently equal states several times, as discussed in
Section 4.2.2. The definitions to be made by the user, which we will present in the
following, carry the prefix option . Still, these only define the local MDP from which
an option later can be created. They do not define the option itself.

The most central idea in defining local MDPs within our context, is to create a state
space which is linked to the global task by explicit mappings. Three mappings are
required:20

1. situations→ states
For each situation where the option shall be applicable, the corresponding state
of the local MDP has to be known. The representation for states can be arbitrary,
but it is suggestive to use a factored representation based on variables. In the
example of Figure 4.1 on page 43, which we used to illustrate the difference be-
tween intuitive states and situations, a reasonable state description would be the
position of the robot and the dirtiness of the rooms. That could be written simply
as a list of tuples [(Pos, p), (DirtLeft, l), (DirtRight, r)] where p, l and r are
the values of these state variables. Then the mapping would be straightforward,
by only evaluating the state variables in the actual situation, and notating the
values in this representation.

2. states→ situations
Since there are usually infinitely many situations that would be mapped to the
same state, we naturally cannot have a surjective mapping from states to situ-
ations. Fortunately this is not necessary, if the states depend on some crucial
state variables as suggested above. Then from the values of these variable, a

20We below alleviate this complicated matter for the user by offering help in defining these mappings
when certain conditions are met. However, first, the general case is discussed.

CHAPTER 5. READYLOG 68

situation can be created which simply has these values set for the correspond-
ing fluents. For the example above, we could, for instance, create the situa-
tion do(setPos(p), do(setDirtLeft(l), do(setDirtRight(r), S0))), where the
primitive actions simply set the corresponding functional fluent to the given
value.

3. states→ conditions
Further, a mapping from states to conditions is required, which forms the basis
for full-observability in the local MDP. It is needed for option construction and
is essentially the inverse direction from the first mapping. As it is more intuitive
to explain this matter when needed, we skip the details for now.

The user defines all three mappings by one statement:

option mapping(o, σ,Γ, ϕ)

Each situation in which ϕ holds corresponds to state σ. Γ is a list of primitive actions
that, when applied in an arbitrary situation (e.g. S0), leads to a situation where the
condition holds and thus corresponds to the given state. One example would be the
following, which recognizes a fluent for the two-dimensional position (pos) as the
only discriminative state variable:21

option_mapping(option1, [(pos, [X, Y])],
[set(pos, [X,Y])], pos = [X,Y]).

The primitive action set(FluentName, Value) simply sets the value of the flu-
ent to the given value. This action, which requires some special treatment in the inter-
preter, can be used with any fluent.

In the example above, the fluent pos is the only one that matters. In cases like this,
where one or more fluents can be used for a factored representation [6] of state space,
the mapping is very straighforward. To alleviate the task of designing it in those cases,
we offer the user to, instead of defining the above mapping by hand, define a predicate
option variables(o,Σ), where o is the name of the option and Σ is a list of fluents.
These fluents are understood to be state variables, such that two states are equal if and
only if the values of these variables coincide. From that predicate, the preprocessor can
create the required mappings, following the pattern of the above example.

This seems suggestive in discrete domains. However, if fluents take continuous
values, this way of creating a state representation would not lead to finite regions of
state space as we require it.22 Then, the more general way for defining these mappings
can be used by the user to realize some kind of abstraction he might have in mind.
This issue relates to future work, where the applicability of options shall be extended
to continuous domains (see Section 7).

The remaining steps in defining a local MDP are rather intuitive. As Hauskrecht et al.
[21] we define regions of state space where an option is applicable:

option init(o, ϕ)

where the condition ϕ holds in only those situations where option o is applicable. This
condition, however, has to be carefully designed. It must hold if and only if the option

21This is presented in the (Prolog) notation of our implementation.
22Although discrete domains may also be infinite, we only require that regions of state space are finite.

Intervals of discrete domains are finite, but intervals of continuous (real valued) domains are not.

CHAPTER 5. READYLOG 69

is applicable. We require this to be able to construct a set of situations that, when
mapped to states, covers the entire region of states where the option is applicable. Let
us explain that by an example:

option_init(option1,
and([pos = [X, Y], domain(X, [0..5]),

domain(Y, [0..10]), inRoom(1)])).

Here option1 is only applicable if the position fluent equals the list [X, Y] and
X is an integer number from the interval [0, 5], Y is an integer number from the
interval [0,10] and the position is inside room 1. What makes this condition special
are the domain(·) terms. They are special to our implementation and bind a variable
to a finite domain using the finite domain library of ECLiPSe. It is important to note
that without, the condition would not meet the requirement from above, since also
infinitely many other values for X, Y would then make the condition true (e.g. X =
2.71828, Y = 3.14159). The domain(V, R) statement here proves useful,
as it may bind a variable V to any value in the range R, where this range can be an
arbitrary mixture of integer intervals (a..b) and any other terms.23

We call the set of states defined by option init(·) initiation states and all corre-
sponding situations initiation situations.

To assure full-observability in the local MDP, the agent may require sensing to find
out which state it is in when executing the resulting policy/option in the real world.
The corresponding sensing program for an option is defined by

option sense(o, ψ)

An option is only executable in the initiation states, which implies that outside
of this set an option immediately terminates. This defines the exit periphery like in
Section 3.2.2 [21]: A non-initiation state that can be reached from an initiation state
we call exit state. To the exit states the user can assign values, which we want to call
pseudo-rewards. They are used only for solving the local MDP and are intended for
creating goal-directed behavior.

option beta(o, ϕ, v)

states that if condition ϕ holds in an exit state it gets v assigned as a pseudo-reward.
Otherwise, it gets a pseudo-reward of zero. In our implementation several such
option beta(·) definitions may exist for different states or sets of states.

The set of actions from which the agent may choose at each stage of a local MDP
of level n are defined via an option-skeleton: An option-skeleton of level n is either

• an action of level less than n,

• a nondeterministic choice nondet(Θ) where the elements of list Θ are again
option-skeletons of level ≤ n, or

• a conditional if(ϕ, θ1, θ2) where ϕ is a condition and θ1, θ2 are option-skeletons
of level ≤ n.

In particular, no sequences are allowed. This restriction is required to maintain the
Markov property. With sequences, the available actions in a stage would not only
depend on the current state, but also on the history of actions. Compared to ordinary

23cf. pickBest(f, r, δ) in Section 5.1.3.

CHAPTER 5. READYLOG 70

MDPs, an option-skeleton again provides means of incorporating domain knowledge
to reduce computational complexity by offering conditionals. The specification of an
option-skeleton for a local MDP is done by the predicate

option(o, θ, γ)

where 0.0 < γ < 1.0 is a discounting-factor which is used in the solution algorithm
described in the next Section.

We are now ready to formalize local MDPs of level n:

Definition 5.2.3 A local MDP O of level n is a tuple 〈S,A, T,R〉 with the compo-
nents defined by

S = initiation states ∪ exit states ∪ {α};
A: the actions mentioned in the option-skeleton, all of level less than n;

Tr : the outcomes for the used stochastic procedures and the successor state
axioms of used primitive actions, both folded with possible explicit events
(cf. Sections 5.1.2, 3.1.2); further, state α is absorbing and any action
taken in an exit state leads to α;

R: local pseudo-rewards + global rewards – global costs; for state α this value
is zero.

Again there is no explicit representation for the transition function and in particular the
folding of events is not performed explicitly, but implicitly in the algorithm.

We use value iteration to solve such an MDP. However, we want to use the solution
for solving a global task. Thus, it does not suffice to solve the MDP. We require a
model of the possible effects when following the acquired solution. Value iteration for
the infinite horizon problem already provides the expected value for taking the option
in any of the initiation states. Still missing are the probabilities of ending up in a certain
exit state depending on the state where the option is taken. Since we are not limiting
the initiation of an option to some kind of entrance states as in [21], we cannot reduce
the computation of effects to these. In this way, our approach is a mixture of the ideas
of Sutton et al. [38] and those of Hauskrecht and his colleagues.

5.2.2 Local MDPs: Solution and Model

We have implemented a slightly modified value iteration algorithm plus an iterative
algorithm to compute the probabilities of ending up in a certain exit state of a local
MDP depending on where the (optimal) policy is taken.

The modification of value iteration is in order to take both, pseudo-rewards and
globally defined rewards into account. Also the implicit folding of events into actions
was added following the algorithm described in Section 3.1.2 [6]. The algorithm runs
iteratively. For each iteration h, a state s possesses a tuple 〈 rh(s), vh(s), πh(s),Πh(s) 〉,
where

• rh(s) is the expected reward when taking the option in this state,

• vh(s) is similarly the expected pseudo-reward,

• πh(s) the policy, that is, the action to take in state s,

CHAPTER 5. READYLOG 71

• Πh(s) the probability list, listing all possible successor states of s together with
their probabilities.

Initially for all initiation states rh(s) is set to the global reward defined for this state,
vh(s) is zero, the policy is nil, and the probability list is empty. For exit states s′

rh(s′) is set to zero, vh(s′) is set to the pseudo-reward as defined by option beta(·),
the policy is nil, and the probability list empty.

The iteration operates on the set of initiation situations constructed from the condi-
tion given by the predicate option init(·). For each such situation the corresponding
(initiation) state can be created by using the defined mapping from situations to states.
The iteration step h for situation s is defined through a new predicate bestDoMOpt
with ten arguments:

1. the name of the option, o,

2. an option-skeleton θ,

3. a boolean α indicating whether events have yet been processed or not,

4. a situation s from which the state is determined,

5. the iteration number h,

6. the expected global reward r for this state,

7. the probability list Π for this state,

8. the depth d, which is the number of steps taken into the option-skeleton (with
regard to nestings),

9. a policy π, which is an action of level < n, and

10. the expected pseudo-reward v for this state.

The new predicate works similarly to bestDoM , is also recursively implemented, but
memorizes yet computed values. It also begins each iteration step with checking pos-
sible events and processing them. This can take the agent to other situations/states and
even outside the region into an exit state. We omit details on this step as it is similar
to the previously presented algorithm. Afterwards, the option-skeleton is processed.
Although no sequences are allowed in these, this processing can take place in various
stages due to possible nesting through the use of if and nondet. The stage is repre-
sented by the depth d (argument 8) and is initially zero. Only the values at depth zero
matter.

Primitive Actions

For a primitive action a, it is verified that the action is possible in the current situation,
and the policy is set to this action. The situation resulting from performing the action
in the current situation, do(a, s), is determined, and the reward and pseudo-reward of
the last iteration (h − 1) for that successor situation are looked up in the knowledge
base. To the obtained reward and pseudo-reward, the reward for the actual situation
is added. The probability list for the current iteration is set to [(do(a, s), 1.0)]. Then,
if the depth is zero, the new reward, new pseudo-reward, the probability list, and the
policy are saved for this state and iteration number. Usually a primitive action would
not appear at depth zero. It would mean, the local MDP allowed only this one primitive
action, deterministically, and in all states.

CHAPTER 5. READYLOG 72

Stochastic Procedures

For stochastic procedures the implementation is as follows:

bestDoMOpt(o, θ, α, s, h, r,Π, d, π, v) ≡
α = FALSE ∧ h > 0 ∧ stoch proc(θ) ∧
(stoch proc poss(θ, s) ∧ ∃(Ω, ψ)stoch proc outcomes(θ, s,Ω, ψ) ∧
∃(h′)h′ = h− 1 ∧
∃(rlist, vlist)bestDoMOpt stoch Aux(o,Ω, s, h′, rlist,Π, vlist) ∧
∃(rs, c)prolog function(Reward, rs, s) ∧
(stoch proc costs(θ, c, s) ∨ ¬stoch proc costs(θ, c, s) ∧ c = 0.0) ∧
∃(b, γ)option(o, b, γ) ∧ r = rs − c+ γ · rlist ∧ v = rs − c+ γ · vlist ∧
π = θ ∨
¬stoch proc poss(θ, s) ∧ prolog function(Reward, r, s) ∧
π = [], v = 0.0,Π = []) ∧ opt update Optionbase(d, o, s, h,Π, r, v, π)

This works very similar to the yet seen implementation of bestDoM , except for two
details: The rewards are discounted by the discounting factor γ defined for the option,
and, at the end, the iteration values (Π, r, v, π) for this situation/state s and iteration
number h are added to the knowledge base. Thereby the depth is taken into account,
such that no saving takes place in case d is unequal zero. More interesting, is the
definition of the auxiliary predicate, which we show again only for the case where the
list of outcomes has not reached its end. The other case is very similar and can be
found in Appendix A.4.

bestDoMOpt stoch Aux(o, [(ω, pω, ψ)|Ω], s, h, r,Π, v) ≡
Ω 6= [] ∧
(∃(ρ, s′)trans∗(ω, s, ρ, s′)∨ 6 ∃(ρ, s′)trans∗(ω, s, ρ, s′) ∧ s′ = s) ∧
∃(rtree,Πtree, vtree)bestDoMOpt stoch Aux(o,Ω, s, h, rtree,Πtree, vtree) ∧
∃(b, γ)option(o, b, γ) ∧ ∃(rrest,Πrest, πrest, vrest)

bestDoMOpt(o, b, TRUE, s′, h, rrest,Πrest, 0, πrest, vrest) ∧
r = rtree + pω · rrest ∧ v = vtree + pω · vrest ∧
∃(σ)opt state tmp(o, σ′, s′) ∧ opt PL add(Πtree, [(σ

′, pω)],Π)

Here the outcome describing program ω gets interpreted by trans∗(·) obtaining a new
situation s′. If that is not successful, we take the effect to be impossible and proceed
the projection in the current situation. The h here is already the decreased iteration
number. Thus, the call to bestDoMOpt(·) returns the values from the last iteration.
This call in general returns immediately as the values were saved during the previous
iteration. Following, the expected rewards are calculated as usual. The last line, how-
ever, is special for this algorithm: For the situation reached as an effect of this outcome
(s′), the corresponding state (σ′) is determined and the probability list [(σ′, pω)] is cre-
ated, solely containing an entry for this state together with the probability pω for this
outcome. opt PL add(Π1,Π2,Π3) “adds” two probability lists: For those states that
appear in both lists, the probabilities are added. All others are simply taken over into
the new list. Hence, the overall returned list describes the probabilities of getting to a
certain state after performing this stochastic procedure in the current state.

CHAPTER 5. READYLOG 73

Conditionals (If-then-else)

The definition for conditionals is straightforward:

bestDoMOpt(o, if(ϕ, δ1, δ2), α, s, h, r,Π, d, π, v) ≡
α = FALSE ∧ h ≥ 0 ∧
(ϕ[s] ∧ bestDoMOpt(o, δ1, FALSE, s, h, r,Π, d, π, v) ∨
¬ϕ[s] ∧ bestDoMOpt(o, δ2, FALSE, s, h, r,Π, d, π, v))

Where ϕ[s] denotes the truth value of condition ϕ in situation s according to the situa-
tion calculus.

Nondeterministic Choice

For nondeterministic choices, the expectations for all alternatives have to be compared
to determine which is the best choice. Again the implementation is straightforward and
similar to the already seen, except, here we have to increase the depth argument. This is
because all the alternatives are evaluated in the current situation/state and current iter-
ation number. All of them would save their idea about the best policy and the expected
values and probability list. However, we are only interested in the best alternative and,
therefore, have to keep the individual branches from writing to the knowledge base.

bestDoMOpt(o, nondet(Θ), α, s, h, r,Π, d, π, v) ≡
α = FALSE ∧ h ≥ 0 ∧ ∃(d′)d′ = d+ 1 ∧
bestDoMOpt nondet Aux(o,Θ, s, h, r,Π, d′, π, v) ∧
opt update Optionbase(d, o, s, h,Π, r, v, π)

bestDoMOpt nondet Aux(o, [θ|Θ], s, h, r,Π, d, π, v) ≡
Θ = [] ∧ bestDoMOpt(o, θ, FALSE, s, h, r,Π, d, π, v) ∨
Θ 6= [] ∧ ∃(r1,Π1, π1, v1)bestDoMOpt(o, θ, FALSE, s, h, r1,Π1, d, π1, v1) ∧
∃(r2,Π2, π2, v2)bestDoMOpt nondet Aux(o,Θ, s, h, r2,Π2, d, π2, v2) ∧
(v1 ≥ v2 ∧Π = Π1 ∧ r = r1 ∧ π = π1 ∧ v = v1 ∨
v1 < v2 ∧Π = Π2 ∧ r = r2 ∧ π = π2 ∧ v = v2)

The iteration is repeated until the expected pseudo-reward at all states has converged.
Convergence is tested by comparing the current value with the value before the last
iteration. We say the value converged if the difference is smaller than a certain thresh-
old value ε. This threshold can be defined by the predicate options epsilon(ε). If no
threshold is set, ε = 0.01 is taken as default in our implementation.

Creating the Model

So far, we have only computed the expected value and optimal policy π for each initi-
ation state of the local MDP. However, the key to using this solution for global MDP
planning is to possess a model of the behavior of this solution. The behavior of the
solution is described by the policy. We already know the one-step transitions inside the

CHAPTER 5. READYLOG 74

local MDP from the probability lists. Now, we have to compute the τ -step transitions
from the inner states to the exit states, where τ is a random variable denoting the steps
until reaching an exit state. That is, we want to know the probability of eventually end-
ing in a certain exit state, when the policy is started in a certain inner state. Formally,
for an initiation state s and an exit state t, these exit probabilities are defined as follows:

T ∗π (s, t) = Tπ(s, t) +
∑

s′∈I
Tπ(s, s′) · T ∗π (s′, t) (5.1)

where Tπ(s, t) describes the one-step transition model for the local MDP when the pol-
icy π is applied. We have implemented an iterative algorithm to solve the resulting set
of equations. The implementation is straightforward and can be found in the appendix,
so we omit the details here. It is possible that the computed probabilities for reaching
any exit state sum to less than one or even zero. In the latter case, the policy is de-
scribing a closed loop and indicates the presence of positive global rewards or negative
global costs within the local MDP. Then it is likely that the best thing to do is simply to
repeatedly earn these rewards and to never leave the region. This, actually does not fit
the purpose of options and it is in the responsibility of the user to avoid or handle such
behaviors.

Besides the exit probabilities which describe the outcomes of performing the op-
tion, we also assign costs to the options. These again depend on the state where the
option is taken and are simply the expected accumulated global reward within the re-
gion when performing the option.

Creating the Option

We represent options as stochastic procedures. With the results of the above algo-
rithms, we yet have everything we need to create a new stochastic procedure. Recall
that stochastic procedures are procedures whose body is used in on-line execution, but
which additionally have a model used in projection describing their effects. Further,
they possess a precondition and may also have costs assigned to their execution. All
this information can be computed from the solution of a local MDP creating a new
option. The task is carried out by the preprocessor: The condition used to describe
the initiation situations immediately forms a precondition. From the exit probabilities
T ∗π (s, ·), for each state s the list of possible outcomes can be generated. The expected
rewards are taken over as negative costs.24

Also the procedure body for on-line execution needs to be constructed. This is
guided by the following pattern:

proc(o, [ψ,while(ϕo, [if(φ1, π1, if(φ2, π2, . . . if(φn, πn, []) . . .)), ψ])])

Here ψ is the sensing program defined for the option by
option sense(o, ψ). It is executed to establish the truth values for the discriminative
conditions used to determine the current state. The condition ϕo holds if and only if
the option is applicable in the current situation. This is basically the condition defined
by option init(o, ϕo). The φi are the conditions used in option mapping(o, σ,Γ, φ)
that hold if and only if the system is in a situation that corresponds to the given state
σ. This shows the need for the states→ conditions mapping we initially required. The
πi are the associated actions of lower level for these states. Thus, what the procedure

24Remember that negative costs are beneficial and not punitive.

CHAPTER 5. READYLOG 75

does after all, is to repeatedly sense all information needed to determine the state of the
underlying local MDP, test the discriminative conditions of the states, and execute the
corresponding policy.

5.2.3 Using Options

Since options are represented as stochastic procedures, they can be used the same way
and all considerations of earlier sections about using stochastic procedures apply. In
particular, an option of level n can also be used as an action for creating options at
levels greater n. This way, one can build a hierarchy of abstraction. As shown in the
related work of Sutton et al. [38] and especially Hauskrecht et al. [21], this kind of
abstraction can reduce computational complexity tremendously. However, in their ap-
proaches, both fix the way how options are used. While Sutton et al. consider their
potential to speed up the convergence of value iteration when used in addition to prim-
itive actions, Hauskrecht et al. investigate different possibilities of combining options
and primitive actions and finally focus on state space abstraction based on options.
Their claim is that only with state space abstraction, options can deploy their full im-
pact as computational leverage. This is due to the applied iterative algorithms which
are based on enumerating all states. Thus, in order to achieve the desired speed-up, the
state space has to be explicitly reduced before applying these algorithms. However, in
our context we always work on infinite state spaces using an algorithm that “explores”
that part of state space that is relevant for the computation, exploiting the knowledge
about the starting point of the problem (cf. Section 5.1.3). It turns out, that this al-
gorithm works very nicely together with options. The state space abstraction possible
through options, can be seen to be done “on-the-fly” when using an option in the global
problem. That in particular means that we do not have to (and even cannot) explicitly
commit to some state space abstraction in advance, but still gain from the implicit state
space abstraction provided through options.

3 4

5

6 7

21 S

G1

G2

Figure 5.4: The Maze66 example environment. For the options of rooms one and five
the initiation regions and the exit states are marked. Note that an agent that aims at
leaving a room through a certain door may accidentally “drop-out” of the wrong door
due to the nondeterminism of the performed actions.

Example 5.2.1 Hauskrecht et al. [21] consider different ways of combining op-
tions with primitive actions creating different kinds of MDPs. By example in
the Maze66 environment, we want to briefly show how easily these MDPs can
also be modeled by READYLOG procedures using options.

CHAPTER 5. READYLOG 76

For every room-door combination an option has been created. That is, for ex-
ample, for room one there are two options: one for leaving the room to the east,
one for leaving to the south. These options have been created from solving local
MDPs where the pseudo-rewards for these exit states have been set accordingly
(high positive for the desired door, high negative for the other). Figure 5.4 shows
the initiation regions and exit states for options of rooms one and five. The task
faced by the agent, is to navigate from S to a goal, which is either at G1 or G2.
The dynamics are as before: in each compass direction the agent is able to move,
but with probability 0.09 the move goes into a wrong direction. Every move costs
1 and at the goal there is a high positive reward.

1. augmented MDP
The augmented MDP is the MDP resulting from adding all options to the
list of possible actions at each state. This resembles the approach of Sutton
and his colleagues. The augmented MDP can be represented in READY-
LOG as the procedure:

1 proc(augmentedMDP,
2 nondet([go_right, go_left, go_down, go_up,
3 room1_2, room1_3, room2_1, .., room7_5]))

where go right, go left.. are primitive actions and room1 2,
room1 3.. are options for leaving room one towards room two and three
respectively. The augmented MDP can find solutions for both tasks (trav-
eling to G1 or G2 respectively). This is trivially true, since all primitive
actions are available.

2. abstract MDP
This MDP solely plans over options, thereby ignoring primitive actions:

1 proc(abstractMDP,
2 nondet([room1_2, room1_3, room2_1, .., room7_5]))

The advantage is, that the granularity of planning is highly reduced, since
the options induce a smaller state space. However, this MDP cannot find a
solution to the problem of traveling to G2, since G2 is not within the set of
states used by the abstract MDP. Only exit states of options are reachable.

3. hybrid MDP
The hybrid MDP combines the previous approaches. It generally uses op-
tions only, but in the goal region uses primitive actions. It relies on the
knowledge in which region the goal is located. For the case the goal is in
room seven, the procedure in READYLOG could be:

1 proc(hybridMDP,
2 if(inRoom(7),
3 nondet[go_right, go_left, go_down, go_up],
4 nondet([room1_2, room1_3, .., room7_5])))

Note, that this procedure also forms a legal option-skeleton of level 2 (as-
suming the room.. options are of level 1). Thus, we could also create a
new option using the hybrid MDP as local MDP. If the region the goal is
in is known, this kind of MDP also finds a solution for any goal position.
However, for each goal region, a special hybrid MDP has to be designed.

CHAPTER 5. READYLOG 77

5.2.4 Problems and Restrictions

Many open questions and problems for using options in realistic applications remain.
The decomposition of the task into sub-problems whose solutions form the set of op-
tions, is crucial for the benefit of the approach. However, to the best of our knowledge,
all research on the use of options base on handcrafted decompositions. Although au-
tomatic decompositions are imaginable, it is not clear how to measure the quality of a
decomposition. Recent work by Amir and Engelhardt [3] present ideas for automatic
decomposition in classical planning. In their approach they reduce the task to tree de-
composition in graphs. They apply an approximative algorithm to solve the problem
of finding an optimal tree decomposition which is NP-hard. Their ideas could be of
interest for future work.

Another problem is that of finding related MDPs. As said, the main intention
for options is to reuse them to solve several related MDPs, which would justify the
overhead of creating solutions for the local MDPs. However, the task of finding related
MDPs remains a current research topic. While Hauskrecht and his colleagues [21]
approach this issue by their suggestion of an hybrid MDP, which only accounts for
changing places of the goal in a certain region, they require that the remaining parts
stay unchanged. However, in realistic domains often certain properties of the world
change that in theory do not affect the applicability of an option. Nevertheless, if these
changes were not anticipated during option construction, the option would in general be
decided to not be possible. Thus the task is to find a measure of relatedness. In recent
work, Barto et al. [32] investigate homomorphisms between semi-MDPs and show
applications of that research in the options framework. There they use homomorphisms
between two or more parts of a decomposition, in their example several similar rooms,
and solve the corresponding local MDPs only once for some sort of abstract local MDP.
By exploiting the homomorphism they can then apply the solution to all related rooms.
This way or similar, one can allow reusing an option at different places in state space.
So far in our and other systems, options are only applicable in the exact subset of state
space where they have been defined.

Another problem of options defined by a local MDP of that kind is that the local
MDPs are bound to finite state and action spaces. However, most realistic domains and
also, for example, ROBOCUP Simulation League have continuous state spaces and, due
to action arguments with continuous domains, also continuous action spaces. To make
options still applicable, state and action abstraction would be required. That is, on top
of the basic actions, higher level actions had to be handcrafted or provided through the
user by other means, such that the induced state space would get at least countable.
While this already contradicts to the intention of options of automated abstraction, it
even can make options superfluous for the task, namely if by the handcrafted abstrac-
tion the problem is yet so much simplified that the remaining problem can easily be
solved without applying options. Yet, there are approaches to automatic abstraction,
such as described by Boutilier et al. [7].

5.3 Preprocessor and Implementation

The implementation of a preprocessor was motivated by experimental results with an
early approach to integrating decision-theoretic planning into ICPGOLOG. The in-
terpreter was in the order of a magnitude slower than DTGOLOG in solving simple
planning tasks in the grid world example domains. Also in the ROBOCUP Simulation

CHAPTER 5. READYLOG 78

League the time consumption for projection of simple example tasks like a goal kick
were unsatisfactory.25

These early approaches were inspired by the projection fashion of ICPGOLOG
(which is that of PGOLOG). Investigations brought to light that the main slowing-
down factor was the evaluation of conditions and the therein required evaluation of ex-
pressions. As a special case, the effect axioms (causes val(Action, Fluent,
NewValue, Condition)) (cf. Section 4.1.2) that were used in ICPGOLOG in
place of successor state axioms made fluent evaluation rather slow compared to suc-
cessor state axioms of, e.g., DTGOLOG. Roughly, the increased speed of DTGOLOG is
because the user implements successor state axioms and many other things directly in
Prolog. The conditions in ICPGOLOG, like the ones included in the effect axioms, are
formulated in a meta-language (cf. [22]) and in particular are completely independent
from Prolog. While this is supposed to be more convenient for the user, it requires
more time to interpret. Here the preprocessor comes into play.

The preprocessor takes a list of READYLOG files as input and processes them se-
quentially creating a Prolog source file as output. In doing so, it already uses the results
for one file when processing the next. This is needed to allow hierarchies of options.
The general philosophy for the preprocessor is to anticipate as much interpretation as
possible. The core ability is to compile conditions (=̂ formulas of the situation cal-
culus) together with any included expressions (=̂ terms of the situation calculus) to
Prolog code which is faster in execution. With that ability, many elements of the lan-
guage can be preprocessed. Furthermore, the preprocessor is used to create stochastic
procedures from procedure models and computes options from the definitions of local
MDPs.

Funge [17] used a compiler written in Java to preprocess GOLOG procedure to
Prolog. Although the motivation for that preprocessor was equal and it does something
similar, it is not related to what we present here and in particular would not fit our
needs.

5.3.1 Compiling Conditions

In the ICPGOLOG interpreter [22], conditions are tested using the holds(..) pred-
icate. The call holds(C, S) succeeds if and only if condition C holds in situation
S. The predicate is recursively defined over the structure of legal conditions. Here are
some examples.

1 holds(false, _) :- !, fail.
2 holds(true, _) :- !.
3
4 holds(and([]), _) :- !.
5 holds(and([P|R]), S) :- !, holds(P,S), holds(and(R),S).
6
7 holds(or([P]), S) :- !, holds(P,S).
8 holds(or([P|R]), S) :- !, (holds(P,S) ; holds(or(R),S)).

Formally, compiling a condition C in ICPGOLOG notation to Prolog amounts to cre-
ating a Prolog predicate P(..) such that for all situations S the call P(S) succeeds if
and only if holds(C,S) succeeds. The preprocessor is thus implemented in analogy

25Projecting a goal kick for two alternative teammates including expectations about the opponents goalie,
took about 0.4 seconds which is four times longer than one simulation cycle of the soccer server. The aim
should be to finish simple projection tasks like this within one cycle.

CHAPTER 5. READYLOG 79

to the cases of holds(..). In fact, for each such case an instance of a new predicate
process condition(C, S, B) is defined that returns the Prolog goal B equiv-
alent to evaluating condition C in situation S. For the above cases, for example, the
process condition clauses are:

1 process_condition(false, _S, fail).
2 process_condition(true, _S, true).
3
4 process_condition(and([]), _S, true).
5 process_condition(and([C|C_rest]), S, Body) :-
6 process_condition(C, S, CNew),
7 process_condition(and(C_rest), S, C_rest_new),
8 conjunct(CNew, C_rest_new, Body).
9

10 process_condition(or([C]), S, CNew) :-
11 process_condition(C, S, CNew).
12 process_condition(or([C|C_rest]), S, Body) :-
13 process_condition(C, S, CNew),
14 process_condition(or(C_rest), S, C_rest_new),
15 disjunct(CNew, C_rest_new, Body).

The predicates conjunct(A,B,Z) and disjunct(A,B,Z) are auxiliary predi-
cates that conjoin, respectively disjoin two Prolog goals simplifying where possible.
For example conjunct(true, B, B) and conjunct(false, , false).

A central role in conditions play comparisons (=, <, >, =<, >=). To estab-
lish their truth values, the expressions of both sides first have to be evaluated. This
is realized by the predicate subf(E, V, S), which evaluates expression E to ex-
pression V in situation S. Also it is possible that conditions consist of only a single
relational fluent. This also would be evaluated by subf(..).

Evaluating Expressions

Roughly, subf(..) has three major tasks: evaluating fluents at the actual situation,
evaluating functions, and evaluating arithmetic expressions. Special cases exist such
that subf(..) leaves variables, numbers, and constants unchanged.

Again we wanted to create preprocessor rules to compile subf-evaluations to Pro-
log.26 In fact, major parts of such expressions can already be evaluated off-line. Then,
in on-line mode the actual fluent values can just be plugged in leaving only minimal
remaining computations in Prolog.

The counterpart to subf(..) in the preprocessor is the predicate
process subf(E, V, Body, Type, S), where

• E is the expression to evaluate,

• V is the representation of the evaluated expression,

• Body is the remaining Prolog code that has to be run on-line to evaluate the
expression to V,

• Type states an only internally used type of V which is used to detect syntax er-
rors and to detect sub-expressions that can at compile time already be completely
evaluated, and

26The alternative would be to always evaluate expressions completely on-line by simply adding a call to
subf(..) where needed in the compiled Prolog goal.

CHAPTER 5. READYLOG 80

• S is the formal situation argument, which at run-time gets substituted for the
actual situation.

Let us now briefly describe how the three mentioned major tasks are carried out by
process subf(..).

Fluents can only be evaluated at run-time, when the actual situation is known.
Thus, the preprocessor can do nothing more than add the necessary evaluation calls
(has val(Fluent, NewVar, S)) with a new variable (NewVar) to the Prolog
goal (Body) and set this variable as the representation for the evaluated expression
(V=NewVar). In advance, any possible arguments of the fluent are evaluated, possibly
adding further goals to Body. One distinction has to be made for continuous fluents27:
for these the fluent start, holding the current time, has to be evaluated in on-line
mode as well, and the fluents value has to be determined based on that. Thus the
Prolog body for these will contain something like: has val(Fluent, ConVal,
S), has val(start, Time, S), t function(ConVal, V, Time).

Functions can be recursive. This simple fact prevents a direct evaluation of func-
tions where they are used. Instead, each function has to be compiled to an individual
Prolog predicate (prolog function(..)), which we describe in the next section.
After this is done, the evaluation of a function reduces to evaluating all arguments and
adding a call for the corresponding predicate (prolog function(.., S)) to the
Body.

Compiling arithmetic expressions is more interesting. Here, on-line computations
can be saved by anticipating the evaluation of parts of the arithmetics. For the four
supported operators (“+”, “*”, “-”, “/”), the process subf(..) rules look almost
the same (here is the example for multiplication):

1 process_subf(A*B, C, Body, Type, S) :-
2 local_var([ValA,ValB]),
3 process_subf(A, ValA, BodyA, TypeA, S),
4 process_subf(B, ValB, BodyB, TypeB, S),
5 process_subf_aux(*, ValA, BodyA, TypeA, ValB, BodyB,
6 TypeB, C, Body, Type).

Here, local var(L) creates a fresh variable for each entry of the list L.28 After-
wards, the two operands A, B are processed returning their new representation, any
remaining Prolog goals that need to be evaluated on-line, and their internal type. The
main task of combining these results is carried out by the auxiliary predicate, which
forms a key element to the utility of the preprocessor. Therefore, we will explain its
functioning a little bit more detailed.

1 process_subf_aux(Op, ValA, BodyA, TypeA, ValB, BodyB, TypeB,
2 ValC, BodyC, TypeC) :-
3 Expression =.. [Op, ValA, ValB],
4 (
5 /* best case: can be evaluated at compile time */
6 TypeA = eval, TypeB = eval ->
7 ValC is Expression,
8 BodyC = true,
9 TypeC = eval

10 ;
11 /* if cannot be evaluated right now: leave ValC

27Recall that continuous fluents change their value continuously over time.
28This is realized by the ECLiPSe library var name.

CHAPTER 5. READYLOG 81

12 uninstantiated and put evaluation into Body */
13 (
14 metaType(TypeA, meta_number), TypeB = eval ->
15 concat_string(["(",ValB,")"], StringB),
16 Expression2 =.. [Op, ValA, StringB],
17 conjunct(BodyA, (ValC is Expression2), BodyC)
18 ;
19 TypeA = eval, metaType(TypeB, meta_number) ->
20 concat_string(["(",ValA,")"], StringA),
21 Expression2 =.. [Op, StringA, ValB],
22 conjunct(BodyB, (ValC is Expression2), BodyC)
23 ;
24 metaType(TypeA, meta_number),
25 metaType(TypeB, meta_number) ->
26 conjunct(BodyA, BodyB, Tmp1),
27 conjunct(Tmp1, (ValC is Expression), BodyC)
28),
29 TypeC = number
30 ;
31 /* error case */
32 printf("** error in process_subf_aux: TypeA %w
33 \tTypeB %w\n", [TypeA, TypeB])
34).

Overall, there are four cases that we distinguish here depending on the types of the
operands:

1. Both operands are fully evaluated. This could for example happen when the
operands are constant numbers. Then also the result for this operation can be
evaluated yet (ValC is Expression), the returned type is eval, and the
Prolog body of goals left for on-line interpretation is empty (Body=true). This
is the ideal case where everything can yet be evaluated off-line.

2.+3. Case two and three are symmetric. It is when one of the operands is yet evaluated,
but the other is not. Then only for the unevaluated operand there remains Prolog
code for on-line evaluation.

4. The remaining and worst case is when neither operand can be evaluated com-
pletely at compile time. Then the Prolog bodies have to be conjoined.

In any case, the type of each operand has to either be eval, marking yet evaluated
numbers. Or it has to be something that still can get a number, that is, a variable, a
fluent, or an arithmetic sub-expression. This sorts out ill formed arithmetic expressions
like V = 34 + noflu where noflu is not a fluent.29

All legal combinations of types (cases 1-4) can be found in the following example:

function(example, V,
V = 2 ∗ 5︸ ︷︷ ︸

1.

− distance(ball, oppgoal)

︸ ︷︷ ︸
3.

+ posX - 1︸ ︷︷ ︸
2.

︸ ︷︷ ︸
4.

)

29Note that READYLOG, as ICPGOLOG, has no sophisticated type concept for fluents. Thus, it is in
general not possible to be sure that a fluent represents a number. Adding a type concept, could be done in
future work.

CHAPTER 5. READYLOG 82

where distance(A,B) is a function and all other names are fluents.

5.3.2 Processing Elements of the Language

Being able to compile conditions and expressions, many elements of the language can
be preprocessed without much additional effort. Functions
(function(Name, Value, Cond)) and action preconditions (poss(Action,
Cond)) are straightforward to process. In both cases the involved condition gets com-
piled. Additionally for functions, the Value has to be processed by
process subf(..).30

Above all, the preprocessor carries out some other key tasks which we are going to
describe next.

Generating Successor State Axioms from Effect Axioms

ICPGOLOG uses effect axioms to describe how actions change the value of fluents.
These are formulated by the user through clauses of the form causes val(Action,
Fluent, NewValue, Cond). For regression (cf. Section 4.1.2) this means that
the included conditions have to be interpreted every time the axiom is applied. The
reason why ICPGOLOG, distinct from other GOLOG interpreters, uses effect axioms
instead of successor state axioms, is because of the progression algorithm. For that
algorithm such an action oriented description of effects is preferable over the fluent
oriented successor state axioms.

The preprocessor transforms these effect axioms to successor state axioms applying
the algorithm which was used by Ray Reiter in his solution to the frame problem [33],
and which we described in Section 4.1.1. Thereby the conditions (Cond) and value
expressions (NewValue) are compiled.

Although, preprocessing here comes with no disadvantages, except for a small
amount of time needed for compilation, it considerably speeds up the regression. To
compare the speed of regression with non-compiled effect axioms (causes vals)
and compiled successor state axioms, we have implemented this tiny example proce-
dure:

proc(act(X), [while(flu < X, inc), saytime]).

The procedure simply counts from zero up to the argument X by increasing (inc) the
fluent (flu) and then prints the used CPU time since the beginning of the task. We
have run this procedure 20 times in a row with increasing values for the argument X.
Starting with 100, we increased at steps of 100. So in the final iteration, a situation
term containing 2000 times the primitive action inc is operated by regression. Here is
the effect axiom for action inc and fluent flu plus the resulting successor state axiom
produced by the preprocessor.

causes_val(inc, flu, L, L = flu+1).

1 ssa(flu, PreVar0, [inc|Srest]) :-
2 !, (has_val(flu, PreVar4, Srest),
3 PreVar3 is PreVar4 + (1)),
4 PreVar0 = PreVar3.
5

30This is because Value itself can be an expression (instead of just a variable) like, for example, in
function(f, V+3, V = flu*2).

CHAPTER 5. READYLOG 83

6 ssa(flu, NewValue, [_UnknownAction|Srest]) :-
7 !, has_val(flu, NewValue, Srest).

Figure 5.5 shows the chart comparing the time consumption when the task is run with
effect axioms and when run with successor state axioms. Please note that the y-axis
has a logarithmic scale. Using compiled successor state axioms in this example was

 1

 4

 16

 64

 256

 1024

 200 400 600 800 1000 1200 1400 1600 1800 2000

se
co

nd
s

length of situation term

effect axioms (uncompiled)

successor state axioms (compiled)

Figure 5.5: Comparing the speed of regression when using effect axioms like in ICP-
GOLOG and when using the (compiled) successor state axioms produced by the pre-
processor. The progression mechanism had to be disabled for this test, in order to create
situations of the desired length.

about 20 times faster than using non-compiled effect axioms. The time for preprocess-
ing was 0.01 seconds. The result is representative in the sense that only one simple
condition (L = flu+1) was used containing only one arithmetic expression. The
savings even increase when more conditions are to be evaluated and more complex
arithmetics are used. Overall, this comparison supports our observations from early
versions of READYLOG, which appeared to be ten times slower than DTGOLOG. This
was because these early versions did not yet use the preprocessor.31

Processing Stochastic Procedures and Explicit Events

As described in Section 5.1.1, the user in READYLOG can define stochastic proce-
dures by providing a procedure model and a procedure precondition for any procedure.
These and optional procedure costs definitions are also transformed by the preproces-
sor to reduce the required on-line interpretation. Among other things, the task involves
transforming occurring control constructs to Prolog. For tests (?(Condition)) this
simply amounts to compiling the condition and conjoining it with the remaining Pro-
log body. For if(C, A, B)-constructs the pattern (CC -> CA ; CB) is used.
Here CC will be replaced by the compiled condition, CA and CB are the compiled al-
ternatives A, B. The remaining elements of the task are relatively straightforward to
conduct, so that we skip details on these syntactic transformations. Explicit events can
be processed by the same transformation rules.

31DTGOLOG does not need a preprocessor since the user has to implement the successor state axioms
already in Prolog.

CHAPTER 5. READYLOG 84

Options

We described the algorithms for automatically creating options from local MDPs along
with their models in Section 5.2. These are implemented in the preprocessor. As
said, the preprocessor takes a list of files as input. These are processed sequentially,
where the results for one file can already be used by the next. This is needed to enable
hierarchies of options. The organization of these files is intended as follows: In the
first file the basic dynamics of the world are defined, such as fluents, effect axioms,
functions, and primitive actions. In particular, only actions of level 0 (cf. Section
5.2) are defined here. In the next file, stochastic procedures and options of level 1 are
defined, that is, procedures with procedure models that only use actions of level 0 and
options which only use actions of level 0 in their option-skeletons. Similarly, later files
define actions of higher levels.

5.3.3 Conclusion

As a conclusion about the preprocessor we can say that it is very useful. On the one
hand, it has the potential of speeding things up by a factor between ten and 20 without
any disadvantages.32 On the other hand, the preprocessor helps us in getting indepen-
dent of Prolog. It would be very easy to modify the preprocessor to create code of some
other kind. Then, a READYLOG interpreter could be implemented in other, potentially
faster, programming languages. The crucial first step would have to be to implement
the situation calculus in that language.

32We ignore time for preprocessing since it can be done off-line and even then takes negligibly little time.

Chapter 6

Experimental Results

In this chapter we will present some experimental results made with the new READY-
LOG interpreter. First, we present results on options in a grid world domain. Then, we
consider the ROBOCUP Soccer Simulation and mobile robotics, where the results for
mobile robotics are taken from our participation at ROBOCUP 2003 Mid-Size League
World Cup at Padua, Italy.

6.1 Grid Worlds

We have taken over the Maze66 environment used by Hauskrecht et al. [21]. In first
place, we use this domain to illustrate the potential of options and show their seamless
integration into READYLOG. In [16], we extended the original DTGOLOG with op-
tions and reported results made in this environment. We have run the same tests with
the new interpreter, in order to compare its performance to DTGOLOG.

3 4

5

6 7

21 S

G11

G4

G3

Figure 6.1: The Maze66 environment. In this domain, eight different tests were
conducted: the agent always started in S and then aimed at reaching a certain goal
G3..G11, which had a high positive reward. The number of the goal (3..11) is the
manhattan distance from the start.

Different navigation problems were formulated: As depicted in Figure 6.1 the task
was to reach a certain goal (G3..G11) located at different Manhattan distances from
the start (S).

We compared three approaches to these problems which are depicted in Figure 6.2:

85

CHAPTER 6. EXPERIMENTAL RESULTS 86

1. full MDP planning
The agent repeatedly chooses from its basic actions go right, go left,
go down, go up. The corresponding READYLOG program is the following:

proc(planning,
[nondet([go_right, go_left, go_down, go_up]), planning])

As usual all basic actions are uncertain: with probability 0.91 an action succeeds.
With the remaining probability the agent will instead move in any other compass
direction (if possible).

2. heuristics
For each room the agent has heuristic procedures for leaving the room by a cer-
tain door. For room one the procedure for leaving towards room two is

1 proc(dt_room1_2,
2 [?(pos = [X,Y]),
3 if(Y < 1, go_down,
4 if(Y > 1, go_up, go_right))]).

These procedures are provided by the user and are an example of how domain
knowledge can be incorporated, as was intended with the DTGOLOG approach.
In the overall task the agent then chooses from these procedures as long as it is
not in the goal room, where only basic actions are considered.

3. options
For each room-door combination, options have been created via the definition
and solution of local MDPs. For room one and the door towards room three the
definition was, for example, the following:

1 option(room1_3,
2 nondet([go_right, go_down, go_left, go_up]), 0.9).
3 option_init(room1_3,
4 and([domain(X, [0..5]), domain(Y, [0..10]),
5 pos = [X,Y], inRoom(1)])).
6 option_sense(room1_3, exogf_Update).
7 option_beta(room1_3, inRoom(3), 100).
8 option_beta(room1_3,
9 and(not(inRoom(1)), not(inRoom(3))), -100).

10 option_variables(room1_3, [pos]).

The option-skeleton is simply the choice between all basic actions. The initiation
set is the set of all situations where the x-coordinate of the position is an integer
number in the interval [0..5], the y-coordinate is an integer number in [0..10],
that is, the position is legal in our domain, and the position is within room one.
All relevant fluents can be sensed by the action exogf Update. Depending on
the room where the region is left, the pseudo-reward differs: If after leaving the
room, the agent is in room three, a pseudo-reward of 100 is given. Otherwise it
is -100. The mapping between situations and states relies solely on the position.

Using these options an hybrid MDP like the one of Section 5.2.3 (also confer
Section 3.2.2 and [21]) can be used to solve the task. That is, while not in the
goal room, the agent only chooses among the options defined for the current
room. In the goal room the basic actions are used.

CHAPTER 6. EXPERIMENTAL RESULTS 87

(a) full MDP planning (A) (b) heuristics (B) (c) options (C)

Figure 6.2: The three main approaches depicted by arrows: (a) in each state the agent
can choose from all possible actions; (b) the agent only chooses from actions that lead
to a door, blue arrows lead to the door to the right, red ones to the door at the bottom,
black ones are common for both; (c) the agent chooses one of two options committing
to an entire behavior leading to one of the doors.

While all approaches find a policy to get to the goal, the time for computation differs
immensely. Figure 6.3 (a) shows the results we obtained with our extension of DT-
GOLOG. The problem implementations in both languages are semantically equivalent
such that the results are comparable.1 Figure 6.3 (b) shows the results obtained with
READYLOG. Here, additionally we have run the first case (full planning) for compar-
ison with precompiled successor state axioms (A’) and without (A), using the effect
axioms. The results compare to the observations reported at the end of the previous
chapter.

Comparing the two charts, especially curve A, shows that the new interpreter is
comparable in speed to DTGOLOG. This means that although we have increased ex-
pressiveness and – as we believe – user friendliness, we have not compromised per-
formance. This would not have been possible without the preprocessor as one can see
clearly from curves A and A’. Still the full planning approach here remains intractable
for larger horizons.

Obviously, using heuristics provides some speed-up. This speed-up is founded in
the reduction of nondeterminism: instead of choosing from all available actions, it
only considers actions leaving the room by one of the doors (case B). Additionally
to the above stated heuristic procedures, we have run the tests in READYLOG with a
slight modification: instead of always choosing from these heuristics, this is only done
once for each room (B’). This resembles the options approach. Still the computational
performance is worse than for options. To understand the reason for that, we have
to return to the earlier problem that infinitely many situations intuitively describe the
same state. Figure 6.4 shows three different examples how room one could be left to
the right. All three could happen with the heuristic procedure due to the uncertainty of
the basic actions. Although some trajectories are very unlikely, e.g. the dashed one in
the figure, they are all considered by the projection mechanism. As a matter of future
work it could be worthwhile to find a sound lower bound for probabilities to sort out
those trajectories that cannot influence the overall result anyhow (cf. Chapter 7). After

1The syntax of DTGOLOG and READYLOG differ.

CHAPTER 6. EXPERIMENTAL RESULTS 88

 0.01

 0.02

 10596.5

 2396.72

 276.97

 0.31

 0.048

 3.76

 53.6

 769.08

 31.35

 11.4
 6.9

 1.1
 0.64

 3 4 5 6 7 8 9 10 11

se
co

nd
s

manhattan distance from start to goal

A

B

C

(a) extended DTGOLOG

 0.1

 0.03

 9555.86

 2507.56

 302.01

 0.048

 53.6

 702.33

 38.63

 11.23
 6.81

 1.04

 0.55

 3.66

 3 4 5 6 7 8 9 10 11

se
co

nd
s

manhattan distance from start to goal

A

A’

B

B’

C

(b) READYLOG

Figure 6.3: The resulting times using the extended DTGOLOG interpreter as in [16] and
using READYLOG: (A) full planning, (B) applying heuristics, (C) using options. The
curve (B’) could not be drawn further due to stack overflows in the ECLiPSe Prolog
system for any larger horizon than ten.

Figure 6.4: Three ways for leaving a room. Each constitutes a different situation for
the same exit state.

eventually ending in the exit state in the room to the right, all these trajectories refer
to different situations. As described when formally specifying the implicit MDP in
DTGOLOG and READYLOG, these situations also refer to different states although this
seems counterintuitive. For all these states the further projection is performed, causing
more computational effort than needed.

This is exactly where options come into play. Due to the explicit mapping from
situations to states and back, we can aggregate intuitively equal situations. In the
example at hand, all possible ways would lead into the same exit state, such that from
there on only one projection is pursued. This nicely shows that the mapping is very
central to the benefit of options in the extended DTGOLOG and READYLOG. By the
mapping the user defines his intuition about what characterizes a state or, seen from the
other perspective, when two situations are considered equal.

Options and heuristic procedures have in common that they heuristically reduce
the complexity for the cost of optimality: If the heuristics or local MDPs are badly
chosen, the resulting solution quality can decrease, that is, for example, the length of
the found path can increase. In general, it is at the responsibility of the user to provide
good heuristics and only the full planning approach can always guarantee to find the
optimal solution. Nevertheless, in on-line scenarios, the required time for finding a
policy has usually to be included in the quality criterion. Then, solutions using options

CHAPTER 6. EXPERIMENTAL RESULTS 89

and heuristics can even be considered better than the “optimal” but slow full planning
solution. In the example, this becomes obvious when taking the time the agent needs in
getting to the goal as the performance measure and assume that each action takes one
second to perform. Then, the agent would rather take a sub-optimal trajectory to the
goal provided by the options approach instead of waiting a long time for the optimal
policy.

With regard to the solution quality, the comparison is complicated: In the presented
examples, the solution of the options approach was even better than that of all others
including the full MDP planning approach.2 This is because we are not using value
iteration at the global scope to solve the problem, but use decision-tree search with a
fixed horizon. In the tests, we always chose the minimal horizon needed to find some
path to the goal. That inplies that if this path was accidentally left, the agent would
get lost. To obtain results equal or better in quality to that of the options approach,
we would have to run the other approaches with larger horizons, taking even more
time. However, we do not intend to start a discussion on solution quality when using
options and refer to the literature [21] where this issue is well investigated. These
considerations equally apply to our setting. After all, it seems apparent that for dynamic
on-line settings where time is a criterion, it is obvious that using options is the best of
all described approaches.

It remains to point out that although the presented speed-ups provided by options seem
tremendous, this is also because this example domain is somewhat designed for the use
of options, i.e., the regional decomposition is suggestive (rooms) and the regions are
only linked by relatively few connections (doors). Also the state space is small. In the
next section we will see which kinds of difficulties remain to be overcome for using
options in more complex problems.

6.2 ROBOCUP Soccer Simulation

Based on the overall architecture described in [14], a system for specifying the behav-
ior of soccer players in READYLOG was used to evaluate the new interpreter in the
ROBOCUP Soccer Simulation environment. This system in turn is build on top of the
UvA Trilearn base system (cf. Section 2.2.2). In a nutshell, the architecture comprises
a reactive- and a deliberative component, which enables quick responds to changes in
the environment, but also allows to execute plans of several actions that were created
by deliberating. Thereby, the deliberative component can be specified in READYLOG.
Roughly, the primitive actions are the skills of the UvA Trilearn system. Recall that this
system distinguishes three skill levels, forming three levels of abstraction. Depending
on the level, the planning problem in the deliberative component naturally has different
granularities. These granularities manifest in the length of a plan for achieving a certain
goal. For a discussion on the different models of granularity see [22]. Here, we will
reduce our consideration to the highest level of abstraction, where actions are taken
only from the high-level skills of the base system. All tests were run on a standard PC
with an 1.7GHz Pentium 4 processor and 1GB memory.

2Solution quality was measured by the overall expected reward for the returned policy. This is a reason-
able measure for quality, as discussed in Section 3.1.

CHAPTER 6. EXPERIMENTAL RESULTS 90

6.2.1 Comparing to ICPGOLOG

We aimed at comparing the new READYLOG interpreter, especially the performance
of the included projection mechanism used in planning, to the ICPGOLOG interpreter.
To do so, we implemented a goal shot scenario and a direct pass scenario similar the
ones used in [22].

Goal Shot

Basically, the task was to define a procedure model for the goal shot procedure. As
in [22] we take the opponent goalie and closest player to the pathway into account:
For both it is projected whether they are able to intercept the goal shot. This model
can be used for a stochastic procedure after it has been preprocessed (cf. Section 5.3).
Planning a goal shot with that model in READYLOG takes 0.01 seconds. Projecting
the same task in ICPGOLOG took 0.35 seconds in the best of all described cases on a
comparable machine (as reported in [22]).

Direct Passes

Similar results we obtained for the direct pass scenario: For the task of deciding to
which of the two closest teammates to pass to, the READYLOG interpreter needs again
only 0.01 seconds3. This compares to 0.25 seconds in ICPGOLOG. Even for a com-
plete team of eleven players, the decision on which of all teammates to pass to takes
only 0.07 seconds in READYLOG.

These two examples show clearly the increase of speed in READYLOG compared to
its predecessor ICPGOLOG. The speed-up is explained by two reasons: the applied
projection mechanism and the use of the preprocessor. The way projection is done
in ICPGOLOG is more flexible and possesses a richer expressiveness. However, it is
neither designed nor suited for the creation of plans by solving nondeterminism.4 A
probably greater contribution to the speed-up comes from the preprocessor. This is
especially suggested by the results at the end of the last chapter (Section 5.3). The
preprocessor in this special case provides us with two advantages: the obvious speed-
up and the independence of Prolog. In fact, for creating the results with ICPGOLOG,
most of the computations were implemented directly in Prolog (cf. [22]). By that, the
author did manually what the preprocessor now does automatically. If the computations
had purely been implemented in ICPGOLOG functions, they would have taken even
longer.

Concluding we remark that the presented speed-up overcomes the barrier towards
realistic applicability in the ROBOCUP Soccer Simulation within the initially described
architecture. The soccer server accepts player commands every 0.1 seconds. If during
one such cycle no command is sent, no action is executed by the player. It turned out
that teams are only competitive if they are able to use every cycle for setting commands.
While the described hybrid architecture helps in this regard, it seems still necessary that
simple decisions, like whom to pass to, are made within one cycle. We can now meet
this requirement.

3This is the the lowest amount of time measurable by the ECLiPSe Prolog system.
4In fact, it cannot even handle nondeterminism as this was not an issue in the design.

CHAPTER 6. EXPERIMENTAL RESULTS 91

6.3 Mobile Robotics: ROBOCUP Mid-Size League

We have used READYLOG for specifying the high-level behavior of our soccer-playing,
physical robots at the ROBOCUP 2003 Mid-Size League World Cup at Padua, Italy.

6.3.1 Problem Implementation

In the realization we used the skills provided by the skill module as the basic actions
(cf. Section 2.3.2). The most relevant of these were:

• goto global/goto relative
Drive to a given global position or to a position given relative to the robot.

• turn global/turn relative
Turn to a given global angle or to an angle given relative to the current robot
angle. If the ball is close in front, it will be pushed to the side to a distance
depending on the turn speed which again depends on the turn angle.

• dribble to
Having the ball, go to a certain position. If the ball is lost – it is not anymore in
front of the robot – the action fails.

• guard pos
Maintain a guarding position on the line between the own goal and the ball.

• intercept ball
Intercept the ball. This usually only succeeds if the ball is standing still.

• kick
Trigger the kicking mechanism. If the ball is close enough, it will be accelerated
to the front.

• move kick
Move towards a given position, and as soon as the angle to that position is below
a certain threshold kick. This enables the robot to kick into directions it is not
currently heading.

These actions were implemented as stochastic procedures. The procedure body
sends the appropriate command to the skill module and waits until that reports the
completion (success or failure) of the action. The procedure model describes our in-
tuition about the effects of the action. Here is the example for the global turn action,
which is assumed to be always possible:

1 proc(turn_global(Own, Theta, Mode),
2 [send(nextSkill(Own), do_skill_turn_global(Theta, Mode)),
3 ?(nextSkill(Own) = nil)
4]).
5
6 proc_poss(turn_global(_Own, _Theta, _Mode), true).
7 proc_model(turn_global(Own, Theta, _Mode),
8 [if(isKickable(Own),
9 /* turn will affect the ball */

10 [?(and([AgentPos = agentPos(Own),
11 AgentAngle = agentAngle(Own),

CHAPTER 6. EXPERIMENTAL RESULTS 92

12 AgentPos = [X,Y],
13 TurnAngle = Theta - AgentAngle,
14 YDiff = TurnAngle*abs(TurnAngle) / 3.4,
15 geom_PosRel([X,Y,AgentAngle],[1,YDiff],NBPos)])),
16 set_ecf_local_ballPos(NBPos,[0,0])],
17 /* else: turn will NOT affect the ball */
18 []
19),
20 set_ecf_agentAngle(Own, Theta, 0)
21]).

The model describes the intuition that if the ball is close to the front
(isKickable(Own)) of the acting robot (Own), the ball will be pushed in the di-
rection of the turn. The distance (YDiff) depends on the turn angle. This distance is
the most heuristic element in this model and is simply based on real world observations.
We will describe the models for the other actions when needed.

Furthermore, all relevant and accessible world information is available to the agent:
the own estimates of the robot’s own position, position of the ball, and the positions of
the opponents, to name the most important ones. Additionally, data from the control
computer like the fused position of all ball estimates and the current play-mode is
available.

We have described the actions. The transition model is defined by the action mod-
els, and the state space, as always, is the set of all situations. What still is missing for
an MDP are the rewards. We define the reward for a situation based on the position and
velocity of the ball. Positions inside or in front of the opponent goal get high positive
rewards, while on the other hand ball positions inside or close to our goal are assigned
highly negative rewards. If the ball is moving, the position to be evaluated is taken as
the intersection of the ball trajectory with the boundaries. Otherwise, the ball position
itself is used to evaluate the situation.

6.3.2 Agent Behavior

While the goalie was controlled without READYLOG in order to maintain the highest
possible level of reactiveness, all other players of our team had an individual READY-
LOG procedure for playing. We assigned fixed roles to the three field players: defender,
supporter, and attacker. In general, the defender keeps a guarding position between the
own goal and the ball (guard pos), the supporter maintains a position at medium
distance to the ball to stand available for taking over the ball from the attacker, and
the attacker cares about taking the ball into the opponents goal. However, often during
play, also defender and supporter might be in a good position for carrying forth the
ball. Therefore we have realized some sort of dynamic role switching. The function
bestInterceptor All returns the number of the player which is considered the
best for going for the ball. This is used by all players to decide whether to follow their
usual role or to carry out some form of attacking behavior. If the attacker believes it is
not the best interceptor, it switches to a supporting behavior.

Deliberation is at any time only performed by an agent that believes to be the best
interceptor. This has the advantage that the behavior of all other players is deterministic
and thus easier to predict for the planning agent. We here present the planning task
the attacker solves being the best interceptor. The task is described by the following
solve-statement (cf. Fig. 6.5):

CHAPTER 6. EXPERIMENTAL RESULTS 93

1 solve(nondet(
2 [kick(ownNumber, 40),
3 dt_dribble_or_move_kick(ownNumber),
4 dt_dribble_to_points(ownNumber),
5 if(isKickable(ownNumber),
6 pickBest(var_turnAngle, [-3.1, -2.3, 2.3, 3.1],
7 [turn_relative(ownNumber, var_turnAngle, 2),
8 nondet([
9 [intercept_ball(ownNumber, 1),

10 dt_dribble_or_move_kick(ownNumber)],
11 [intercept_ball(numberByRole(supporter), 1),
12 dt_dribble_or_move_kick(numberByRole(supporter))]
13])
14]),
15 nondet([
16 [intercept_ball(ownNumber, 1),
17 dt_dribble_or_move_kick(ownNumber)],
18 intercept_ball(ownNumber, 0.0, 1)])
19),
20 intercept_ball(ownNumber, 0.0, 1)
21]), 4)
22
23 proc(dt_dribble_or_move_kick(Own),
24 nondet([
25 [dribble_to(Own, oppGoalBestCorner_Tracking, 1)],
26 [move_kick(Own, oppGoalBestCorner_Tracking, 1)]])).
27
28 proc(dt_dribble_to_points(Own),
29 nondet([
30 [dribble_to(Own, [2.5, -1.25], 1)],
31 [dribble_to(Own, [2.5, -2.5], 1)],
32 [dribble_to(Own, [2.5, 0.0], 1)],
33 [dribble_to(Own, [2.5, 2.5], 1)],
34 [dribble_to(Own, [2.5, 1.25], 1)]
35])).

The set of alternatives made up from this plan-skeleton is best described by Figure 6.5.
Having the ball, the agent can always think of a straight kick
(kick(ownNumber, 40)) or to dribble or move-kick towards the goal
(dt dribble or move kick(Own)). The function oppGoalBest-
Corner Tracking determines the position of the opponents goalie in the goal and
thereby decides which is the better corner to shoot at (in the picture it is the right cor-
ner). Also the robot may dribble to one of five predefined positions on a line in front
of the opponents goal (dt dribble to points(Own)).5 Additional alternatives
exist depending on the position of the ball: if the ball is in kickable range, the robot
considers the possibility to turn to one of four angles, pushing the ball to the left or
right. The ball can then either be intercepted again by the attacker himself and carried
to the goal or the supporter can do that. Here, the static behavior of the supporter is
taken advantage of. The attacker assumes the supporter at its side, so that he can pass
the ball to him. This behavior was thought of for getting past opponents blocking a

5This function is an ideal example where using pickBest would be more convenient for the user.
However, for performance it does not make a difference to the nondet-expression used here instead.

CHAPTER 6. EXPERIMENTAL RESULTS 94

ball behavior when turning with ball

move_kick/dribble

move/dribble/intercept

Figure 6.5: The set of alternatives for the attacker when he is at the ball. The red boxes
denote opponents, the black ones are teammates. Everything else are field markings.

straight way to the goal.
Dribbling and intercepting the ball are modeled as uncertain. Both have a success

and a failure case. Especially intercepting the ball is considered to be difficult, so that
the probability for a failure is assumed to be 0.8.

In the case where the robot has the ball, the decision tree created from the users
choices and natures choices has 62 leaves. This is a considerable number of alternatives
for ROBOCUP, but should not be compared with planning tasks in simplified grid world
examples. In those examples, trees with a lot more leaves are used, and still solutions
are found more rapidly (time consumptions for the present ROBOCUP example are
investigated in the next section). This is, because the applied models connecting the
nodes of the tree there, are much simpler and thus require less computational time.

6.3.3 Experiences at ROBOCUP 2003

Let us consider an example situation that occurred during a match against the team of
ISePorto in front of their goal. Figure 6.6 shows the view of the world as logged during
the game. This means, the positions of the ball (in the upper right), our robots (in
white), and the opponents (red) are estimated based on the fused information from all
of our robots.6 In this situation most of the dribbling actions are considered impossible:
The robot has only limited control over the ball. In particular, it is not possible to drive
in circles with low radius without loosing the ball. Thus, we set the precondition for
dribbling as depending on the angle to the target point. In this situation the attacker
(Cicero) considered, among others, the following alternatives, which are illustrated in
Figure 6.77:

• a straight kick
(Figure 6.7 (a)) Kicking in this situation would shoot the ball out of bounds. The

6We remark that these positions in general are quite erratic due to time lags in the remote connections
and due to sensor inaccuracies. This is another source of difficulties for decision making.

7All presented data is taken from log-files that were recorded during the game.

CHAPTER 6. EXPERIMENTAL RESULTS 95

Figure 6.6: A situation that occurred during a match agains ISePorto: One of our robots
(Cicero) has the ball and the supporter (Caesar) is at its place.

(a) (b) (c)

Figure 6.7: (a) a straight kick (b) a move-kick towards the empty opponents goal corner
(c) team-play

associated reward is based on the intersection with the goal line and is computed
as 9250.8

• a move-kick to the goal
(Figure 6.7 (b)) The best corner to shoot at is obviously the right one. However,
the model describes a move-kick by driving one meter to the front and then
accelerating the ball towards the target.9 Again the ball would go out of bounds,

8We only use integer numbers here, to improve readability.
9Of course, this model again is very heuristic and is based solely on observations during testing.

CHAPTER 6. EXPERIMENTAL RESULTS 96

achieving a similar reward as the kick (9403).

• team-play
(Figure 6.7 (c)) The action eventually taken was to turn with the ball, pushing it
in front of the supporter.

Let us see what lead to this decision. For readability we only use integer values. The
initial situation has a reward of 4557 and turning with the ball will certainly (probability
= 1.0) lead to a situation with reward 4169 (see Figure 6.8 (a)). Next, the supporter
(Caesar) is assumed to intercept the ball. This is only successful with probability 0.2.
The reward for the new situation is unchanged, since the ball is not moved – in this
model (see Figure 6.8 (b)). However, the intercept has negative costs, as the ball is not
far for the supporter and it is in front of the opponents goal, where an intercept always
seems a good idea. Alternatively, interception by the attacker is considered. But since
that player is farer away from the ball, the costs for that are higher (see Figure 6.9).
Finally, the supporter now having the ball is assumed to score a goal by performing
the move-kick skill (see Figure 6.8 (c)). The resulting situation, with the ball in the
opponents goal, gets a reward of 10000. The move-kick also has negative costs of
70. This is to encourage the robot to generally shoot more often. Overall an expected
reward of 14922 is computed for this policy. Figure 6.9 shows the resulting decision

(a) (b) (c)

Figure 6.8: Team-play

tree for the three described alternatives. The optimal policy is marked by a thick line.
The real decision tree was much larger (about factor 4). We left out the other possible
turn angles (appearing at line 6 of the source code on page 93) which created more
branches of the kind considered. Overall decision making in this situation took 0.61
seconds.

In general, the time the attacker spent on projection depended highly on the number
of alternatives that were possible. The most significant difference it made whether the
ball was kickable or not (all times in seconds):

examples min avg max
without ball 698 0.0 0.094 0.450

with ball 117 0.170 0.536 2.110

CHAPTER 6. EXPERIMENTAL RESULTS 97

natures choices

agent choices
 move_kick

kick

turn

intercept(me)

intercept(TM)

move_kick

move_kick

0.8

0.2

0.8

0.2

10000

10000

 4169

 4169

costs: −70

costs: −70

costs: −70

costs: −70

 4169

 4169

 4169

costs: −12

costs: −7

 4557

4776

4623

Figure 6.9: The decision tree traversed by the optimization mechanism in this situation.

These times are worse than the earlier seen numbers from the Soccer Simulation. The
speed difference is mainly explained by three facts: Firstly, the processor of the com-
puters in the robots runs at about half the speed of the ones where the simulation re-
sults where produced (Pentium 3, 933MHz vs. Pentium 4, 1.7GHz). Secondly, the
robot was running several other programs consuming computation power. Thirdly, the
applied models and the reward function were more complex. Especially the latter is
crucial as it gets computed at each situation visited in projection. From experience we
can say that nearly all the time is spent for determining successor situations, that is,
doing projection, and reward calculation. Nevertheless, the presented amounts of time
are still small enough for the Mid-Size League as this league is not yet as dynamic as
the simulation.

A key insight of the soccer experience with the interpreter is that the action models
and the reward function are very crucial. The user is recommended to take great care
designing them. Figure 6.8 (a), for instance, reveals a “mistake” in the used reward
function: Here it appears much better to have the ball on the penalty area line in front
of the opponents goal than at the touch line. Unluckily, this opinion had not been
modeled into the reward function, such that the touch line position is evaluated higher
for being farer into the opponents half. The agent, which is almost exclusively guided
by the reward function, is very sensitive to such mistakes. They can easily lead to
unintended behavior. All the more, sound approaches to creating reward functions, for
example by learning, could be beneficial and investigated as future work.

Results at ROBOCUP 2003

This approach enabled us to set up a competitive team. In the first round robin we won
all games except one versus the former world champion which we lost. Unluckily, in
the second round robin we missed reaching the quarter finals by one goal. Further-
more, we ended second in the technical challenges with only about half an hour of
preparations. We believe that this speaks for the flexibility of our approach.

The problems preventing more successful playing did not seem to stem from the
interpreter itself. Some problems were induced by low-level tasks like localization, ball

CHAPTER 6. EXPERIMENTAL RESULTS 98

detection, and collision avoidance and by hardware issues. But also in high-level con-
trol there still seems to be much room for improvements: as mentioned the reward func-
tion and models are crucial. These should be generated in a more sophisticated fashion,
for example with the help of learning techniques. Also it got apparent in play that the
interaction between the robots needs some review, to say the least. It frequently hap-
pened, for example, that the discriminative function (bestInterceptor) seemed
to be flipping. In such situations two robots could not decide on who should take the
ball. Crucial functions like this must be made more stable. Also for team-play behav-
iors like the one planned by the attacker in the example often fail in practice, as other
players involved in such a plan do not act as were expected. Although these problems
are not directly linked to the interpreter itself, in future work one should still keep an
open mind on how extensions of the interpreter could possibly support finding solutions
here.

Chapter 7

Conclusion and Future Work

We have integrated the idea of DTGOLOG to combine explicit agent programming
with MDP planning into ICPGOLOG creating the new language READYLOG. This
included the development of a new approach to on-line decision-theoretic planning
which we compared to an existing approach by Soutchanski [37]. Our approach in-
cludes the possibilities of the other approach but adds to it substantially. It allows for
exogenous actions and offers more freedom in defining uncertainty. We have revealed
a shortcoming in the other approach when operating in highly dynamic domains where
frequent sensing is a must. Also we have tackled the problem of when to break policy
execution, that is, when to consider a generated plan to be invalid. This problem had
not been treated in the other approach.

Moreover, we have extended our approach by the concept of options to enable an
exponential speed-up of planning where applicable. We support the automatic creation
of options from the solution of local MDPs and integrated them seamlessly by compil-
ing them to stochastic procedures. In particular, we offer to define options over options,
allowing the user to abstract hierarchically with automated support.

Based on the ICPGOLOG interpreter we have developed an interpreter for READY-
LOG implemented in ECLiPSe Prolog [10]. To improve user-friendliness and espe-
cially to improve on-line performance of the projection mechanism, we have further
implemented a preprocessor that compiles certain parts of READYLOG programs to
Prolog. Tests showed that this preprocessor adds considerably to the performance,
increasing the speed by about factor ten in average compared to ICPGOLOG.

We have tested the interpreter in three very different example domains to evaluate
its use under different requirements. It showed that especially options were of high use
in discrete and finite domains. There we also saw that the new interpreter is competitive
to DTGOLOG if the preprocessor is used. In a simulation domain we tested READY-
LOG against ICPGOLOG and noted a considerable performance increase. Finally, in
a real world environment we extensively used the interpreter to control mobile robots
in playing soccer at a world cup tournament.

The performance was overall better than expected, which is mainly the merit of
the preprocessor. However, it would be desirable to further reduce the time spent for
planning. Unfortunately, we did not find a way to beneficially apply options in the
ROBOCUP domain. While in the Mid-Size League that was also due to limited testing
opportunities, in the simulation it was mainly caused by the continuous character of the
domain.

For future investigations, it might be interesting to extend options so that they are

99

CHAPTER 7. CONCLUSION AND FUTURE WORK 100

able to handle infinite and especially continuous state and action spaces. Also it should
be possible to have nondeterministic actions with an infinite number of possible out-
comes.1 This would open great new opportunities for their applicability. It would then
be imaginable to run automated abstraction in areas where before abstraction were
laboriously conducted by hand. For example, the skill abstraction created by UvA
Trilearn (cf. Section 2.2.2) could perhaps be generated semi-automatically. The uncer-
tainty of the movement of objects, as described in Section 2.2.1, could then be easily
modeled. To do so, either the applied methods for solving local MDPs would have to
be extended accordingly or other methods capable of operating on infinite/continuous
spaces would have to be found and used.

Another idea for speeding up the presented optimization algorithm could be the
following: Imagine this situation at a user’s choice-node: One branch was already pro-
jected and returned an expected reward of E1. Further assume that we can determine
an upper bound Rmax on the possible reward for any state. Then, if in one of the other
branches after S steps a probability of less than a certain P is accumulated and an up
to then expected reward of E2 is obtained, the branch can be pruned if and only if
E2 + P · (Rmax · (H − S)) < E1, where H is the planning horizon. This is true,
because then this branch cannot anymore reach an expected reward greater than the
one already found for the earlier branch. This, like in α-β-pruning [39], prunes the tree
and can save computational effort in a sound way.

In real-time decision making, it is often crucial to have a decision made within
a certain time. For that purpose our optimization procedure could be changed to an
any-time algorithm that instead of an horizon takes a time as argument up to which
the algorithm is run. This would require to move away from the current depth-first
traversal to a breadth-first traversal procedure or some other strategy.

Also some of the ideas appearing in related work which we briefly mentioned in
Section 5.2.4 could be worth integrating. These concerned methods for automatic de-
composition of problems into sub-problems for which options could be generated [3]
and homomorphisms between semi-MDPs [32] to tackle the problem of relatedness of
sub-problems for which the same options could be applied.

1Imagine, for example, a gaussian distribution used to describe the actual position change of a robot after
moving a certain distance.

Appendix A

ReadyLog Interpreter

See file “readylog.pl” on the CD.

A.1 definitions.pl

See file “definitions.pl” on the CD.

A.2 Transition Semantics

See file “final trans.pl” on the CD.

A.3 Decision-theoretic Planning

See file “decisionTheoretic.pl” on the CD.

A.4 Options

See file “options.pl” on the CD.

A.5 Preprocessor

See file “preprocessor.pl” on the CD.

101

Bibliography

[1] R. A.Howard. Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge, Massachusetts, 1960.

[2] A.McGovern, D.Precup, B.Ravindran, S.Singh, and R.S.Sutton. Hierarchical op-
timal control of mdps. In Proceedings of the Tenth Yale Workshop on Adaptive
and Learning Systems, 1998.

[3] Eyal Amir and Barbara Engelhardt. Factored planning. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence 2003. Computer Science
Division, University of California at Berkeley, 2003.

[4] R. Bellman. Dynamic Programming. Princeton University Press, Princton, NJ,
1957.

[5] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In Proceedings of the 17th
National Conference on AI, AAAI 2000, 2000.

[6] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial Intelli-
gence Research, 11:1–94, 1999.

[7] Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for
first-order mdps. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence 2001, 2001.

[8] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In Pro-
ceedings of the AAAI 15th National Conference on Artificial Intelligence, 1998.

[9] Carnegie Mellon University Robot Soccer Page.
http://www-2.cs.cmu.edu/˜robosoccer/simulator.

[10] A M Cheadle, W Harvey, A J Sadler, J Schimpf, K Shen, and M G Wallace.
Eclipse: An introduction. Technical report, IC-Parc, Imperial College London,
2003. Technical Report IC-Parc-03-1.

[11] Remco de Boer and Jelle Kok. The incremental development of a synthetic multi-
agent system: The uva trilearn 2001 robotic soccer simulation team. Master’s
thesis, University of Amsterdam, 2002.

102

BIBLIOGRAPHY 103

[12] G. De Giacomo and H. J. Levesque. An incremental interpreter for high-level
programs with sensing. Technical report, Department of Computer Science, Uni-
versity of Toronto, Toronto, Canada, 1998.

[13] Giuseppe De Giacomo, Yves Lespérance, and Hector Levesque. ConGolog, a
concurrent programming language based on the situation calculus. Artificial In-
telligence, 121(1–2):109–169, 2000.

[14] F. Dylla, A. Ferrein, and G. Lakemeyer. Acting and deliberating using golog
in robotic soccer - a hybrid architecture. In Third International Workshop on
Cognitive Robotics, 2002.

[15] Lin Fangzhen and Ray Reiter. How to progress a database. Artificial Intelligence,
92:131–167, 1997.

[16] A. Ferrein, C. Fritz, and G. Lakemeyer. Extending DTGolog with options. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence
2003, 2003.

[17] J. Funge. Making Them Behave: Cognitive Models for Computer Animation. PhD
thesis, University of Toronto, 1998.

[18] Henrik Grosskreutz. Towards More Realistic Logic-Based Robot Controllers.
PhD thesis, Aachen University, Germany, 2001.

[19] Henrik Grosskreutz and Gerhard Lakemeyer. cc-golog: Towards more realistic
logic-based robot controllers. In AAAI/IAAI, pages 476–482, 2000.

[20] Henrik Grosskreutz and Gerhard Lakemeyer. Turning High-Level plans into robot
programs in uncertain domains. In ECAI, pages 548–552, 2000.

[21] M. Hauskrecht, N. Meuleau, L. Kaelbling, T. Dean, and C. Boutilier. Hierarchical
solutions of MDPs using macro-actions. In Proc. UAI 98, 1998.

[22] Norman Jansen. A framework for deliberation in uncertain, highly dynamic en-
vironments with real-time requirements. Masters Thesis, in German, Knowledge
Based Systems Group, Aachen University, Aachen, Germany, 2002.

[23] Gerhard Lakemeyer. On sensing and off-line interpreting in Golog. In
H. Levesque and F. Pirri, editors, Logical Foundations for Cognitive Agents, Con-
tributions in Honor of Ray Reiter, pages 173–187. Springer, Berlin, 1999.

[24] H. Levesque, F. Pirri, and R. Reiter. Foundations for the situation calculus.
Linkoping Electronic Articles in Computer and Information Science Vol. 3(1998):
nr 018. URL: http://www.ep.liu.se/ea/cis/1998/018/., 1998.

[25] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31(1-3):59–83, 1997.

[26] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford
University, 1963.

[27] M.Chen, E.Foroughi, F.Heintz, Z.Huang, S.Kapetanaski, K.Kostiadis,
J.Kummeneje, I.Noda, O.Obst, P.Riley, T.Steffens, Y.Wang, and X.Yin.
Robocup soccer server. Technical report, 2001.

BIBLIOGRAPHY 104

[28] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis, De-
partment of Computer Science, University of Toronto, Toronto, Canada, January
1994.

[29] Doina Precup and Richard S. Sutton. Multi-time models for temporally abstract
planning. In M. Mozer, M. Jordan, and T. Petsche, editors, NIPS-11. MIT Press,
1998.

[30] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Theoretical results on
reinforcement learning with temporally abstract options. In European Conference
on Machine Learning, pages 382–393, 1998.

[31] M. Puterman. Markov Decision Processes: Discrete Dynamic Programming.
Wiley, New York, 1994.

[32] Balaraman Ravindran and Andrew G. Barto. SMDP homomorphisms: An alge-
braic approach to abstraction in semi-markov decision processes. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence 2003. Depart-
ment of Computer Science, University of Massachusetts, 2003.

[33] R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. Artifical Intelligence and
Mathematic Theory of Comupation: Papers in Honor of John McCarthy, 1991.

[34] R. Reiter. Knowledge in Action. MIT Press, 2001.

[35] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, New Jersey, second edition, 2003.

[36] Chair for Technical Computer Science, RWTH Aachen.
http://www.techinfo.rwth-aachen.de.

[37] Mikhail Soutchanski. An on-line decision-theoretic golog interpreter. In Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence 2001,
pages 19–26, 2001.

[38] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Journal of Artificial
Intelligence, 1999.

[39] T.P.Hart and D.J.Edwards. The tree prune (tp) algorithm. Technical report, Mas-
sachusetts Institute of Technology, 1961. Artificial intelligence project memo 30.

[40] UvA Trilearn 2002.
http://carol.wins.uva.nl/˜jellekok/robocup/2002/index en.html.

[41] J. Wunderlich and F. Dylla. Technical specifications of the allemaniacs soccer-
robots. Technical report, LTI / KBSG, Aachen University, Germany, 2002. in
German.

