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Applications of Speech Technology
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Emerging...

• Data mining/indexing.
• Assistive technology.
• Conversation.

Buy ticket...
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Formants in sonorants



Mel-frequency cepstral coefficients

• In real speech data, the 
spectrogram is often 
transformed to a 
representation that more 
closely represents human 
auditory response and is more 
amenable to accurate 
classification.

• MFCCs are ‘spectra of spectra’. 
They are the discrete cosine 
transform of the logarithms of 
the nonlinearly Mel-scaled 
powers of the Fourier 
transform of windows of the 
original waveform.



Challenges in speech data
• Co-articulation and dropped phonemes.
• (Intra-and-Inter-) Speaker variability.
• No word boundaries.
• Slurring, disfluency (e.g., ‘um’).
• Signal Noise.
• Highly dimensional.



Phonemes
• Words are formed by phonemes (aka ‘phones’), 

e.g., ‘pod’ = /p aa d/

• Words have different pronunciations. and in practice we can 
never be certain of which phones were uttered, nor their 
start/stop points.  

Sentence

Verb phrase

Verb

Noun phrase

Det
Modifier

Noun (plu)
Noun Noun

open the pod bay doors

ow p ah n dh ah p aa d b ey d ao r z

Syntactic

Lexical

Phonemic



Phonetic alphabets

• International Phonetic Association (IPA)

• Can represent sounds in all languages

• Contains non-ASCII characters

• ARPAbet

• One of the earliest attempts at encoding English for 
early speech recognition.

• TIMIT/CMU

• Very popular among modern databases for speech 
recognition.



Example phonetic alphabets

• The other consonants are 
transcribed as you would 
expect

• i.e., p, b, m, t, d, n, k, 
g, s, z, f, v, w, h
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Assignment 3

• Two parts:

• Speaker identification: Determine which of 30 speakers 
an unknown test sample of speech comes from, given 
Gaussian mixture models you will train for each 
speaker.

• Speech recognition: Compute word-error rates for 
speech recognition systems using Levenshtein distance.



Speaker Data

• 32 speakers (e.g., S-3C, S-5A).

• Each speaker has up to 12 training utterances.

• e.g., /u/csc401/A3/data/S-3C/0.wav

• Each utterance has 3 files:

• *.wav : The original wave file.

• *.mfcc.npy : The MFCC features in NumPy format

• *.txt : Sentence-level transcription.



Speaker Data (cont.)
• All you need to know: A speech utterance is an T x d matrix

• Each row represents the features of a d-dimensional point in time.

• There are N rows in a sequence of N frames.

• The data is in numpy arrays *.mfcc.npy

• To read the files: np.load(‘1.mfcc.npy’)

X1[1] X1[2] ... X1[d]
X2[1] X2[2] ... X2[d]

... ... ... ...
XT[1] XT[2] ... XT[d]T
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Speaker Data (cont.)

• You are given human transcriptions in 
transcripts.txt

• You are also given Kaldi and Google transcriptions in 
transcripts.*.txt.

• Ignore any symbols that are not words.
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Speaker Recognition

• The data is randomly split into training and testing 
utterances. We don’t know which speaker produced which 
test utterance.

• Every speaker occupies a characteristic part of the acoustic 
space.

• We want to learn a probability distribution for each speaker 
that describes their acoustic behaviour.

• Use those distributions to identify the speaker-dependent 
features of some unknown sample of speech data.



Some background: fitting to data
• Given a set of observations X of some random variable, we 

wish to know how X was generated.

• Here, we assume that the data was sampled from a 
Gaussian Distribution (validated by data).

• Given a new data point (x=15), It is more likely that x was 
generated by B.

A B

15 15



Finding parameters: 1D Gaussians
●

●



Maximum likelihood estimation

• Given data:

• and Parameter set:

• Maximum likelihood attempts to find the parameter set 
that maximizes the likelihood of the data.

• The likelihood function                provides a surface over all 
possible parameterizations. In order to find the Maximum 
Likelihood, we set the derivative to zero:



MLE - 1D Gaussian

• Estimate    :

• A similar approach gives the MLE estimate of      :



Multidimensional Gaussians

• When your data is d-dimensional, 
the input variable is

the mean vector is

the covariance matrix is

with

and



Non-Gaussian data
• Our speaker data does not behave unimodally.

• i.e., we can't use just 1 Gaussian per speaker.
• E.g., observations below occur mostly bimodally, so fitting 1 

Gaussian would not be representative.



Gaussian mixtures

• Gaussian mixtures are a 
weighted linear combination 
of M component gaussians.



• For notational convenience,                     

• So

• To find    , we solve                                  where

MLE for Gaussian mixtures

...see Appendix for more



MLE for Gaussian mixtures (pt. 2)

• Given

• Since

• We obtain          by solving for                 in :

 and:



Recipe for GMM ML estimation

• Do the following for each speaker individually. Use all the 
frames available in their respective Training directories

1. Initialize: Guess                                           with M 
random vectors in the data, or by performing M-means 
clustering. 

2. Compute likelihood: Compute           and 
3. Update parameters:

4. Repeat 2&3 until converges



Cheat sheet

Probability of xt in the 
GMM 

Probability of the mth 
Gaussian, given xt

Probability of 
observing xt in the mth 
Gaussian

Prior probability of the mth 
Gaussian



Initializing theta

• Initialize each         to a random vector from the data.

• Initialize         to a random diagonal matrix (or identity 
matrix).

• Initialize         randomly, with these constraints:

• A good choice would be to set to  



•
•



Your Task
• For each speaker, train a GMM, using the EM algorithm, 

assuming diagonal covariance.

• Identify the speaker of each test utterance.

• Experiment with the number of mixture elements in the 
models, the improvement threshold, number of possible 
speakers, etc.

• Comment on the results



Practical tips for MLE of GMMs
• We assume diagonal covariance matrices. This reduces the 

number of parameters and can be sufficient in practice given 
enough components.

• Numerical Stability: Compute likelihoods in the log domain 
(especially when calculating the likelihood of a sequence of 
frames).

• Here,             and        are d-dimensional vectors.



Practical tips (pt. 2)
• Efficiency: Pre-compute terms not dependent on
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Word-error rates

• If somebody said
REF: how to recognize speech 

but an ASR system heard
HYP: how to wreck a nice beach

how do we measure the error that occurred?

• One measure is #CorrectWords/#HypothesisWords
e.g., 2/6 above

• Another measure is (S+I+D)/#ReferenceWords

• S: # Substitution errors (one word for another)

• I: # Insertion errors (extra words)

• D: # Deletion errors (words that are missing).



Computing Levenshtein Distance

• In the example
REF: how to recognize speech. 
HYP: how to wreck a nice beach

How do we count each of S, I, and D?

• If “wreck” is a substitution error, what about “a” and 
“nice”?



Computing Levenshtein Distance
• In the example

REF: how to recognize speech. 
HYP: how to wreck a nice beach

How do we count each of S, I, and D?
If “wreck” is a substitution error, what about “a” and “nice”?

• Levenshtein distance:
Initialize R[0,0] = 0, and R[i,j] = max(i, j) for all i=0 or j=0
for i=1..n (#ReferenceWords)

for j=1..m (#Hypothesis words)
R[i,j] = min( R[i-1,j] + 1 (deletion)

   R[i-1,j-1]          (only if words match)
 R[i-1,j-1]+1     (only if words differ)

R[i,j-1] + 1    ) (insertion)
Return 100*R(n,m)/n



Levenshtein example



Levenshtein example



Levenshtein example



Levenshtein example

Word-error rate is 4/4 = 100%

2 substitutions, 2 insertions



Key Takeaways

● Store a matrix of backpointers (needed to calculate number of 

substitutions, insertions, deletions)

● Break ties with the following priority

○ 1. Substitution

○ 2. Insertion

○ 3. Deletion

● Forward calculation : Compute WER

● Backward tracing : # subs, ins and dels



Appendices



Multidimensional Gaussians, pt. 2

• If the ith and jth dimensions are statistically independent, 

and

• If all dimensions are statistically independent,                        
and the covariance matrix becomes diagonal, which means 

where



MLE example - dD Gaussians

• The MLE estimates for parameters                                     
given i.i.d. training data                               are obtained 
by maximizing the joint likelihood

• To do so, we solve                             , where

• Giving



MLE for Gaussian mixtures (pt1.5)

• Given                                          and

• Obtain an ML estimate,       , of the mean vector by 

maximizing                         w.r.t.
            

• Why? d of sum = sum of d d rule for loge

d wrt       is 0 for all other 
mixtures in the sum in  


