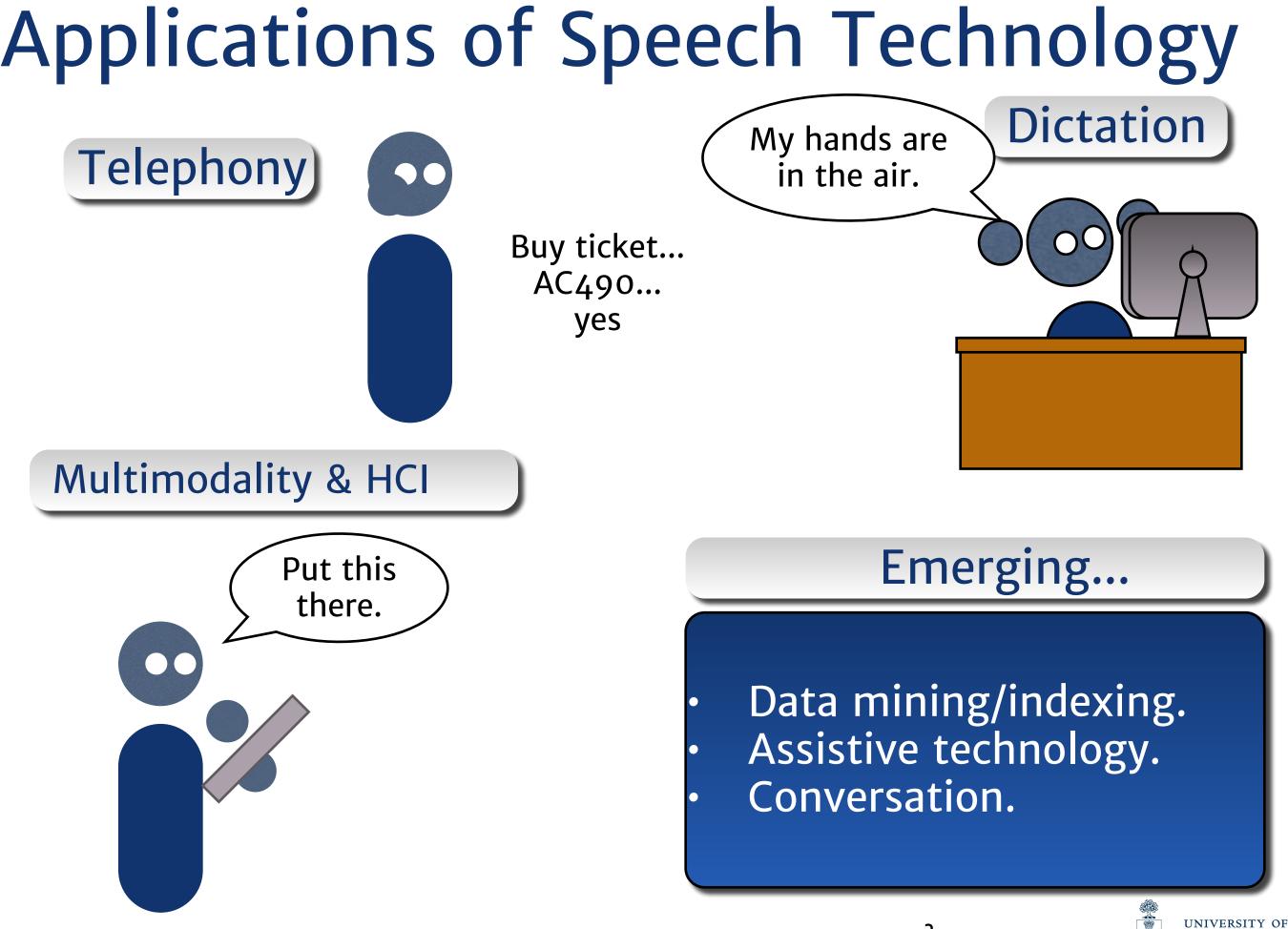
Speech Processing and Understanding

CSC401 Assignment 3

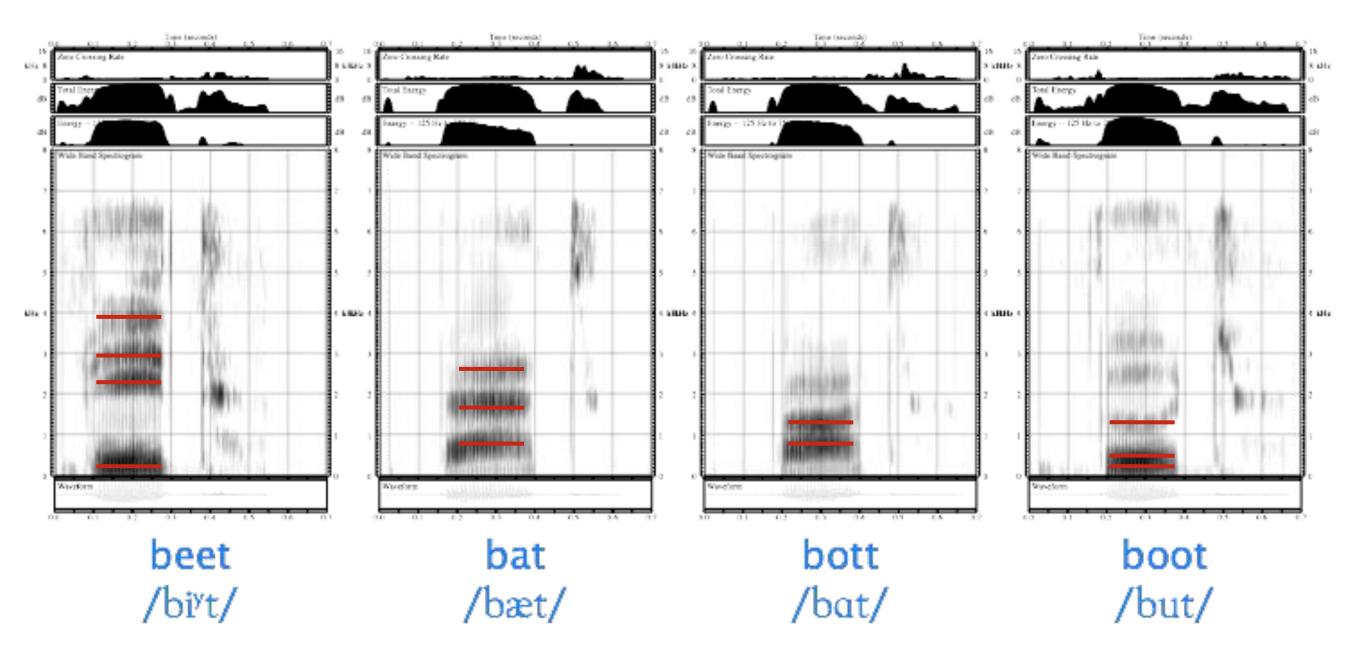
Agenda

- Background
 - Speech technology, in general
 - Acoustic phonetics
- Assignment 3
 - Speaker Recognition: Gaussian mixture models
 - Speech Recognition: Word-error rates with Levenshtein distance.



TORONTO

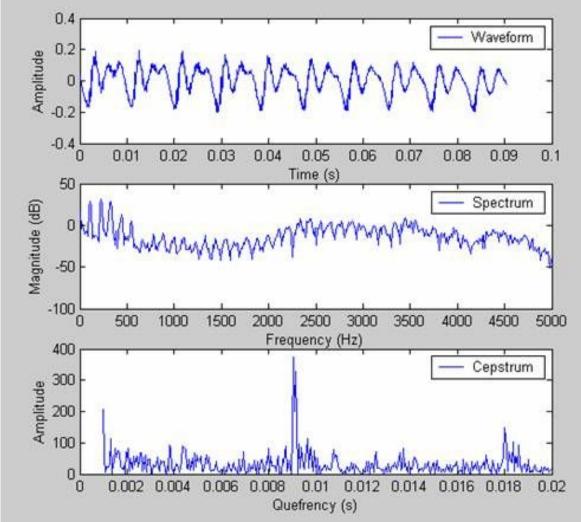
Formants in sonorants



However, formants are insufficient features for use in speech recognition generally...

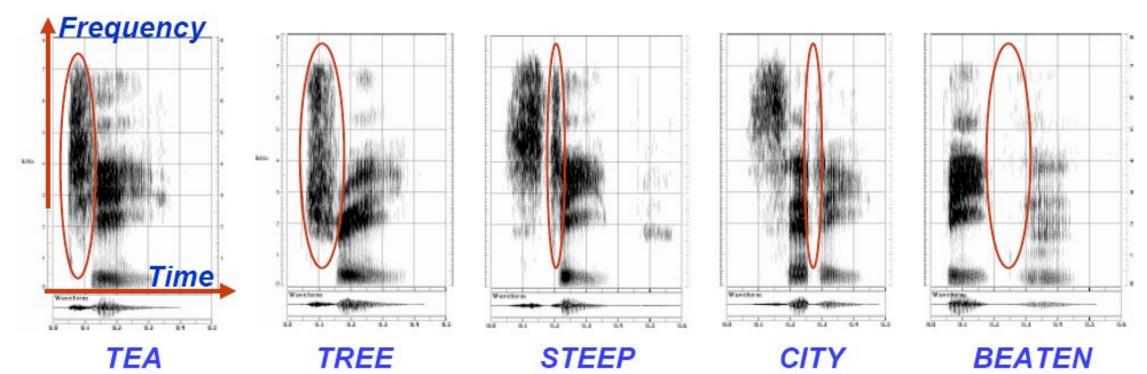
<u>M</u>el-<u>f</u>requency <u>c</u>epstral <u>c</u>oefficients

- In real speech data, the spectrogram is often transformed to a representation that more closely represents human auditory response and is more amenable to accurate classification.
- MFCCs are 'spectra of spectra'. They are the discrete cosine transform of the logarithms of the nonlinearly Mel-scaled powers of the Fourier transform of windows of the original waveform.



Challenges in speech data

- Co-articulation and dropped phonemes.
- (Intra-and-Inter-) Speaker variability.
- No word boundaries.
- Slurring, disfluency (e.g., 'um').
- Signal Noise.
- Highly dimensional.



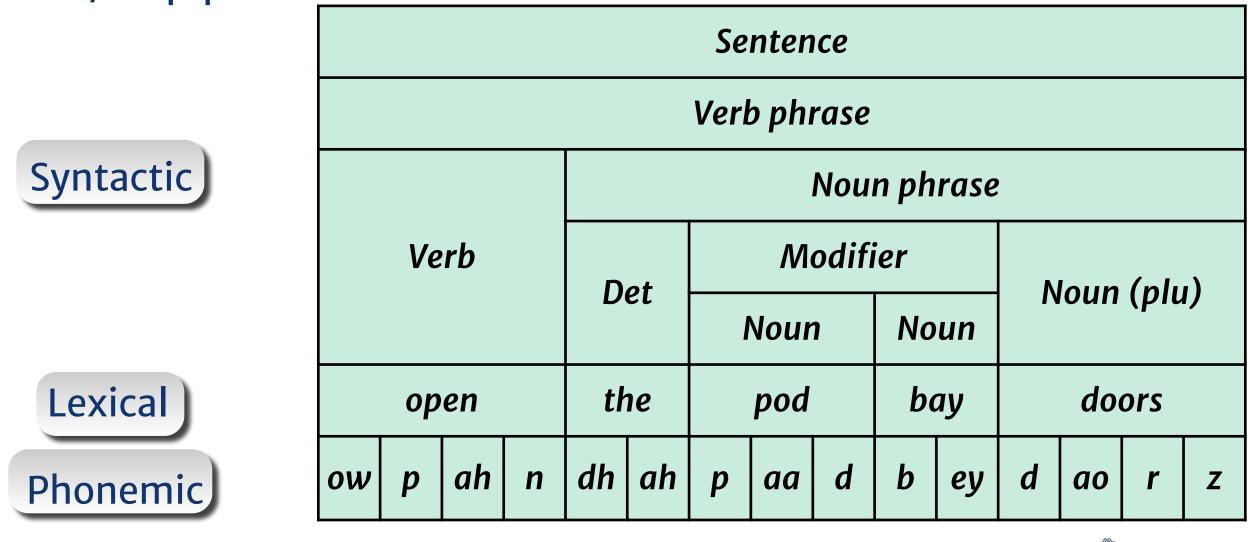
NIVERSITY OF

σ

Phonemes

 Words are formed by phonemes (aka 'phones'), e.g., 'pod' = /p aa d/

 Words have different pronunciations. and in practice we can never be certain of which phones were uttered, nor their start/stop points.



Phonetic alphabets

- International Phonetic Association (IPA)
 - Can represent sounds in all languages
 - Contains non-ASCII characters
- ARPAbet
 - One of the earliest attempts at encoding English for early speech recognition.
- <u>TIMIT/CMU</u>
 - Very popular among modern databases for speech recognition.

Example phonetic alphabets

IPA	CMU	TIMIT	Example	IPA symbol name
[α]	AA	aa	f <u>a</u> ther, h <u>o</u> t	script a
[æ]	AE	ae	h <u>a</u> d	digraph
[ə]	AH0	ax	sof <u>a</u>	schwa (common in unstressed syllables)
[\Lambda]	AH1	ah	b <u>u</u> t	turned v
[0:]	AO	ao	c <u>aug</u> ht	open o – Note, many speakers of Am. Eng. do not distinguish between $[\circ:]$ and $[\alpha]$. If your "caught" and "cot" sound the same, you do not.
[8]	EH	eh	h <u>ea</u> d	epsilon
[I]	IH	ih	h <u>i</u> d	small capital I
[i:]	IY	iy	h <u>ee</u> d	lowercase i
[ʊ]	UH	uh	h <u>oo</u> d, b <u>oo</u> k	upsilon
[u:]	UW	uw	b <u>oo</u> t	lowercase u
[aɪ]	AY	ay	h <u>i</u> de	
[aʊ]	AW	aw	how	
[eɪ]	EY	ey	tod <u>a</u> y	
[00]	OW	ow	h <u>oe</u> d	
[]]	OY	oy	joy, ahoy	
[ə.]	ER0	axr	h <u>er</u> self	schwar (schwa changed by following r)
[3.]	ER1	er	b <u>ir</u> d	reverse epsilon right hook

IPA	CMU	TIMIT	Example	IPA symbol name
[ŋ]	NG	ng	sing song	eng or angma
[[]]	SH	<u>sh</u>	sheet, wish	esh or long s
[tʃ]	CH	ch	cheese	
[j]	Y	У	yellow	lowercase j
[3]	ZJ	zh	vi <u>s</u> ion	long z or yogh
[dʒ]	JH	jh	ju <u>dg</u> e	
[ð]	DH	dh	thee, this	eth

- The other consonants are transcribed as you would expect
 - i.e., p, b, m, t, d, n, k, g, s, z, f, v, w, h

Agenda

- Background
 - Speech technology, in general
 - Acoustic phonetics
- Assignment 3
 - Speaker Recognition: Gaussian mixture models
 - Speech Recognition: Word-error rates with Levenshtein distance.

Assignment 3

- Two parts:
 - <u>Speaker identification</u>: Determine which of 30 speakers an unknown test sample of speech comes from, given Gaussian mixture models you will train for each speaker.
 - <u>Speech recognition</u>: Compute word-error rates for speech recognition systems using Levenshtein distance.

Speaker Data

- 32 speakers (e.g., S-3C, S-5A).
- Each speaker has up to 12 <u>training</u> utterances.
 - e.g., /u/csc401/A3/data/S-3C/0.wav
- Each utterance has 3 files:
 - *.wav : The original wave file.
 - *.mfcc.npy: The MFCC features in NumPy format
 - *.txt : Sentence-level transcription.

Speaker Data (cont.)

- All you need to know: A speech utterance is an T x d matrix
 - Each row represents the features of a d-dimensional point in time.
 - There are N rows in a sequence of N frames.
 - The data is in numpy arrays *.mfcc.npy
 - To read the files: np.load(`1.mfcc.npy')

		data dimension							
		1	2		d				
	1	X ₁ [1]	X,[2]	•••	X,[d]				
time frames	2	X ₂ [1]	X ₂ [2]	•••	X ₂ [d]				
	0	•••	•••	•••	•••				
-	T	Χ _τ [1]	X _τ [2]	•••	Χ_τ[d]				

Speaker Data (cont.)

- You are given human transcriptions in transcripts.txt
- You are also given Kaldi and Google transcriptions in transcripts.*.txt.
- Ignore any symbols that are not words.

Agenda

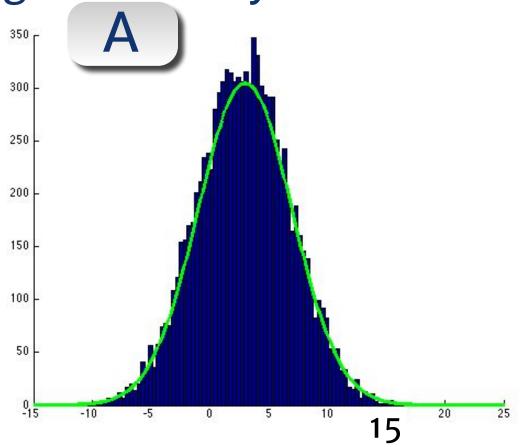
- Background
 - Speech technology, in general
 - Acoustic phonetics
- Assignment 3
 - Speaker Recognition: Gaussian mixture models
 - Speech Recognition: Word-error rates with Levenshtein distance.

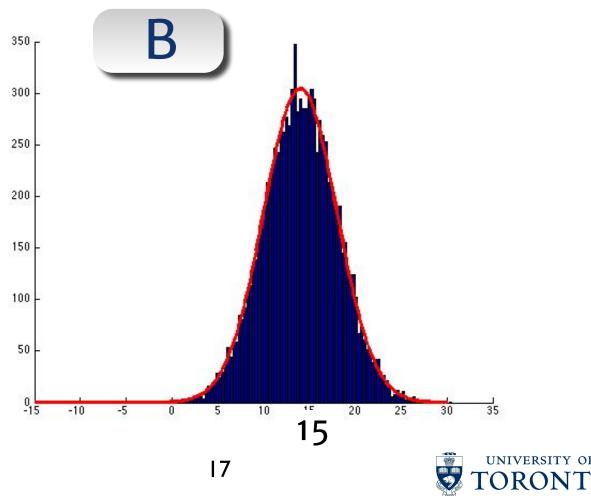
Speaker Recognition

- The data is randomly split into training and testing utterances. We don't know which speaker produced which test utterance.
- Every speaker occupies a characteristic part of the acoustic space.
- We want to learn a probability distribution for each speaker that describes their acoustic behaviour.
 - Use those distributions to identify the speaker-dependent features of some unknown sample of speech data.

Some background: fitting to data

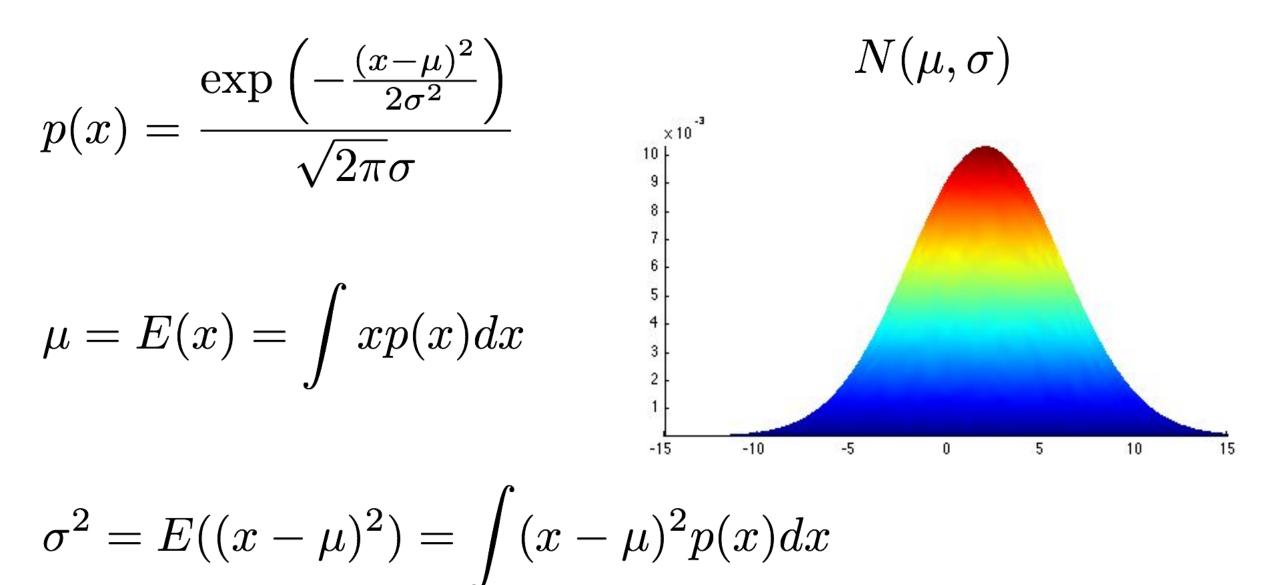
- Given a set of observations X of some random variable, we wish to know how X was generated.
- Here, we assume that the data was sampled from a Gaussian Distribution (validated by data).
- Given a new data point (x=15), It is more likely that x was generated by B.





Finding parameters: 1D Gaussians

• Often called Normal distributions



• The parameters we can adjust to fit the data are $\mu\,$ and σ^2 : $heta=\langle\mu,\sigma
angle$

Maximum likelihood estimation

• Given data:
$$X = \{x_1, x_2, \dots, x_n\}$$

- and Parameter set: θ
- Maximum likelihood attempts to find the parameter set that maximizes the likelihood of the data.

$$L(X,\theta) = p(X \mid \theta) = p(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n p(x_i \mid \theta)$$

• The likelihood function $L(X, \theta)$ provides a surface over all possible parameterizations. In order to find the Maximum Likelihood, we set the derivative to zero: ∂

$$\frac{\partial}{\partial \theta} L(X, \theta) = 0$$
^{I9}
^{UNIVERSITY}
TORON

MLE – 1D Gaussian

- Estimate $\hat{\mu}$: $L(X,\mu) = p(X \mid \mu) = \prod_{i=1}^{n} p(x_i \mid \mu) = \prod_{i=1}^{n} \frac{\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}$ $\log L(X,\mu) = -\frac{\sum_{i} (x_i - \mu)^2}{2\sigma^2} - n \log \sqrt{2\pi}\sigma$ $\frac{\partial}{\partial \mu} \log L(X,\mu) = \frac{\sum_{i} (x_i - \mu)}{\sigma^2} = 0$ $\hat{\mu} = \frac{\sum_i x_i}{\sum_i x_i}$
 - A similar approach gives the MLE estimate of $\hat{\sigma}^2$:

$$\hat{\sigma}^2 = \frac{\sum_i (x_i - \hat{\mu})^2}{n}$$

Multidimensional Gaussians

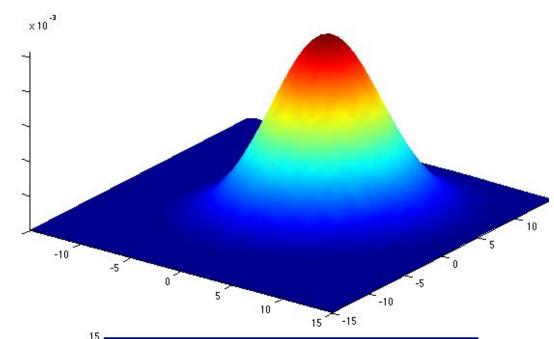
• When your data is d-dimensional, the input variable is $\vec{x} = \langle x[1], x[2], \dots, x[d] \rangle$

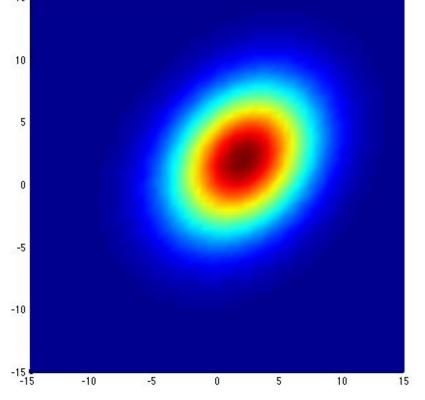
the mean vector is $\vec{\mu} = E(\vec{x}) = \langle \mu[1], \mu[2], \dots, \mu[d] \rangle$

the covariance matrix is $\Sigma = E((\vec{x} - \vec{\mu})(\vec{x} - \vec{\mu})^T)$

with
$$\Sigma[i, j] = E(x[i]x[j]) - \mu[i]\mu[j]$$

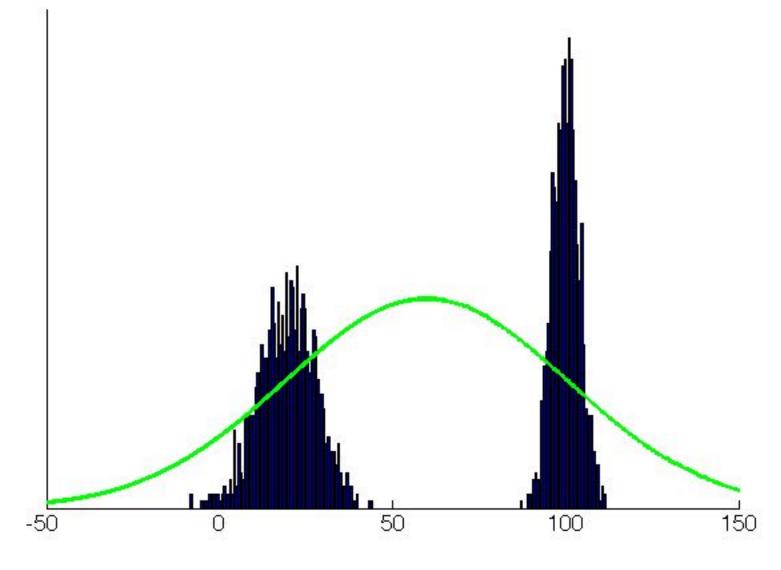
and $p(\vec{x}) = \frac{\exp\left(-\frac{(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})}{2}\right)}{(2\pi)^{d/2} |\Sigma|^{1/2}}$





Non-Gaussian data

- Our speaker data does not behave unimodally.
 - i.e., we can't use just 1 Gaussian per speaker.
- E.g., observations below occur mostly bimodally, so fitting 1 Gaussian would not be representative.



Gaussian mixtures

 Gaussian mixtures are a weighted linear combination of M component gaussians.

0.35

0.3

0.25

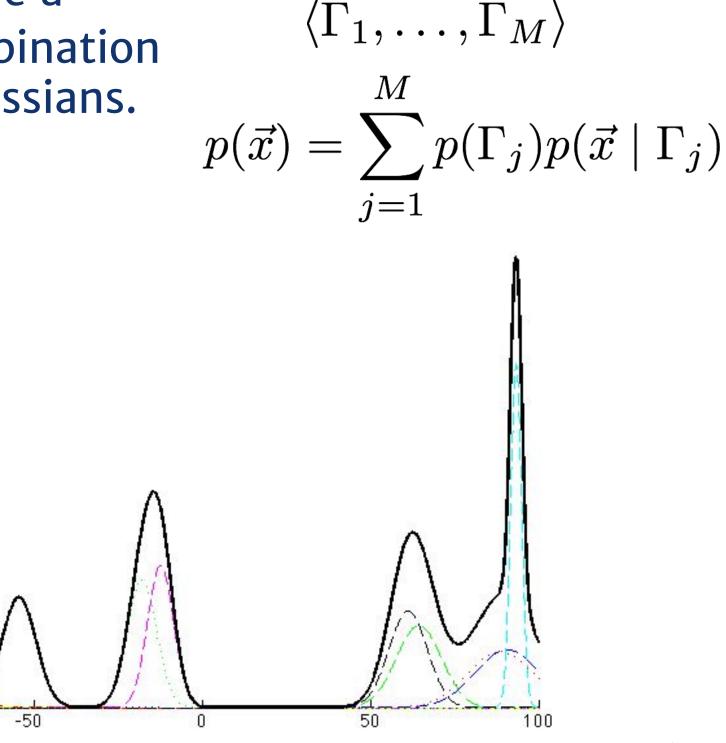
0.2

0.15

0.1

0.05

-100



MLE for Gaussian mixtures

- For notational convenience, $\omega_m = p(\Gamma_m), \ b_m(\vec{x_t}) = p(\vec{x_t} \mid \Gamma_m)$
- So $p_{\Theta}(\vec{x_t}) = \sum_{m=1}^{M} \omega_m b_m(\vec{x_t}), \ \Theta = \langle \omega_m, \mu_m, \Sigma_m \rangle, \ m = 1, \dots, M$

$$b_m(\vec{x_t}) = \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^d \frac{(x_t[i] - \mu_m[i])^2}{\sigma_m^2[i]}\right)}{(2\pi)^{d/2} \left(\prod_{i=1}^d \sigma_m^2[i]\right)^{1/2}}$$

• To find $\hat{\Theta}$, we solve $\nabla_{\Theta} \log L(X, \Theta) = 0$ where

$$\log L(X,\Theta) = \sum_{t=1}^{N} \log p_{\Theta}(\vec{x_t}) = \sum_{t=1}^{N} \log \left(\sum_{m=1}^{M} \omega_m b_m(\vec{x_t}) \right)$$

...see Appendix for more

24

MLE for Gaussian mixtures (pt. 2)

• Given $\frac{\partial \log L(X,\Theta)}{\partial \mu_m[n]} = \sum_{t=1}^N \frac{1}{p_{\Theta}(\vec{x_t})} \left[\frac{\partial}{\partial \mu_m[n]} \omega_m b_m(\vec{x_t}) \right]$ • Since $\frac{\partial}{\partial \mu_m[n]} b_m(\vec{x_t}) = b_m(\vec{x_t}) \frac{x_t[n] - \mu_m[n]}{\sigma_m^2[n]}$

• We obtain $\hat{\mu_m}[n]$ by solving for $\mu_m[n]$ in : $\frac{\partial \log L(X,\Theta)}{\partial \mu_m[n]} = \sum_{t=1}^N \frac{\omega_m}{p_\Theta(\vec{x_t})} b_m(\vec{x_t}) \frac{x_t[n] - \mu_m[n]}{\sigma_m^2[n]} = 0$

and:

$$b_m(\vec{x_t}) = p(\vec{x_t} \mid \Gamma_m)$$
$$p(\Gamma_m \mid \vec{x_t}, \Theta) = \frac{\omega_m}{p_{\Theta}(\vec{x_t})} b_m(\vec{x_t})$$

$$\hat{\mu_m}[n] = \frac{\sum_t p(\Gamma_m \mid \vec{x_t}, \Theta) x_t[n]}{\sum_t p(\Gamma_m \mid \vec{x_t}, \Theta)}$$

Recipe for GMM ML estimation

- Do the following for each speaker individually. Use all the frames available in their respective **Training** directories
- 1. <u>Initialize</u>: Guess $\Theta = \langle \omega_m, \mu_m, \Sigma_m \rangle, \ m = 1, ..., M$ with M random vectors in the data, or by performing M-means clustering.
- 2. <u>Compute likelihood</u>: Compute $b_m(\vec{x_t})$ and $P(\Gamma_m \mid \vec{x_t}, \Theta)$ 3. <u>Update parameters</u>: $\hat{\omega_m} = \frac{1}{T} \sum_{T} p(\Gamma_m \mid \vec{x_t}, \Theta)$

$$\vec{\sigma}_{m}^{2} = \frac{\sum_{t} p(\Gamma_{m} \mid \vec{x_{t}}, \Theta) \vec{x_{t}}^{2}}{\sum_{t} p(\Gamma_{m} \mid \vec{x_{t}}, \Theta)} - \vec{\mu}_{m}^{2} \vec{\mu}_{m}^{2} = \frac{\sum_{t} p(\Gamma_{m} \mid \vec{x_{t}}, \Theta) \vec{x_{t}}}{\sum_{t} p(\Gamma_{m} \mid \vec{x_{t}}, \Theta)}$$
$$\log p(X \mid \hat{\Theta}_{i+1}) - \log p(X \mid \hat{\Theta}_{i}) < \epsilon$$

4. Repeat 2&3 until converges

Cheat sheet

$$\begin{split} b_{m}(\vec{x_{t}}) &= p(\vec{x_{t}} \mid \Gamma_{m}) \\ b_{m}(\vec{x_{t}}) &= \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{d} \frac{(x_{t}[i] - \mu_{m}[i])^{2}}{\sigma_{m}^{2}[i]}\right)}{(2\pi)^{d/2} \left(\prod_{i=1}^{d} \sigma_{m}^{2}[i]\right)^{1/2}} \begin{array}{c} \text{Probability of observing } \mathbf{x_{t}} \text{ in the } \mathbf{m}^{\text{th}} \\ \text{Gaussian} \end{array} \\ \\ \omega_{m} &= p(\Gamma_{m}) \\ p(\Gamma_{m} \mid \vec{x_{t}}, \Theta) &= \frac{\omega_{m}}{p_{\Theta}(\vec{x_{t}})} b_{m}(\vec{x_{t}}) \begin{array}{c} \text{Probability of the } \mathbf{m}^{\text{th}} \\ \text{Gaussian} \end{array} \\ \\ p(\Gamma_{m} \mid \vec{x_{t}}, \Theta) &= \frac{\omega_{m}}{p_{\Theta}(\vec{x_{t}})} b_{m}(\vec{x_{t}}) \begin{array}{c} \text{Probability of the } \mathbf{m}^{\text{th}} \\ \text{Gaussian}, \text{ given } \mathbf{x_{t}} \end{array} \\ \\ p_{\Theta}(\vec{x_{t}}) &= \sum_{m=1}^{M} \omega_{m} b_{m}(\vec{x_{t}}) \end{array} \begin{array}{c} \text{Probability of } \mathbf{x_{t}} \text{ in the } \\ \text{GMM} \end{array} \end{array}$$

Initializing theta

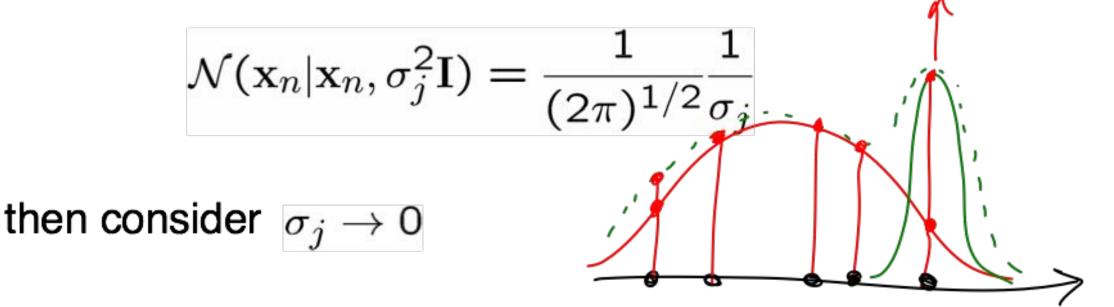
$$\Theta = \langle \omega_1, \mu_1, \Sigma_1, \omega_2, \mu_2, \Sigma_2, \dots, \omega_M, \mu_M, \Sigma_M \rangle$$

- Initialize each μ_m to a random vector from the data.
- Initialize Σ_m to a random diagonal matrix (or identity matrix).
- Initialize ω_m randomly, with these constraints: $0 \leq \omega_m \leq 1$

$$\sum_m \omega_m = 1$$
 • A good choice would be to set to $\Sigma_m = rac{1}{m}$

Over-fitting in Gaussian Mixture Models

 Singularities in likelihood function when a component 'collapses' onto a data point:



- Likelihood function gets larger as we add more components (and hence parameters) to the model
 - not clear how to choose the number K of components

Solutions:

- Ensure that the variances don't get too small.
- Bayesian GMMs

* Slide borrowed from Chris Bishop's presentation

>

Your Task

- For each speaker, train a GMM, using the EM algorithm, assuming diagonal covariance.
- Identify the speaker of each test utterance.
- Experiment with the number of mixture elements in the models, the improvement threshold, number of possible speakers, etc.
- Comment on the results

Practical tips for MLE of GMMs

- We assume diagonal covariance matrices. This reduces the number of parameters and can be sufficient in practice given enough components.
- Numerical Stability: Compute likelihoods in the log domain (especially when calculating the likelihood of a sequence of frames).

$$\log b_m(\vec{x_t}) = -\sum_{n=1}^d \frac{(\vec{x_t}[n] - \vec{\mu_m}[n])^2}{2\sigma_m^2[n]} - \frac{d}{2}\log 2\pi - \frac{1}{2}\log \prod_{n=1}^d \sigma_m^2[n]$$

• Here, $\vec{x_t}$, $\vec{\mu_m}$ and $\vec{\sigma_m}^2$ are d-dimensional vectors.

Practical tips (pt. 2)

• Efficiency: Pre-compute terms not dependent on $\vec{x_t}$

$$\log b_m(\vec{x_t}) = -\sum_{n=1}^d \left(\frac{1}{2} \vec{x_t}[n]^2 \vec{\sigma_m}^{-2}[n] - \vec{\mu_m}[n] \vec{x_t}[n] \vec{\sigma_m}^{-2}[n] \right) \\ - \left(\sum_{n=1}^d \frac{\vec{\mu_m}[n]^2}{2\vec{\sigma_m}^{-2}[n]} + \frac{d}{2} \log 2\pi + \frac{1}{2} \log \prod_{n=1}^d \vec{\sigma_m}^{-2}[n] \right)$$

Agenda

- Background
 - Speech technology, in general
 - Acoustic phonetics
- Assignment 3
 - Speaker Recognition: Gaussian mixture models

 Speech Recognition: Word-error rates with Levenshtein distance.

Word-error rates

• If somebody said

REF: how to recognize speech but an ASR system heard HYP: how to wreck a nice beach how do we measure the error that occurred?

- One measure is #CorrectWords/#HypothesisWords
 e.g., 2/6 above
- Another measure is (S+I+D)/#ReferenceWords
 - S: # Substitution errors (one word for another)
 - I: # Insertion errors (extra words)
 - D: # Deletion errors (words that are missing).

Computing Levenshtein Distance

- In the example REF: how to recognize speech.
 - HYP: how to wreck a nice beach How do we count each of S, I, and D?
- If "wreck" is a substitution error, what about "a" and "nice"?

Computing Levenshtein Distance

• In the example

REF: how to recognize speech. HYP: how to wreck a nice beach How do we count each of S, I, and D? If "wreck" is a substitution error, what about "a" and "nice"?

```
    Levenshtein distance:

Initialize R[0,0] = 0, and R[i,j] = max(i, j) for all i=0 or j=0

for i=1..n (#ReferenceWords)

for j=1..m (#Hypothesis words)

R[i,j] = min( R[i-1,j] + 1 (deletion)

R[i-1,j-1] (only if words match)

R[i-1,j-1]+1 (only if words differ)

R[i,j-1] + 1 ) (insertion)

Return 100*R(n,m)/n
```


		how	to	wreck	а	nice	beach
	0	1	2	3	4	5	6
how	1	0	1	2	3	4	5
to	2						
recognize	3						
speech	4						

		how	to	wreck	а	nice	beach
	0	1	2	3	4	5	6
how	1	0	1	2	3	4	5
to	2	1	0	1	2	3	4
recognize	3						
speech	4						

		how	to	wreck	а	nice	beach
	0	1	2	3	4	5	6
how	1	0	1	2	3	4	5
to	2	1	0	1	2	3	4
recognize	3	2	1	1	2	3	4
speech	4						

		how	to	wreck	а	nice	beach
	0	1	2	3	4	5	6
how	1	0	1	2	3	4	5
to	2	1	0	1	2	3	4
recognize	3	2	1	1	2	3	4
speech	4	3	2	2	2	3	4

Word-error rate is 4/4 = 100%

2 substitutions, 2 insertions

Key Takeaways

- Store a matrix of backpointers (needed to calculate number of substitutions, insertions, deletions)
- Break ties with the following priority
 - **1. Substitution**
 - 2. Insertion
 - **3. Deletion**
- Forward calculation : Compute WER
- Backward tracing : # subs, ins and dels

Appendices

Multidimensional Gaussians, pt. 2

- If the ith and jth dimensions are statistically independent, E(x[i]x[j]) = E(x[i])E(x[j])and $\Sigma[i, j] = 0$
- If all dimensions are statistically independent, $\Sigma[i, j] = 0, \forall i \neq j$ and the covariance matrix becomes diagonal, which means

$$p(\vec{x}) = \prod_{i=1}^{d} p(x[i])$$

where

$$p(x[i]) \sim N(\mu[i], \Sigma[i, i])$$

$$\Sigma[i, i] = \sigma^{2}[i]$$

MLE example - dD Gaussians

The MLE estimates for parameters Θ = ⟨θ₁, θ₂,...,θ_d⟩ given i.i.d. training data X = ⟨x₁,...,x_n⟩ are obtained by maximizing the joint likelihood
L(X, Θ) = p(X | Θ) = p(x₁,...,x_n | Θ) = \prod_{i=1}^{n} p(x_i | Θ)
To do so, we solve ∇_ΘL(X, Θ) = 0 , where

$$\nabla_{\Theta} = \left\langle \frac{\partial}{\partial \theta_1}, \dots, \frac{\partial}{\partial \theta_d} \right\rangle$$

• Giving

$$\hat{\vec{\mu}} = \frac{\sum_{t=1}^{n} \vec{x_t}}{n} \qquad \hat{\Sigma} = \frac{\sum_{t=1}^{n} \left(\vec{x_t} - \hat{\vec{\mu}}\right) \left(\vec{x_t} - \hat{\vec{\mu}}\right)^T}{n}$$

MLE for Gaussian mixtures (pt1.5)

• Given
$$\log L(X,\Theta) = \sum_{t=1}^{N} \log p_{\Theta}(\vec{x_t})$$
 and $p_{\Theta}(\vec{x_t}) = \sum_{m=1}^{M} \omega_m b_m(\vec{x_t})$

• Obtain an ML estimate, $\hat{\mu_m}$, of the mean vector by maximizing $\log L(X, \mu_m)$ w.r.t. $\mu_m[n]$

$$\frac{\partial \log L(X,\Theta)}{\partial \mu_m[n]} = \sum_{t=1}^N \frac{\partial}{\partial \mu_m[n]} \log p_\Theta(\vec{x_t}) = \sum_{t=1}^N \frac{1}{p_\Theta(\vec{x_t})} \left[\frac{\partial}{\partial \mu_m[n]} \omega_m b_m(\vec{x_t}) \right]$$

• Why? d of sum = sum of d d rule for
$$\log_{e}$$

d wrt μ_m is 0 for all other mixtures in the sum in $p_{\Theta}(\vec{x_t})$

