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Recall our input to ASR

Frequency (Hz)

Am
pl

itu
de

SpectrumFrame

Is the spectrum the best input for our

ASR systems?
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The Mel-scale

• Human hearing is not equally sensitive to all frequencies.

• We are less sensitive to frequencies > 1 kHz.

• A mel is a unit of pitch. Pairs of sounds which are perceptually

equidistant in pitch are separated by an equal number of mels.

!"# $ = 2595 log!" 1 +
$

700

m
el

s

Hertz

(No need to 

memorize this 

either)
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The Mel-scale filter bank

• To mimic the response of the human ear (and because it can
improve speech recognition), we often discretize the spectrum 

using ! triangular filters.

• Uniform spacing before 1 kHz, logarithmic after 1 kHz
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Aside - Mel-Frequency Cepstral Coefficients

• Earlier ASR required additional Cepstral processing on the Mel 

Spectrum

• Used to separate the source (glottal waveform) from filter

(vocal tract resonances)

• MFCCs are used in Assignment 3

• Details on how to calculate them can be found in the 

appendices (not tested)

• Neural ASR usually uses the Mel-Spectrum as input

• Good at de-correlating source and filter by itself
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GAUSSIAN MIXTURES
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Classifying speech sounds

• Speech sounds can cluster. This graph shows vowels, each in 

their own colour, according to the 1st two formants.

Note: The vowel trapezoid’s

dimensions were physical
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Classifying speakers

• Similarly, all of the speech produced by one speaker will cluster 

differently in the Mel space than speech from another speaker.

• We can ∴ decide if a given observation comes from one 

speaker or another.

Time, #
0 1 … T

M
FC

C

1 …

2 …

3 …

… … … … …

42 …

Observation matrix

P(  |      ) >

P(  |      )
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Fitting continuous distributions

• Since we are operating with continuous variables, we need to 

fit continuous probability functions to a 

discrete number of observations.

• If we assume the 1-dimensional 

data in this histogram is Normally 

distributed, we can fit a 

continuous Gaussian function 

simply in terms of the mean #
and variance $!.
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(Aside) Univariate (1D) Gaussians

• Also known as Normal distributions, %(#, $)

• ) *; #, $ =
"#$ %

!"# $
$%$

!&'

• The parameters we can modify are - = ., /(

• # = 0 * = ∫* 2 ) * 3* (mean)

• $! = 0 * − # ! = ∫ * − # !) * 3* (variance)

But we don’t have samples for all $…
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Maximum likelihood estimation

• Given data 5 = *), *!, … , ** , MLE produces an estimate of 

the parameters 78 by maximizing the likelihood, 9(5, 8):
78 = argmax

+
9(5, 8)

where ? @, - = A @; - = ∏,-)
* )(*,; 8).

• Since 9(5, 8) provides a surface over all -, in order to find the 

highest likelihood, we look at the derivative
C
C8
9 5, 8 = 0

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

• Estimate !:

" #, ! = & #; ! =(
!"#

$
&(*!; +) =(

!"#

$ exp −
*! − ! %
22%

232

log " #, ! = −
∑! *! − ! %

22%
− 8 log 232

9
9!
log " #, ! =

∑! *! − !
2%

= 0

! =
∑! *!
8

• Similarly, 2% =
∑! '!() "

$
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Multivariate Gaussians

• When data is d-dimensional, the 

input variable is

*⃗ = * 1 , * 2 , … , *[3]
the mean is

#⃗ = 0 *⃗ = # 1 , # 2 , … , #[3]
the covariance matrix is

Σ K, L = 0 * K * L − # K # L
and

) *⃗ =
exp − *⃗ − #⃗ ⊺Σ%) *⃗ − #⃗

2

2O
/
! Σ

)
!

!⊺ is the transpose of !
!&! is the inverse of !
! is the determinant of !
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Intuitions of covariance

• As values in Σ become larger, the Gaussian spreads out.

• (I is the identity matrix)

0 = 0 0
Σ = I

0 = 0 0
Σ = 0.6I

0 = 0 0
Σ = 2.0I
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Intuitions of covariance

• Different values on the diagonal result in different variances 

in their respective dimensions

Σ =
1 0
0 1

Σ =
2 0
0 0.6
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Non-Gaussian observations

• Speech data are generally not unimodal.

• The observations below are bimodal, so fitting one Gaussian 

would not be representative.
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Mixtures of Gaussians

• Gaussian mixture models (GMMs) are a weighted linear 

combination of ! component Gaussians, Γ), Γ!, … , Γ0 :

) *⃗ =R
1-)

0

) Γ1 )(*⃗|Γ1)
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Observation likelihoods

• Assuming MFCC dimensions are independent of one another, 

the covariance matrix is diagonal – i.e., 0 off the diagonal.

• Therefore, the probability of an observation vector given a 

Gaussian from slide 20 becomes

) *⃗|Γ2 =
exp −

1
2∑,-)

/ * K − #2 K !

Σ2[K]

2O
/
! ∏,-)

/ Σ2 [K]
)
!

• We imagine a GMM first chooses a Gaussian, then emits an 
observation from that Gaussian.
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Mixtures of Gaussians

• If we knew which Gaussian generated each sample, we could 

learn )(Γ1) with MLE, but that data is hidden, so we must 

use…

) *⃗ =R
1-)

0

) Γ1 )(*⃗|Γ1)
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Expectation-Maximization for GMMs

• If U3 = )(Γ2) and   V3 W4 = )(*5|Γ2),

)+ *5 = R
2-)

0

X2Y2(*5)

where - = U3, .3, Z3 for [ = 1. .!

• To estimate 8, we solve ]+ log 9 5, 8 = 0 where

log 9 5, 8 =R
5-)

6

log )+ *5 =R
5-)

6

log R
2-)

0

X2Y2 *5

‘weight’

‘component observation
likelihood’
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Expectation-Maximization for GMMs

• We differentiate the log likelihood function w.r.t . #2[`] and 

set this to 0 to find the value of #2 ` at which the likelihood 

stops growing.

C log 9(5, 8)
C#2[`]

=R
5-)

6
1

)+ *5

C
C#2 `

X2Y2(*5) = 0
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Expectation-Maximization for GMMs
• The expectation step gives us:

;* <+ = &(*,|Γ-)

? @* <+; A =
B-C- *,
&. *,

• The maximization step gives us:

D!- =
∑, & Γ- *,; + *,
∑, & Γ- *,; +

DΣ- =
∑, & Γ- *,; + *,

%

∑, & Γ- *,; +
− D!-

%

FB- =
1
H
I

,"#

/
& Γ- *,; +

Proportion of overall 
probability contributed by '

Recall from slide
13, MLE wants:

( =
∑! $!
+

," =
∑! $! − (

"

+
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Some notes…

• In the previous slide, the square of a vector, a⃗!, is 

elementwise (i.e., numpy.multiply)

• E.g., 2, 3, 4 ! = [4, 9, 16]

• Since Σ is diagonal, it can be represented as a vector.

• Can 
f
$2! =

∑& 8 Γ2 *5; 8 9&
$

∑& 8 Γ2 *5; 8
− f#2

!
become negative?

• No. 

• This is left as an exercise, but only if you’re interested.
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Speaker recognition

• Speaker recognition: n. the identification of a speaker 

among several speakers given only 

acoustics.

• Each speaker will produce speech according to different

probability distributions.

• We train a Gaussian mixture model for each speaker, 

given annotated data (mapping utterances to speakers).

• We choose the speaker whose model gives the highest 

probability for an observation.



Recipe for GMM EM

• For each speaker, we learn a GMM given all g frames of their 

training data.

1. Initialize: Guess + = B-, !-, Σ- for J = 1. .L
either uniformly, randomly, or by k-means 
clustering.

2. E-step: Compute C-(*,) and &(Γ-|*,; +).

3. M-step: Update parameters for B-, !-, Σ- as 
described on slide 21.
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SPEECH RECOGNITION
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Consider what we want speech to do

Put this 
there.

My hands are in 
the air.

Buy ticket...
AC490...

yes

Telephony

Dictation

Multimodal interaction

…
Can we just use GMMs?
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Aspects of ASR systems in the world

• Speaking mode: Isolated word (e.g., “yes”) vs. continuous

(e.g., “Hey Siri, ask Cortana for the weather”)
• Speaking style: Read speech vs. spontaneous speech;

the latter contains many dysfluencies

(e.g., stuttering, uh, like, …)

• Enrolment: Speaker-dependent (all training data from 

one speaker) vs. speaker-independent 

(training data from many speakers).

• Vocabulary: Small (<20 words) or large (>50,000 words).

• Transducer: Cell phone? Noise-cancelling microphone? 

Teleconference microphone?
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Speech is dynamic

• Speech changes over time.

• GMMs are good for high-level clustering, but they encode 

no notion of order, sequence, nor time.

• Speech is an expression of language.

• We want to incorporate knowledge of how phonemes and 

words are ordered with language models.
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Speech is sequences of phonemes

“open the pod bay doors”

open(podBay.doors);

We want to convert a series of (e.g.) MFCC 
vectors into a sequence of phonemes.

/ow p ah n dh ah p aa d b ey d ao r z/

(*)

(*) not really



CSC401/2511 – Spring 2021 32

Continuous HMMs (CHMM)

• A continuous HMM has observations that are distributed 

over continuous variables.

• Observation probabilities, Y,, are also continuous.

• E.g., here Y:(*⃗) tells us the probability of seeing the 

(multivariate) continuous observation *⃗ while in state 0.

b0 b1 b2
4.32957

2.48562

1.08139

…

0.45628

6⃗ =
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Defining CHMMs

• Continuous HMMs are very similar to discrete HMMs.

• h = {j), … , j;} : set of states (e.g., subphones)

• 5 = ℝ/ : continuous observation space

• Π = {O), … , O;} : initial state probabilities

• n = a,1 , K, L ∈ h : state transition probabilities

• p = Y, *⃗ , K ∈ h, *⃗ ∈ 5 : state output probabilities

(i.e., Gaussian mixtures) 

yielding

• q = {r:, … , r6}, r, ∈ h : state sequence

• s = ℴ:, … , ℴ6 , ℴ, ∈ 5 : observation sequence

+
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Using CHMMs

• As before, these HMMs are generative models that encode 

statistical knowledge of how output is generated.

• We train CHMMs with Baum-Welch (a type of Expectation-

Maximization), as we did before with discrete HMMs.

• Here, the observation parameters, Y, *⃗ , are adjusted 

using the GMM training ‘recipe’ from earlier.

• We find the best state sequences using Viterbi, as before.

• Here, the best state sequence gives us a sequence of 

phonemes
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Phoneme dictionaries

• How do we convert our phoneme sequence into words?

• There are many phonemic dictionaries that map words to 

pronunciations (i.e., lists of phoneme sequences).

• The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is 

popular.

• 127K words transcribed with the ARPAbet.

• Includes some rudimentary prosody markers.
…
EVOLUTION EH2 V AH0 L UW1 SH AH0 N
EVOLUTION(2) IY2 V AH0 L UW1 SH AH0 N 
EVOLUTION(3)  EH2 V OW0 L UW1 SH AH0 N 
EVOLUTION(4)  IY2 V OW0 L UW1 SH AH0 N 
EVOLUTIONARY  EH2 V AH0 L UW1 SH AH0 N EH2 R IY0

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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The noisy channel model for ASR

Source

A(u)

Language model
Channel

A(@|u)

Acoustic model
W′

Decoder

"′

#∗ Observed $

v∗ = argmax
=

)(5|v))(v)

Word 
sequence "

Acoustic 
sequence #

How to encode 7(9|;)?
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Putting it together

• How do we combine the language model, phonemic 

dictionary, and CHMM together? → Nest them!

• Full details are an aside – see Appendices and J&M 2nd Ed.

one

nahw



EVALUATING SPEECH RECOGNITION
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Evaluating ASR accuracy

• How can you tell how well an ASR system recognizes speech?
• E.g., if somebody said

Reference: how to recognize speech 
but an ASR system heard

Hypothesis: how to wreck a nice beach
how do we quantify the error?

• One measure is word accuracy: #CorrectWords/#ReferenceWords
• E.g., 2/4, above
• This runs into problems similar to those we saw with SMT.
• E.g., the hypothesis ‘how to recognize speech boing boing

boing boing boing’ has 100% accuracy by this measure.
• Normalizing by #HypothesisWords also has problems…
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Word-error rates (WER)

• ASR enthusiasts are often concerned with word-error rate 

(WER), which counts different kinds of errors that can be 

made by ASR at the word-level.

• Substitution error: One word being mistook for another

e.g., ‘shift’ given ‘ship’
• Deletion error: An input word that is ‘skipped’

e.g. ‘I Torgo’ given ‘I am Torgo’
• Insertion error: A ‘hallucinated’ word that was not in 

the input.
e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’
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Levenshtein distance

Allocate matrix =[? + 2,A + 2] // where > is the number of reference words 

// and ? is the number of hypothesis words

Add <s> to beginning of each sequence, and </s> to their ends.
Fill [0:end] along the first row and column.
for C ≔ 1. . ? + 1 // #ReferenceWords

for E ≔ 1. .A + 1 // #Hypothesis words

=[C, E] ≔ min( @ A − 1, E + 1, // deletion
@ A − 1, E − 1 , // if the A!" reference word  and 

// the E!" hypothesis word match
@ A − 1, E − 1 + 1, // if they differ, i.e., substitution
@ A, E − 1 + 1 ) // insertion

Return 100× = ?,A /? // WER

• The Levenshtein distance (and WER) is straightforward to 
calculate using dynamic programming
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Levenshtein distance – initialization

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1

to 2

recognize 3

speech 4

</s> 5

The value at cell (., 0) is the minimum number of errors
necessary to align . with 0.
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Levenshtein distance

• @ 1,1 = min KLMN + 1, (0), RSTUL + 1 = 0 (match)

• We put a little arrow in place to indicate the choice.

• ‘Arrows’ are normally stored in a backtrace matrix.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0

to 2

recognize 3

speech 4

</s> 5
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Levenshtein distance

• We continue along for the first reference word…

• These are all insertion errors

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2

recognize 3

speech 4

</s> 5
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Levenshtein distance

• Since recognize ≠ wreck, we have a substitution error.

• At some points, you have >1 possible path as indicated.

• We can prioritize types of errors arbitrarily.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4

</s> 5
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Levenshtein distance

• And we finish the grid.

• There are @ W>X, W>X = 4 word errors and a WER of ⁄4 4 = 100%.

• WER can be greater than 100% (relative to the reference).

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4 3 2 2 2 3 4 5

</s> 5 4 3 3 3 3 4 4
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Levenshtein distance

• If we want, we can backtrack using our arrows (in a backtrace matrix).

• Here, we estimate 2 substitution errors and 2 insertion errors.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4 3 2 2 2 3 4 5

</s> 5 4 3 3 3 3 4 4



NEURAL SPEECH RECOGNITION
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Remember Viterbi

1. 13

1

Observations, ℴ#

1. 14

1

5# # = max
$

5$ # − 9 :$# ;#(ℴ%)

?# # = argmax
$

5$ # − 9 :$#

The best path to state O0 at time P, 90 P , 
depends on the best path to each 

possible previous state, 9! P − 1 , and 
their transitions to Q, R!0

ℴ& = Bℎ.D ℴ' = EFGHI ℴ" = JGDB

1

1
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Do these probabilities need to 
be GMMs?
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Replacing GMMs with DNNs

• Obtain C0 * = S(<|T1) with a neural network. 
• Instead of learning a continuous distribution directly, we can use 

Bayes’ rule:

S < T1 =
S T1 < ⋅ V(*)

V(s0)

ℎ(

$(
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Replacing GMMs with DNNs

• The probability of a word sequence X comes loosely from 
7 9|;

≈ max
K!⋯K"

N

MN!

O

7 OM|OM&! 7 6M|OM ≈ max
K!⋯K"

N

MN!

O

7 OM|OM&!
7(OM|6M)

7(OM)

HMM

ℎ(

$(

DNN
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Training the DNN

• Maximize ) r5 *5
• The order which we transition through states (≈ phonemes) is 

known by the transcription (ignoring alternate pronunciations)

• At what frames these transitions happen are unknown

• ∴ r5 is unknown!

• Solution: bootstrapping

• Use another model to determine r5
• Often argmax\'…) )]^00 r)…6 , *)…6 from GMM-HMM

• )]^00 r5 r5%) often stolen as well

• … and )(r5)
• Other, advanced methods exist
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Hybrid HMM and DNN

G Hinton et al (Nov 2012). “Deep neural networks for acoustic modeling in speech recognition”, IEEE Signal 

Processing Magazine, 29(6):82–97. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526
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What are these DNNs learning?

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding

how deep belief networks perform acoustic modelling. In ICASSP (pp. 6–9).

• t-SNE (stochastic neighbour embedding using t-distribution) 

visualizations in 2D (colours=speakers).
• Deeper layers encode information 

about the segment

Mel S. 1st layer

8th layer
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What are these DNNs learning?

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck 

features for ASR. Interspeech, 825–829.

• DNN trained to 
classify phonemes
• t-SNE visualizations 

of hidden layer.
• Lower layers detect 

manner of 
articulation
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End-to-end neural networks

• Neural networks are typically trained at the frame level.
• This requires a separate training target for every frame, which in turn requires the 

alignment between the audio and transcription sequences to be known.

• However, the alignment is only reliable once the classifier is trained. 

• “End-to-end” ≈ an objective function that allows sequence 

transcription without requiring prior alignment between the 

input 5 (frames of audio) and target y (output strings) sequences with 

arbitrary lengths, i.e.

) y 5
• Target tokens can be words, sub-words, or just characters

• Two popular choices of ) y 5 :
1. Seq2seq (encoder/decoder, transformers)
2. Connectionist Temporal Classification
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Seq2seq architectures

• The same architectures we saw in NMT work for ASR!
• Replace source embedding vector !! with Mel 

spectrum vector
• Replace target sequence " with transcription 

sequence #

…

That’s it.
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Aside – Listen, Attend, and Spell

https://arxiv.org/abs/1508.01211

https://arxiv.org/abs/1508.01211
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Connectionist Temporal Classification

See: https://distill.pub/2017/ctc/

• Consider alignment:

• Not every input step needs an output. How can we collapse alignments 
for multi-character output (like, ‘his’ vs ‘hiss’)?
• CTC introduces ‘blank token’ P as a placeholder

https://distill.pub/2017/ctc/
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Connectionist Temporal Classification

See: https://distill.pub/2017/ctc/

This is computed 
by an RNN

https://distill.pub/2017/ctc/
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Connectionist Temporal Classification

See: https://distill.pub/2017/ctc/

https://distill.pub/2017/ctc/
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Connectionist Temporal Classification

See: https://distill.pub/2017/ctc/

https://distill.pub/2017/ctc/
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Connectionist Temporal Classification

See: https://distill.pub/2017/ctc/

• It is still expensive to consider all possible alignments, and it is naïve to 
merely pick the max probability at each time step.
• We therefore introduce a beam search (like in NMT)

https://distill.pub/2017/ctc/
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End-to-end neural networks

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JMLR 

Workshop Conf Proc, 32:1764–1772. 

DNN/HMM
hybrid

http://jmlr.org/proceedings/papers/v32/graves14.pdf
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State-of-the-art?

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. 

Coates, A. Ng ”Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412.5567v2, 2014.
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State-of-the-art?

• Input: spectrogram
• Output: characters (incl. space 

and null characters)

• No phonemes or vocabulary 
means no OOV words.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. 

Coates, A. Ng ”Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412.5567v2, 2014.
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State-of-the-art?

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. 

Coates, A. Ng ”Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412.5567v2, 2014.



Summary

• We’ve seen how to:
• extract useful speech features with Mel-scale filter 

banks

• cluster multi-modal speech data with Gaussian mixture 

models.

• recognize speech with hidden Markov models and 

neural networks.

• Recognize speech using only end-to-end neural 

networks.

• evaluate ASR performance with Levenshtein distance.

• Next, we’ll see how to synthesize artificial speech.
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APPENDICES
(EVERYTHING THAT FOLLOWS IS AN ASIDE. NOT ON THE 

EXAM.)
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APPENDIX: CEPSTRUM AND MFCCS
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Source and filter
• The acoustics of speech are 

produced by a glottal pulse 

waveform (the source) passing 

through a vocal tract whose shape 

modifies that wave (the filter).

• The shape of the vocal tract is more 

important to phoneme recognition.

• We want to separate the source 
from the filter in the acoustics.
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Source and filter
• Since speech is assumed to be the output of a linear time 

invariant system, it can be described as a convolution.
• Convolution, 6 ∗ R, is beyond the scope of this course, but can 

be conceived as the modification of one signal by another.

• For speech signal 6[?], glottal signal S ? , and vocal tract 
transfer T[?] with spectra 9[U], V[U], and W[U], respectively :

* ` = z ` ∗ | `
5 } = ~ } � }

log5[}] = log ~ } + log �[}]

We’ve separated the 

source and filter 

into two terms!
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The cepstrum
• We separate the source and the filter by pretending the log 

of the spectrum is actually a time domain signal.
• the log spectrum log 9[U] is a sum of the log spectra of the

source and filter, i.e., a superposition; 
finding its spectrum will allow us to isolate these components.

• Cepstrum: n. the spectrum of the log of the spectrum.
• Fun fact: ‘ceps’ is the reverse of ‘spec’.

Instead of ‘filters’ we have ‘lifters’…

log log log
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The cepstrum

Spectrum Log
spectrum Cepstrum

• The domain of the cepstrum is quefrency (a play on the 

word ‘frequency’). 
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The cepstrum

Pictures from 

John Coleman  

(2005)

This is due to the
vocal tract shape

This is due to the
glottis

Spectrum

Cepstrum
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Mel-frequency cepstral coefficients

• Mel-frequency cepstral coefficients (MFCCs) are a popular 

representation of speech used in ASR.

• They are the spectra of the logarithms of the Mel-scaled 

filtered spectra of the windows of the waveform.

window DFT Mel filter-
bank log DFTSpeech

signal MFCC
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MFCCs in practice
• An observation vector of MFCCs often consists of

• The first 13 cepstral coefficients (i.e., the first 13 

dimensions produced by this method), 

• An additional overall energy measure,

• The velocities (C) of each of those 14 dimensions,
• i.e., the rate of change of each coefficient at a given time

• The accelerations (CC) of each of original 14 dimensions.

• The result is that at a timeframe Å we have an observation 

MFCC vector of (13+1)·3 = 42 dimensions.

• This vector is what is used by our ASR systems…
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Advantages of MFCCs
• The cepstrum produces highly uncorrelated features (every 

dimension is useful).

• This includes a separation of the source and filter.

• Historically, the cepstrum has been easier to learn than the 

spectrum for phoneme recognition.

• “tl;dr: Use Mel-scaled filter banks if the [ML] algorithm is not 
susceptible to highly correlated input. Use MFCCs if the [ML] algorithm 
is susceptible to correlated input.” - Haytham Fayek
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https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
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Phoneme HMMs

• Phonemes change over time – we model these dynamics by 

building one HMM for each phoneme.

• Tristate phoneme models are popular.

• The centre state is often the ‘steady’ part.

tristate phoneme model (e.g., /oi/)

b0 b1 b2
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Phoneme HMMs

• We train each phoneme HMM using 

all sequences of that phoneme. /iy/

Phoneme HMMs

…

...
64 85 ae
85 96 sh
96 102 epi
102 106 m
...

Time, #
… 85 … 96 …

M
FC

C

1 … … …

2 … … …

3 … … …

… … … … … …

42 … … …

/ih/

/eh/

/s/

/sh/
annotation observations

J' J" phn
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Putting it together
“open the pod bay doors”

Language model Acoustic model
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Combining models

• We can learn an N-gram language model from word-level 

transcriptions of speech data.

• These models are discrete and are trained using MLE.

• Our phoneme HMMs together constitute our acoustic model.

• Each phoneme HMM tells us how a phoneme ‘sounds’.

• We can combine these models by concatenating phoneme 

HMMs together according to a known lexicon.

• We use a word-to-phoneme dictionary.
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Combining models

• If we know how phonemes combine to make words, we can 

simply concatenate together our phoneme models by 

inserting and adjusting transition weights.

• e.g., Zipf is pronounced /z ih f/, so…

(It’s more complicated: 1) the HMMs are often more complex, 
2) they often represent phonemes in context of other phonemes
3) … )
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Concatenating phoneme models

From Jurafsky &

Martin text
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Bigram models

From Jurafsky &

Martin text



APPENDIX: OTHER NEURAL ARCHITECTURES AND 

IMPLEMENTATIONS
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End-to-end hybrids

Bengio, S., & Heigold, G. (2014). Word Embeddings for Speech Recognition, Interspeech

• Get word boundaries from 
some external tool.

• Train word/characters and 
acoustics simultaneously.

• Obtain up to 0.11% 
improvement in error rates
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Convolutional Neural Networks

• Spectrograms are kinds of images, so let’s use the kinds of 

neural networks used in computer vision. 
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The open-source Kaldi ASR

• Kaldi is the de-facto open-source ASR toolkit: 

http://kaldi-asr.org
• It has pretrained models, including the ASpIRE chain model trained 

on Fisher English, augmented with impulse responses and noises to 
create multi-condition training.

• My favourite incarnation uses I-Vectors to account for the speaker.
• It often (anecdotally) performs better than Google’s SpeechAPI. 
• It is originally in C++, but a wrapper (PyTorch-Kaldi) exists in the 

much easier Python.
• Pro-sanity tip: don’t read news about its progenitor.

http://kaldi-asr.org/
http://kaldi-asr.org/models.html
https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi
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Keeping up

https://arxiv.org/pdf/1712.01769.pdf

https://github.com/syhw/wer_are_we

LAS, Transformers, and the RNN-T (extends CTC) are
reaching state of the art, e.g.

For HOT news and architectures, see

https://arxiv.org/pdf/1712.01769.pdf
https://github.com/syhw/wer_are_we
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Speaker adaptation

With notes from Hung-yi Lee

• Given a neural ASR system trained with many speakers, we 

want to adapt to the voice of a new individual.

• We know how to do this with HMMs 

• e.g., with interpolation, or (aside) with MAP or MLLR training.

• DNNs need lots of data to be useful, but we can adapt: 
• Conservative: re-train whole DNN, with some constraints
• Transformative: only retrain one layer (or a few)
• Speaker-aware: do not really train the parameters
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Conservative speaker adaptation

ℎ(

$(

All of Amazon or Facebook’s secret 
recordings of billions of people in the 

bathroom 

ℎ(

$(

Tiny database of you 
in the bathroom

1. initialize

2. Stopping 
criterion

• Stopping criteria 
can exist on output, 
parameters, or 
meta-aspects of 
training
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Transformative speaker adaptation

ℎ′(

ℎ(

$(

ℎ())

original

ℎ′(

ℎ(

$(

ℎ())

adapted

ℎ( Tiny database of you 
in the bathroom

• Insert a new layer.
• Keeping all other 

parameters fixed, train the 
new ones to normalize 
speaker information.

• There are many 
alternatives…
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Speaker-aware training

Data of 
Speaker 1 

Data of 
Speaker 2 

Data of 
Speaker 3 

Speaker 
vector

All of Amazon or Facebook’s secret 
recordings of billions of people in the 

bathroom 

Senior, A., & Lopez-Moreno, I. (2014). Improving DNN speaker independence with I-vector inputs. ICASSP, 

225–229. https://doi.org/10.1109/ICASSP.2014.6853591

• Fixed length low 
dimension vectors, 
obtained in a 
variety of ways.

• Note we can 
segment things by 
recording device, 
noise, etc.

• This can be used to 
remove the 
channel effect.

https://doi.org/10.1109/ICASSP.2014.6853591
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Speaker-aware training

Speaker 1

Speaker 2

Training data:

Testing data:

Acoustic features augmented with speaker 
vectors

All speakers use the same DNN model
Different speakers augmented by different features

train

test

ℎ()

ℎ(

$( BDQRIQF(

ℎ())
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Clustering

• Quantization involves turning possibly multi-variate and 

continuous representations into univariate discrete symbols.

• Reduced storage and computation costs.

• Potentially tremendous loss of information.

X

• Observation X is in Cluster One, 

so we replace it with 1.

• Clustering is unsupervised

learning.

• Number and form of 

clusters often unknown.

1

2

3
4
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Aspects of clustering

• What defines a particular cluster?

• Is there some prototype representing each cluster?

• What defines membership in a cluster?

• Usually, some distance metric 3(*, Ç) (e.g., Euclidean distance).

• How well do clusters represent unseen data?

• How is a new point assigned to a cluster?

• How do we modify that cluster as a result?
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K-means clustering

• Used to group data into É clusters, {Ñ), … , Ñ`}.

• Each cluster is represented by the mean of its assigned data.
• (sometimes it’s called the cluster’s centroid).

• Iterative algorithm converges to local optimum:
1. Select X initial cluster means {0!, … , 0S} from among data points.
2. Until (stopping criterion),

a) Assign each data sample to closest cluster
6 ∈ ]T C$ ^ 6, 0T ≤ ^ 6, 0U , ∀C ≠ E

b) Update X means from assigned samples
0T = b 6 ∀ 6 ∈ ]T, 1 ≤ C ≤ X
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K-means example (! = #)

• Initialize with a random selection of 3 data samples.

• Euclidean distance metric 3(*, #)
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K-means stopping condition

• The total distortion, Ö, is the sum of squared error,

Ö =R
,-)

`

R
9∈]*

* − #, !

• Ö decreases between `5b and ` + 1 5b iteration.

• We can stop training when Ö falls below some threshold Ü.

1 −
Ö ` + 1
Ö `

< Ü
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Acoustic clustering example

• 12 clusters of spectra, after training.
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Number of clusters

• The number of true clusters is unknown.

• We can iterate through various values of É.

• As É approaches the size of the data, Ö approaches 0…
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Hierarchical clustering

• Hierarchical clustering clusters data into hierarchical ‘class’ 

structures.

• Two types: top-down (divisive) or bottom-up (agglomerative).

• Often based on greedy formulations.

• Hierarchical structure can be used for hypothesizing classes.
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Divisive clustering

• Creates hierarchy by successively splitting clusters into 

smaller groups.

uniformNon-uniform
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Agglomerative clustering

• Agglomerative clustering starts with % ‘seed’ clusters and 

iteratively combines these into a hierarchy.

• On each iteration, the two most similar clusters are merged

together to form a new meta-cluster.

• After % − 1 iterations, the hierarchy is complete.

• Often, when the similarity scores of new meta-clusters are 

tracked, the resulting graph (i.e., dendogram) can yield 

insight into the natural grouping of data.
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Dendogram example

12

3

4

5
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Speaker clustering

• 23 female and 53 male speakers from TIMIT.

• Data are vectors of average F1 and F2 for 9 vowels.

• Distance 3(Ñ, , Ñ1) is average of distances between members.
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Acoustic-phonetic hierarchy

(this is basically an upside-down dendogram)
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Word clustering

numbers

Time,
price

modifiers
city

names


