
CSC401/2511 – Spring 2020

Hidden Markov models
CSC401/2511 – Natural Language Computing – Winter 2021

Lecture 7 Serena Jeblee, Sean Robertson and Frank Rudzicz

University of Toronto

CSC401/2511 – Winter 2021

Observable Markov model

• We’ve seen this type of model:
• e.g., consider the 7-word vocabulary:
{"ℎ$%, %'"", (')%, *+,(-, ",((.+,),/ℎ.+, /,%"}

• What is the probability of the sequence
"ℎ$%, "ℎ$%, %'"", "ℎ$%, /,%" ?

• Assuming a bigram model (i.e., 1st-order Markov),
1 "ℎ$%|<s> 1 "ℎ$% "ℎ$% 1 %'"" "ℎ$%
6 1 "ℎ$% %'"" 1(/,%"|"ℎ$%)

2

CSC401/2511 – Spring 2020

Observable Markov model

• This can be conceptualized
graphically.

• We start with 9 states,
"!, "", … , "# that represent
unique observations in the
world.

• Here, 9 = 7 and each
state represents one of the
words we can observe.

3

CSC401/2511 – Spring 2020

Observable Markov model

• We have discrete
timesteps, / = 0, / = 1,…

• On the /$% timestep the
system is in exactly one of
the available states, ?&.
• @$ ∈ {"!, "", … , "#}

• We could start in any state.
The probability of starting
with a particular state " is
1 @' = " = B(C)

! "! = $ℎ&' = (($ℎ&')

4

CSC401/2511 – Spring 2020

Observable Markov model

• At each step we must
move to a state with some
probability.

• Here, an arrow from @$ to
@$(! represents
1(@$(!|@$)

• 1 "ℎ$% "ℎ$%
• 1 /,%" "ℎ$%
• 1 %'"" "ℎ$%
• 1 *+,(- "ℎ$% = 0

5

CSC401/2511 – Spring 2020

Observable Markov model

• Probabilities on all outgoing
arcs must sum to 1.

• 1 "ℎ$% "ℎ$% +
1 /,%" "ℎ$% +
1 %'"" "ℎ$% = 1

• 1 "ℎ$% /,%" +
1 /,%" /,%" +
1),/ℎ.+ /,%" = 1

• …

6

CSC401/2511 – Spring 2020

Using the graph

Random walk
Generate sequences by
transitioning between states.

Observation likelihood
Given a path, build its

probability.

7

CSC401/2511 – Spring 2020

A multivariate system

• What if the probabilities of observing words depended only
on some other variable, like mood?

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

8

CSC401/2511 – Spring 2020

A multivariate system

• What if that variable changes over time?
• e.g., I’m happy one second and

disgusted the next.
• Here, state ≡ mood

observation ≡ word.

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

9

• Imagine you have access to my emotional state somehow.

• All your data are completely observable at every timestep.

• E.g.,

CSC401/2511 – Spring 2020

Observable multivariate systems

t 0 1 2 …

state …
word mother frock soccer …

≡
/01ℎ34, 64078, 907734 , ∗ , ,∗ ,

! "ℎ$%, %'"" , ∗ ,∗ = !(+; = ∗)! "ℎ$% ∗ ! ∗ | ∗ !(%'""| ∗)

• What is the probability of a sequence of words and states?
• ! "!:# , $!:# = ! $!:# ! "!:# $!:# ≈ ∏$%!

!($$|$$&')! "$ $$

CSC401/2511 – Spring 2020

Observable multivariate systems

w P(w)
ship …
pass …
camp …
frock …
soccer …
mother …
tops …

• e.g.,

11

• Q: How do you learn these probabilities?
• ! "!:# , $!:# ≈ ∏$%!

!($$|$$&')! "$ $$

CSC401/2511 – Spring 2020

Observable multivariate systems

w P(w)
ship …
pass …
camp …
frock …
soccer …
mother …
tops …

• A: When all data are observed, basically the same as before.
• ! $$ $$&' = ((*"#$*")

((*"#$)
is learned with MLE from training data.

• ! "$ $$ = ((,",*")
((*")

is also learned with MLE from training data.

12

• Q: What if you don’t know the states during testing?
• e.g., compute 1("ℎ$%, "ℎ$%, %'"", *+,(-)

• Q: What if you don’t know the states during training?

CSC401/2511 – Spring 2020

Hidden variables

MD DT NN VB …

ship ship pass frock

13

CSC401/2511 – Spring 2020

Examples of hidden phenomena

• We want to represent surface (i.e., observable)
phenomena as the output of hidden underlying systems.
• e.g.,
• Words are the outputs of hidden parts-of-speech,
• French phrases are the outputs of hidden English phrases,
• Speech sounds are the outputs of hidden phonemes.

• in other fields,
• Encrypted symbols are the outputs of hidden messages,
• Genes are the outputs of hidden functional relationships,
• Weather is the output of hidden climate conditions,
• Stock prices are the outputs of hidden market conditions,
• …

14

CSC401/2511 – Spring 2020

Definition of an HMM

• A hidden Markov model (HMM) is specified by the
5-tuple {",$, Π, &, '}:
• F = {"!, … , "#} : set of states (e.g., moods)
• G = {H!, … , H)} : output alphabet (e.g., words)

• Π = {J!, … , J#} : initial state probabilities
• K = '*+ , $, L ∈ F : state transition probabilities
• M = N* H , $ ∈ F, H ∈ G : state output probabilities

yielding
• O = {@', … , @,-!}, @* ∈ F : state sequence
• P = ℴ', … , ℴ,-! , ℴ* ∈ G : output sequence

+

15

CSC401/2511 – Spring 2020

A hidden Markov production process

• / ≔ 0
• Start in state @' = "* with probability J*
• Emit observation symbol ℴ' = H. with probability N*(ℴ')
• While (not forever)
• Go from state @$ = "* to state @$(! = "+ with probability '*+
• Emit observation symbol ℴ$(! = H. with probability
N+(ℴ$(!)
• / ≔ / + 1

• An HMM is a representation of a process in the world.
• We can synthesize data, as in Shannon’s game.

• This is how an HMM generates new sequences:

16

CSC401/2511 – Spring 2020

Fundamental tasks for HMMs

1. Given a model with particular parameters ! = Π, %, & ,
how do we efficiently compute the likelihood of a
particular observation sequence, '(); !)?

We previously computed the probabilities of word sequences
using N-grams.

The probability of a particular sequence is usually useful as a
means to some other end.

17

CSC401/2511 – Spring 2020

Fundamental tasks for HMMs

2. Given an observation sequence) and a model !,
how do we choose a state sequence , = {.+, … , .,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.

18

CSC401/2511 – Spring 2020

Fundamental tasks for HMMs

3. Given a large observation sequence), how do we
choose the best parameters ! = Π, %, & that explain
the data)?

This is the task of .

As before, we want our parameters to be set so that the
available training data is maximally likely,

But doing so will involve guessing unseen information.

19

CSC401/2511 – Spring 2020

Task 1: Computing !(#; %)
• We’ve seen the probability of a joint sequence of

observations and states:

'), ,; ! = ') ,; ! ' ,; !
= 1/<2/< ℴ+ 4/</=2/= ℴ. 4/=/>2/> ℴ0 …

• To get the probability of our observations without seeing
the state, we must sum over all possible state sequences:

'); ! = ∑1'), ,; ! = ∑1') ,; ! ' ,; ! .

22

CSC401/2511 – Spring 2020

Computing !(#; %) naïvely

• To get the total probability of our observations, we could
directly sum over all possible state sequences:

'); ! = ∑1') ,; ! ' ,; ! .

• For observations of length 6, each state sequence involves
26 multiplications (1 for each state transition,
1 for each observation, 1 for the start state, minus 1).
• There are up to 8, possible state sequences of length 6

given 8 states.
∴ ~ 1 + 6 + 6 − 1 > 8, multiplications

23

CSC401/2511 – Spring 2020

Computing !(#; %) cleverly

• To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results.

• We make a trellis which is an array of states vs. time.
• The element at (?, @) is A2 B

the probability of being in state ? at time @
after seeing all observations to that point:
'(ℴ3:5, .5 = C6; !)

24

CSC401/2511 – Spring 2020

Trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 = 2

B%!%"C%" ℴ"

B%#%$C%$ ℴ$

25

CSC401/2511 – Spring 2020

Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 = 2

26

CSC401/2511 – Spring 2020

Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 = 2

27

CSC401/2511 – Spring 2020

Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 = 2

28

CSC401/2511 – Spring 2020

Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 =2

Notice that I already computed a

path through this node

29

CSC401/2511 – Spring 2020

Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of

being in state 9#
at time 1 =2

Notice that I already computed a

path through this node

Each path

through this node

will have

probability

E … B%"%$C%$ ℴ$

∑E … = G$(1)

30

CSC401/2511 – Spring 2020

AND SO ON…

31

CSC401/2511 – Spring 2020

Trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

To compute the probabilities of
the black node and the yellow
node, I need (among others) the
probabilities of the orange node
and the purple node:

I compute once, and save them.

32

CSC401/2511 – Spring 2020

The Forward procedure

• To compute
D6 @ = '(ℴ+:5, .5 = C6; !)

we can compute D8(@ − 1) for possible previous states C8,
then use our knowledge of 486 and 26(ℴ5)

• We compute the trellis left-to-right (because of the
convention of time) and top-to-bottom (‘just because’).

• Remember: ℴ5 is fixed and known.
D6(@) is agnostic of the future.

33

CSC401/2511 – Spring 2020

The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (@ = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ @ < 6).

• Conclusion: Sum over the nodes in the last
column of the trellis (@ = 6 − 1).

34

CSC401/2511 – Spring 2020

Initialization of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

!J 0 ≔ $JN! ℴ" ,
& ≔ 1. .)

(Probability of starting in
state ! and reading the first

word there)

35

CSC401/2511 – Spring 2020

Induction of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

!K * + 1 ≔ ,
JLM

N

!J * -JK.K ℴOPM ,

for 3 ≔ 1. .), * ≔ 0. . (5 − 2)

(Probability of getting to state " at
time # + 1)

36

CSC401/2511 – Spring 2020

Induction of Forward procedure

!!
"! #

1 1 + 1

!"
"" #

!#
"# #

!$
"$ # R&

S& T + U

B#'C'(ℴ()")

B"' C' (ℴ()")B$' C' (ℴ()")

B!'
C'(ℴ

()"
)

37

CSC401/2511 – Spring 2020

Conclusion of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Sum over all possible final
states.

& ';) =+
$%'

.
,$(. − 1)

38

CSC401/2511 – Spring 2020

The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

/01ℎ34 64078 9ℎVW
We need initial state probabilities
9 and transition probabilities :XY

= 0.80

= 0.20

= 0

0.4

0.1

0.80.2

1.0
0.5

39

CSC401/2511 – Spring 2020

The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Initialization

Compute the probability of starting in state
$ and reading the first word there

S* Z ≔ *%! &"

' (= (. +(×(. -(= (. (+

' (= (. .(×(. (/ = (. (-+

' (= (×(. (0 = (

0.08

0.018

0

/01ℎ34 64078 9ℎVW

40

CSC401/2511 – Spring 2020

The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Induction

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to
state j at time t+1

G' 1 + 1 ≔]
+,"

!
G+ 1 B+'C' ℴ()"

' 1 + - = (. (+ (. 3 (. 4
+ (. (-+ ((. 4
+ (((. 4
= (. (-/.

0.08

0.018

0

0.0192

/01ℎ34 64078 9ℎVW

41

CSC401/2511 – Spring 2020

The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Induction

Iteratively compute the rest of the nodes in
the trellis; i.e., the probability of getting to
state j at time t+1

G' 1 + 1 ≔]
+,"

!
G+ 1 B+'C' ℴ()"

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

/01ℎ34 64078 9ℎVW

42

CSC401/2511 – Spring 2020

The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

Conclusion

Sum over all possible final states

5 6;8 =9
!#$

%
:!(< − -)

? @; A
= 0.00076 + 0.00283 + 0.0048
= (. ((+I/

/01ℎ34 64078 9ℎVW

43

CSC401/2511 – Spring 2020

The Forward procedure

• The naïve approach needed 26 > 8, multiplications.

• The Forward procedure (using dynamic programming)
needs only 2806 multiplications.

• The Forward procedure gives us '(); !).

• Clearly, but less intuitively, we can also compute the trellis
from back-to-front, i.e., backwards in time…

44

CSC401/2511 – Spring 2020

Remember the point

• The point was to compute the equivalent of

'); ! =H
1

'(), ,; !)

where
'), ,; ! = ') ,; ! ' ,; !

= 1/<2/< ℴ+ 4/</=2/= ℴ. 4/=/>2/> ℴ0 …

The Forward algorithm stores all possible 1-state sequences (from the
start), to store all possible 2-state sequences (from the start), to store all
possible 3-state sequences (from the start)…

G+ 0
G+ 1
G+ 2

45

CSC401/2511 – Spring 2020

Remember the point

• But, we can compute these factors in reverse
; <,=; ? = ; < =; ? ; =; ?

= $^! ….^"#$ ℴ_`a -^"#$^"#%.^"#% ℴ_`b -^"#%^"#&.^"#& ℴ_`M

We can still deal with sequences that evolve forward in time, but simply
store temporary results in reverse…

c+ ? − 2

c+ ? − 3
c+ ? − 4

46

CSC401/2511 – Spring 2020

The Backward procedure

• In the ?, @ 59 node of the trellis, we store
I6 @ = '(ℴ5:.:,-.|ℴ+:5, .5 = C6; !)

= '(ℴ5:.:,-.|.5 = C6; !)

which is computed by summing probabilities on outgoing
arcs from that node.

I6 @ is the probability of starting in state ? at time @ then
observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.

47

CSC401/2511 – Spring 2020

Step 1: Backward initialization
St

at
e

Time, 7

9!
0

9"

9#

9$

? − 3

1

1

1

? − 1? − 2

BJ 5 − 1 ≔ 1,
& ≔ 1. .)

(We’ll see why, soon)

48

CSC401/2511 – Spring 2020

Step 2: Backward induction
St

at
e

Time, 7

9!
0

9"

9#

9$

1

1

1

? − 1

BJ * =,
KLM

N

-JKCY DTPU BK * + 1 ,

3 ≔ 1. .), * ≔ 5 − 2 . . 0

(Probability of being in state ! at
time #, then reading everything

to follow)
? − 3 ? − 2

49

CSC401/2511 – Spring 2020

Step 3: Backward conclusion
St

at
e

Time, 7

9!
0

9"

9#

9$

? − 1

Sum over all possible
initial states.

& ';)

=+
$%'

.
1$2$(ℴ!)4$(0)

? − 3 ? − 2

50

CSC401/2511 – Spring 2020

The Backward procedure

• Initialization
I6 6 − 1 = 1, $ ≔ 1. . 9

• Induction
I6 @ = ∑8;.< 46828 ℴ5:. I8 @ + 1 , $ ≔ 1. . 9

/ ≔ T − 2. . 0

• Conclusion
1 P; X = ∑!JK

L J!N!(ℴ")Z!(0)

51

CSC401/2511 – Spring 2020

The Backward procedure – so what?

• The combination of Forward and Backward procedures
will be vital for solving parameter re-estimation,
i.e., training.

• Generally, we can combine D and I at any point in time to
represent the probability of an entire observation
sequence…

52

CSC401/2511 – Spring 2020

Combining ! and "
'), .5 = ?; ! = D6 @ I6 @

∴ '); ! =H
6;.

<

D6 @ I6(@)

9!
0 1 2

9"

9#

9$

? − 1

This requires
the current
word to be
incorporated by
!J * , but not
BJ * .

This isn’t merely

for fun – it will

soon become

useful…

53

CSC401/2511 – Spring 2020

Fundamental tasks for HMMs

2. Given an observation sequence) and a model !,
how do we choose a state sequence ,∗ = {.+, … , .,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.

54

CSC401/2511 – Spring 2020

Task 2: Choosing #∗ = {&"…&#$%}
• The purpose of finding the best state sequence K∗ out of

all possible state sequences , is that it tells us what is
most likely to be going on ‘under the hood’.

• With the Forward algorithm, we didn’t care about specific
state sequences – we were summing over all possible state
sequences.

55

CSC401/2511 – Spring 2020

Task 2: Choosing #∗ = {&"…&#$%}
• In other words,

,∗ = argmax
1

'(), ,; !)

where

'), ,; ! = 1/<2/< ℴ+ Q
5;.

,-.

4/fg=/f2/f ℴ5

56

CSC401/2511 – Spring 2020

Why choose #∗ = {&"…&#$%}?

• Recall the purpose of HMMs:
• To represent multivariate systems where some variable is

unknown/hidden/latent.

• Finding the best hidden-state sequence 6∗ allows us to:
• Identify unseen parts-of-speech given words,
• Identify equivalent English words given French words,
• Identify unknown phonemes given speech sounds,
• Decipher hidden messages from encrypted symbols,
• Identify hidden relationships from gene sequences,
• Identify hidden market conditions given stock prices,
• …

57

CSC401/2511 – Spring 2020

Example – PoS state sequences

• Will/MD the/DT chair/NN chair/?? the/DT
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)

58

CSC401/2511 – Spring 2020

Recall

• Observation likelihoods depend on the
state, which changes over time

• We cannot simply choose the state
that maximizes the probability of
,M without considering the state
sequence.

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

59

CSC401/2511 – Spring 2020

The Viterbi algorithm

• The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

• We define the probability of the most probable path
leading to the trellis node at (state ?, time @) as

V2 B = max
/<…/fg=

'(.+….5-., ℴ+…ℴ5, W? = X2; !)

• Y2(B): The best possible previous state,
if If I’m in state ? at time @.

60

CSC401/2511 – Spring 2020

Viterbi example

• For illustration, we assume a
simpler state-transition
topology:

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

C9

C@

CA

0.4

0.50.1

0.80.21.0

61

CSC401/2511 – Spring 2020

Step 1: Initialization of Viterbi

• Initialize with [! 0 = J!N!(ℴ") and \! 0 = 0 for all states.

\-h-(ℴ.)
Z

i: max probability
j: backtrace

Time, 7
0 1 2

\/h/(ℴ.)
Z

\0h0(ℴ.)
Z

62

CSC401/2511 – Spring 2020

Step 1: Initialization of Viterbi

• For example, let’s assume
JN = 0.8, JO = 0.2 and P = "ℎ$%, *+,(-, /,%"

Z. m n Z. U
Z

i: max probability
j: backtrace

Observations, ℴ$

Z. o n Z. p
Z

Z n Z. oq
Z

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

63

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

Z. Zr
Z

i& T = max
*

i* T − U u*& h&(ℴ2)

v& T = argmax
*

i* T − U u*&

The best path to state 70 at time #, 80 # ,
depends on the best path to each

possible previous state, 8$ # − 1 , and
their transitions to ", 9$0

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z
Z

64

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

i- U = max
*

i* Z u*- h-(ℴ3)

v- U = argmax
*

i* Z u*-

i/ U = max
*

i* Z u*/ h/(ℴ3)

v/ U = argmax
*

i* Z u*/

i0 U = max
*

i* Z u*0 h0(ℴ3)

v0 U = argmax
*

i* Z u*0

Specifically…

65

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

max
*

i* Z u*- h-(ℴ3)

argmax
*

i* Z u*-

i3 x = max
*

i. X u*/ h/(y3)

v. U = argmax
*

i* Z u*/

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

P& 0 = 0, R&' = 0, ∴ P& 0 R&' = 0

P(0 = 0.06, R(' = 0, ∴ P(0 R(' = 0

P' 0 = 0.08, R'' = 0.4, ∴ T) (U)) = (. (I.

66

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 x = max
*

i. X u*/ h/(y3)

v/ U = argmax
*

i* Z u*/

i0 U = max
*

i* Z u*0 h0(y3)

v3 R = argmax
*

i. X u*0
P' 0 R'' = 0.032, V' WXYZ[= 0.6

∴ max! T! (U!) %) ℴ$ = -. /.×-(*+ = -. /.`*+

a was the most likely previous state

67

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

P& 0 = 0, R&(= 0, ∴ P& 0 R&(= 0

P(0 = 0.06, R((= 0.8, ∴ T, (U,, = (. (3+

P' 0 = 0.08, R'(= 0.5, ∴ P' 0 R'(= 0.04

max
*

i* Z u*/ h/(ℴ3)

argmax
*

i* Z u*/

68

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

z. r{46

x

P(0 R((= 0.048, V(WXYZ[= 0.2

∴ max! T! (U!, %, ℴ$ = /. 4×-(*- = /. 4`*-

69

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

max
*

i* Z u*0 h0(ℴ3)

argmax
*

i* Z u*0

P& 0 = 0, R&& = 1.0, ∴ P& 0 R&& = 0

P(0 = 0.06, R(& = 0.2, ∴ T, (U,. = (. (-.

P' 0 = 0.08, R'& = 0.1, ∴ P' 0 R'& = 0.008

70

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

P(0 R((= 0.012, V& WXYZ[= 0.3

∴ max! T! (U!. %. ℴ$ = I. 4×-(*- = I. 4`*-

71

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = max
+

}+ 1 B+% C%(ℴ$)

j7 2 = argmax
+

}+ 1 B+7

}8 2 = max
+

}+ 1 B+8 C8(ℴ$)

j8 2 = argmax
+

}+ 1 B+8

}% 2 = max
+

}+ 1 B+% C%(ℴ$)

j% 2 = argmax
+

}+ 1 B+%

74

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = max
+

}+ 1 B+% C%(ℴ$)

j7 2 = argmax
+

}+ 1 B+7

i5 x = max
*

i3 X u*/ h/(y5)

v/ o = argmax
*

i* U u*/

i5 R = max
*

i3 X u*0 h0(y5)

v5 R = argmax
*

i3 X u*0

P& 1 = 3.6d*/, R&' = 0,
∴ P& 1 R&' = 0

P(1 = 9.6d*/, R(' = 0,
∴ P(1 R(' = 0

P' 1 = 1.92d*0, R'' = 0.4,
∴ T) - U)) = (. ((f4+

75

CSC401/2511 – Spring 2020

Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = 7.68Å4# n 0.05
j7 2 = É

}8 2 = 9.6Å4# n 0.4
j8 2 = É

}% 2 = 3.6Å4# n 0.01
j% 2 = 9

Continuing…

76

CSC401/2511 – Spring 2020

Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ

Choose the best final state:

C%∗ = argmax
'

I' J
FIX!!!!!

77

CSC401/2511 – Spring 2020

Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ

Recursively choose the best
previous state:

C$()∗ = K*;∗(7)

78

CSC401/2511 – Spring 2020

Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ Sequence
probability:

!(L, C∗; O)
= max' I'(J)

79

CSC401/2511 – Spring 2020

Aside - Working in the log domain

• Our formulation was
O∗ = argmaxh 1(P, O; X)

this is equivalent to
O∗ = argmin

h
− logi 1(P, O; X)

where
−logi 1 P, O; X

= −log i Jj!Nj! ℴ" −g
MJK

klK

logi 'j"#$j"Nj" ℴM

80

CSC401/2511 – Spring 2020

Fundamental tasks for HMMs

3. Given a large observation sequence) for training, but
not the state sequence, how do we choose the ‘best’
parameters ! = Π, %, & that explain the data)?

This is the task of .

As with observable Markov models and MLE, we want our
parameters to be set so that

the available training data is maximally likely,
But doing so will involve guessing unseen information…

81

CSC401/2511 – Spring 2020

Task 3: Choosing) = *,,, -
• We want to modify the parameters of our model
! = Π, %, & so that '(); !) is maximized for some
training data):

Z! = argmax
P

'(); !)

• Why? E.g., if we later want to choose the best state
sequence ,∗ for previously unseen test data, the
parameters of the HMM should be tuned to similar
training data.

82

• E? = argmax
Ö

;(<; ?) = argmax
Ö

∑Ü;(<, =; ?)

• & ', 6;) = & ;!:1&' & <!:# ;!:# ≈ ∏$%!
&(;$|;$&')& <$;$

CSC401/2511 – Spring 2020

Task 3: Choosing) = *,,, -

Recall that we
could use MLE

when ! was known

Can we do
this?

83

• 1 P, O; X = 1 @":M 1 H":M @":M ≈ ∏!J"
M 1(@!|@!lK)1 H! @!

• If the training data contained state sequences, we could simply
do maximum likelihood estimation, as before:

• 1 @! @!lK =
nopqM(j%#$ j%)
nopqM(j%#$)

1 H! @! =
nopqM(r%∧j%)
nopqM(j%)

CSC401/2511 – Spring 2020

Task 3: Choosing) = *,,, -

• But we don’t know the states; we can’t count them.

• However, we can use an iterative hill-climbing approach if we
can guess the counts using a “good” pre-existing model

84

CSC401/2511 – Spring 2020

Expecting and maximizing

• If we knew X, we could make expectations such as
• Expected number of times in state "!,
• Expected number of transitions "! → "t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions "! → "t

then we could compute the maximum likelihood estimate of
X = J! , '!t , {N! H }

85

CSC401/2511 – Spring 2020

Expectation-maximization

• Expectation-maximization (EM) is an iterative training
algorithm that alternates between two steps:

• Expectation (E): guesses the expected counts for
the hidden sequence using the
current model Xu.

• Maximization (M): computes a new X that maximizes
the likelihood of the data, given the
guesses of the E-step. This XuvK is
then used in the next E-step.

• Continue until convergence or stopping condition…
86

CSC401/2511 – Spring 2020

Baum-Welch re-estimation

• Baum-Welch (BW): n. a specific version of EM for HMMs.
a.k.a. ‘forward-backward’ algorithm.

1. Initialize the model.
2. Compute expectations for !"#$% &MlK&M and

!"#$% &M ∧ (M given model, training data).
3. Adjust our start, transition, and observation

probabilities to maximize the likelihood of).
4. Go to 2. and repeat until convergence or stopping

condition…

87

CSC401/2511 – Spring 2020

Local maxima

• Baum-Welch changes * to climb a `hill’ in +(); *).
• How we initialize * can have a big effect.

.

/(); .)

88

CSC401/2511 – Spring 2020

Step 1: BW initialization

• Our initial guess for the parameters,)!, can be:
a) All probabilities are uniform

(e.g., 2$ <2 = 2$(<3) for all
states ! and words <)

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

C9

C@

CA

0.33

0.330.33

0.50.51.0

89

CSC401/2511 – Spring 2020

Step 1: BW initialization

• Our initial guess for the parameters,)!, can be:
b) All probabilities are drawn randomly

(subject to the condition
that ∑$ & ! = 1)

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

C9

C@

CA

0.4

0.50.1

0.80.21.0

90

CSC401/2511 – Spring 2020

Step 1: BW initialization

• Our initial guess for the parameters,)!, can be:
c) Observation distributions are drawn from prior distributions:

e.g., 2$ <2 = &(<2) for all states !.
sometimes this involves pre-clustering, e.g. A-means

word P(word)
ship 0.2

pass 0.1

camp 0.03

frock 0.5

soccer 0.07

mother 0.02

tops 0.08

All blue dots are
words in state BLUE.
Their probability
distribution is

91

CSC401/2511 – Spring 2020

What to expect when you’re
expecting
• If we knew *, we could estimate expectations such as
• Expected number of times in state 1!,
• Expected number of transitions 1! → 1t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions 1! → 1t

then we could compute the maximum likelihood estimate of
* = 5!t , {8! (}, :!

92

CSC401/2511 – Spring 2020

BW E-step (occupation)

• We define
B4 C = D(E5 = F|G; H6)

as the probability of being in state ! at time #, based
on our current model,)7, given the entire observation, '.

and rewrite as:

I$ # =
&(;# = !, ';)7)

&(';)7)

=
,$ # 4$(#)
&(';)7)

Remember, Q' 7
and R'(7) depend

on values from
O = (' , S'+ , T' U

93

CSC401/2511 – Spring 2020

Combining ! and "
'), .5 = ?; ! = D6 @ I6 @

∴ '); ! =H
6;.

<

D6 @ I6(@)

9!
0 1 2

9"

9#

9$

? − 1

94

CSC401/2511 – Spring 2020

BW E-step (transition)

• We define
J48 C = D(E5 = F, E59: = K|G; H6)

as the probability of transitioning from state ! at
time # to state " at time # + 1 based on our current model,)7,
and given the entire observation, '. This is:

L$0 # =
&(;# = !, ;#9' = ", ';)7)

&(';)7)

=
,$ # 9$020(ℴ#9')40(# + 1)

&(';)7)

Again, these
estimates come

from our model at
iteration V, O, .

95

CSC401/2511 – Spring 2020

BW E-step (transition)

1 1 + 1

X2

1 − 1

;!(%)

XX

<t(% + 1)
1 + 2

5!t8t(ℴMvK)

96

CSC401/2511 – Spring 2020

Expecting and maximizing

• If we knew *, we could estimate expectations such as
• Expected number of times in state 1!,
• Expected number of transitions 1! → 1t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions 1! → 1t

then we could compute the maximum likelihood estimate of
* = 5!t , {8! (}, :!

97

CSC401/2511 – Spring 2020

BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

@:! = A!(0) for C ≔ 1. . F

II. State-transition probabilities:

@5!t =
∑"&!'#(x%)(M)
∑"&!'#(y% M

for C, G ≔ 1. . F

III. Discrete observation probabilities:

H8t (=
∑"&!'#$ y) M |ℴ"&+

∑"&!'#$ y) M
for G ≔ 1. . F and (∈ J

' (! ("
= *+,-.((" (!)

*+,-.((")

' 1" ("
= *+,-.(1" ∧ (")

*+,-.((")

98

CSC401/2511 – Spring 2020

Baum-Welch iteration

• We update our parameters after each iteration
!Y:. = [16 , [468 , Z28 \

rinse, and repeat until !Y ≈ !Y:. (until change almost stops).

• Baum proved that
'); !Y:. ≥ '(); !Y)

although this method does not guarantee a
global maximum.

99

CSC401/2511 – Spring 2020

Features of Baum-Welch

• Although we’re not guaranteed to achieve a global
optimum, the local optima are often ‘good enough’.

• BW does not estimate the number of states, which
must be ‘known’ beforehand.
• Moreover, some constraints on topology are often

imposed beforehand to assist training.

100

CSC401/2511 – Spring 2020

Discrete vs. continuous

• If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities
6!(8) must also be continuous.

• HMMs generalize to continuous
distributions, or multivariate
observations,
e.g., .J(−14.28, 0.85, 0.21).

101

CSC401/2511 – Spring 2020

Adaptation

• It can take a LOT of data to train HMMs.
• Imagine that we’re given a trained HMM but not the data.
• Also imagine that this HMM has been trained with data

from many sources (e.g., many speakers).

• We want to use this HMM with a particular new source
for whom we have some data (but not enough to fully train the
HMM properly from scratch).
• To be more accurate for that source, we want to

change the original HMM parameters slightly given the
new data.

102

CSC401/2511 – Spring 2020

HMM interpolation

• For added robustness, we can combine estimates of a
generic HMM, _, trained with lots of data

from many sources with a
specific HMM, `, trained with a little data

from a single source.

'Z[5\]^ ℴ = a' ℴ; !_ + 1 − a '(ℴ; !`)

• This gives us a model tuned to our target source (b), but
with some general ‘knowledge’ (c) built in.
• How do we pick a ∈ [f. . h] ?

103

CSC401/2511 – Spring 2020

EM for interpolated models

• Strategy can be used for any '); j = ∑6 j6'6)
• Introduce latent states C such that ' C = ?; j = j6
• Once in state ?, ') C = ?; j = '6())
• Like with HMMs, we estimate klmn@ C = ? using EM:

j6[\a =
'(C = ?,); j3b@)
'); j3b@

• This is a (simplified) version of what is done for Jelinek-
Mercer interpolation, as well as Gaussian Mixture
Models (covered in ASR lecture)

104

CSC401/2511 – Spring 2020

Held-out data

• Let 6c = {)} be the data used to learn j, 66 for '6 ⋅
• If for most) ∈ 6c, p. '6) ≥ '8) , then j6 → 1
• This can easily occur when 66 = 6c, e.g.:
• If '6 ⋅ is an MLE i-gram model trained on 6c, it will

outperform 'd6 ⋅ (even if also trained on 6c)
• If ' ℴ; !` was trained on 6c but not ' ℴ; !_

• Less likely to happen when 66 ∩ 6c = ∅
• A disjoint 6c is often called held-out or development

data

105

CSC401/2511 – Spring 2020

Aside – Maximum a Posteriori (MAP)

• Given adaptation data)e, the MAP estimate is
Z! =argmaxP')e ! '(!)

• If we can guess some structure for '(!), we can use EM
to estimate new parameters (or Monte Carlo).

• For continuous 26(ℴ), we use Dirichlet distribution that
defines the hyper-parameters of the model and the
Lagrange method to describe the change in parameters
! ⟹ Z!.

106

CSC401/2511 – Spring 2020

Summary

• Important ideas to know:
• The definition of an HMM (e.g., its parameters).
• The purpose of the Forward algorithm.
• How to compute D6(@) and I6(@)

• The purpose of the Viterbi algorithm.
• How to compute u6(@) and v6(@).

• The purpose of the Baum-Welch algorithm.
• Some understanding of EM.
• Some understanding of the equations.

107

CSC401/2511 – Spring 2020

Generative vs. discriminative

• HMMs are generative classifiers. You can generate synthetic
samples from because they model the phenomenon itself.
(e.g. +), K; * or +); *)
• Other classifiers (e.g., artificial neural networks and support

vector machines) are discriminative in that their probabilities
are trained specifically to reduce the error in classification.
(e.g. + K); *)

ANN SVM

...

...

108

CSC401/2511 – Spring 2020

Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. In: Readings
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software:
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)

109

http://htk.eng.cam.ac.uk/
http://scikit-learn.sourceforge.net/stable/modules/hmm.html

