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Observable Markov model

• We’ve seen this type of model: 
• e.g., consider the 7-word vocabulary:
{"ℎ$%, %'"", (')%, *+,(-, ",((.+,),/ℎ.+, /,%"}

• What is the probability of the sequence
"ℎ$%, "ℎ$%, %'"", "ℎ$%, /,%" ?

• Assuming a bigram model (i.e., 1st-order Markov),
1 "ℎ$%|<s> 1 "ℎ$% "ℎ$% 1 %'"" "ℎ$%
6 1 "ℎ$% %'"" 1(/,%"|"ℎ$%)
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Observable Markov model

• This can be conceptualized 
graphically.

• We start with 9 states,
"!, "", … , "# that represent 
unique observations in the 
world.

• Here, 9 = 7 and each 
state represents one of the 
words we can observe. 
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Observable Markov model

• We have discrete 
timesteps, / = 0, / = 1,…

• On the /$% timestep the 
system is in exactly one of 
the available states, ?&.
• @$ ∈ {"!, "", … , "#}

• We could start in any state. 
The probability of starting 
with a particular state " is 
1 @' = " = B(C)

! "! = $ℎ&' = (($ℎ&')
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Observable Markov model

• At each step we must 
move to a state with some 
probability.

• Here, an arrow from @$ to 
@$(! represents 
1(@$(!|@$)

• 1 "ℎ$% "ℎ$%
• 1 /,%" "ℎ$%
• 1 %'"" "ℎ$%
• 1 *+,(- "ℎ$% = 0
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Observable Markov model

• Probabilities on all outgoing 
arcs must sum to 1.

• 1 "ℎ$% "ℎ$% +
1 /,%" "ℎ$% +
1 %'"" "ℎ$% = 1

• 1 "ℎ$% /,%" +
1 /,%" /,%" +
1 ),/ℎ.+ /,%" = 1

• …
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Using the graph

Random walk
Generate sequences by 
transitioning between states.

Observation likelihood
Given a path, build its

probability.
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A multivariate system

• What if the probabilities of observing words depended only
on some other variable, like mood?

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4
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A multivariate system

• What if that variable changes over time?
• e.g., I’m happy one second and 

disgusted the next.
• Here,              state ≡ mood

observation ≡ word.

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01
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• Imagine you have access to my emotional state somehow.

• All your data are completely observable at every timestep.

• E.g., 

CSC401/2511 – Spring 2020

Observable multivariate systems

t 0 1 2 …

state …
word mother frock soccer …

≡
/01ℎ34, 64078, 907734 , ∗ , ,∗ ,



! "ℎ$%, %'"" , ∗ ,∗ = !(+; = ∗ )! "ℎ$% ∗ ! ∗ | ∗ !(%'""| ∗)

• What is the probability of a sequence of words and states? 
• ! "!:# , $!:# = ! $!:# ! "!:# $!:# ≈ ∏$%!

# !($$|$$&')! "$ $$
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Observable multivariate systems

w P(w)
ship …
pass …
camp …
frock …
soccer …
mother …
tops …

• e.g., 
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• Q: How do you learn these probabilities? 
• ! "!:# , $!:# ≈ ∏$%!

# !($$|$$&')! "$ $$
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Observable multivariate systems

w P(w)
ship …
pass …
camp …
frock …
soccer …
mother …
tops …

• A: When all data are observed, basically the same as before.
• ! $$ $$&' = ((*"#$*")

((*"#$)
is learned with MLE from training data.

• ! "$ $$ = ((,",*")
((*")

is also learned with MLE from training data.
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• Q: What if you don’t know the states during testing?
• e.g., compute 1( "ℎ$%, "ℎ$%, %'"", *+,(- )

• Q: What if you don’t know the states during training?
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Hidden variables

MD DT NN VB …

ship ship pass frock
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Examples of hidden phenomena

• We want to represent surface (i.e., observable) 
phenomena as the output of hidden underlying systems.
• e.g.,
• Words are the outputs of hidden parts-of-speech,
• French phrases are the outputs of hidden English phrases,
• Speech sounds are the outputs of hidden phonemes.

• in other fields,
• Encrypted symbols are the outputs of hidden messages,
• Genes are the outputs of hidden functional relationships,
• Weather is the output of hidden climate conditions,
• Stock prices are the outputs of hidden market conditions,
• …
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Definition of an HMM

• A hidden Markov model (HMM) is specified by the 
5-tuple {",$, Π, &, '}:
• F = {"!, … , "#} : set of states (e.g., moods)
• G = {H!, … , H)} : output alphabet (e.g., words)

• Π = {J!, … , J#} : initial state probabilities
• K = '*+ , $, L ∈ F : state transition probabilities
• M = N* H , $ ∈ F, H ∈ G : state output probabilities 

yielding
• O = {@', … , @,-!}, @* ∈ F : state sequence
• P = ℴ', … , ℴ,-! , ℴ* ∈ G : output sequence

+
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A hidden Markov production process

• / ≔ 0
• Start in state @' = "* with probability J*
• Emit observation symbol ℴ' = H. with probability N*(ℴ')
• While (not forever)
• Go from state @$ = "* to state @$(! = "+ with probability '*+
• Emit observation symbol ℴ$(! = H. with probability 
N+(ℴ$(!)
• / ≔ / + 1

• An HMM is a representation of a process in the world.
• We can synthesize data, as in Shannon’s game.

• This is how an HMM generates new sequences:

16
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Fundamental tasks for HMMs

1. Given a model with particular parameters ! = Π, %, & , 
how do we efficiently compute the likelihood of a 
particular observation sequence, '(); !)?

We previously computed the probabilities of word sequences 
using N-grams.

The probability of a particular sequence is usually useful as a 
means to some other end.
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Fundamental tasks for HMMs

2. Given an observation sequence ) and a model !, 
how do we choose a state sequence , = {.+, … , .,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Fundamental tasks for HMMs

3. Given a large observation sequence ), how do we 
choose the best parameters ! = Π, %, & that explain 
the data )?

This is the task of . 

As before, we want our parameters to be set so that the 
available training data is maximally likely, 

But doing so will involve guessing unseen information.
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Task 1: Computing !(#; %)
• We’ve seen the probability of a joint sequence of 

observations and states:

' ), ,; ! = ' ) ,; ! ' ,; !
= 1/<2/< ℴ+ 4/</=2/= ℴ. 4/=/>2/> ℴ0 …

• To get the probability of our observations without seeing 
the state, we must sum over all possible state sequences:

' ); ! = ∑1' ), ,; ! = ∑1' ) ,; ! ' ,; ! .
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Computing !(#; %) naïvely 

• To get the total probability of our observations, we could 
directly sum over all possible state sequences:

' ); ! = ∑1' ) ,; ! ' ,; ! .

• For observations of length 6, each state sequence involves 
26 multiplications (1 for each state transition, 
1 for each observation, 1 for the start state, minus 1).
• There are up to 8, possible state sequences of length 6

given 8 states.
∴ ~ 1 + 6 + 6 − 1 > 8, multiplications
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Computing !(#; %) cleverly

• To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results.

• We make a trellis which is an array of states vs. time.
• The element at (?, @) is A2 B

the probability of being in state ? at time @
after seeing all observations to that point:
'(ℴ3:5, .5 = C6; !)
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Trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 = 2

B%!%"C%" ℴ"

B%#%$C%$ ℴ$
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Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 = 2
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Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 = 2
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Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 = 2
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Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 =2

Notice that I already computed a 

path through this node
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Alternative paths through the trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Probability of 

being in state 9#
at time 1 =2

Notice that I already computed a 

path through this node

Each path 

through this node 

will have 

probability 

E … B%"%$C%$ ℴ$

∑E … = G$(1)
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AND SO ON…

31
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Trellis
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

To compute the probabilities of 
the black node and the yellow
node, I need (among others) the 
probabilities of the orange node 
and the purple node:

I compute once, and save them.
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The Forward procedure

• To compute
D6 @ = '(ℴ+:5, .5 = C6; !)

we can compute D8(@ − 1) for possible previous states C8,
then use our knowledge of 486 and 26(ℴ5)

• We compute the trellis left-to-right (because of the 
convention of time) and top-to-bottom (‘just because’).

• Remember: ℴ5 is fixed and known.
D6(@) is agnostic of the future.
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The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (@ = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ @ < 6).

• Conclusion: Sum over the nodes in the last
column of the trellis (@ = 6 − 1).
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Initialization of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

!J 0 ≔ $JN! ℴ" ,
& ≔ 1. . )

(Probability of starting in 
state ! and reading the first 

word there)
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Induction of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

!K * + 1 ≔ ,
JLM

N

!J * -JK.K ℴOPM ,

for 3 ≔ 1. . ), * ≔ 0. . (5 − 2)

(Probability of getting to state " at 
time # + 1)

36



CSC401/2511 – Spring 2020

Induction of Forward procedure

!!
"! #

1 1 + 1

!"
"" #

!#
"# #

!$
"$ # R&

S& T + U

B#'C'(ℴ()")

B"' C' (ℴ()" )B$' C' (ℴ()" )

B!'
C'(ℴ

()"
)
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Conclusion of Forward procedure
St

at
e

Time, 7

9!
0 1 2

9"

9#

9$

? − 1

Sum over all possible final 
states.

& '; ) =+
$%'

.
,$(. − 1)
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

/01ℎ34 64078 9ℎVW
We need initial state probabilities 
9 and transition probabilities :XY

# = 0.80

# = 0.20

# = 0

0.4

0.1

0.80.2

1.0
0.5
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Initialization

Compute the probability of starting in state 
$ and reading the first word there

S* Z ≔ \*%! &"

' ( = (. +( ×(. -( = (. (+

' ( = (. .( ×(. (/ = (. (-+

' ( = ( ×(. (0 = (

0.08

0.018

0

/01ℎ34 64078 9ℎVW
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

G' 1 + 1 ≔ ]
+,"

!
G+ 1 B+'C' ℴ()"

' 1 + - = (. (+ (. 3 (. 4
+ (. (-+ ( (. 4
+ ( ( (. 4
= (. (-/.

0.08

0.018

0

0.0192

/01ℎ34 64078 9ℎVW
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

G' 1 + 1 ≔ ]
+,"

!
G+ 1 B+'C' ℴ()"

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

/01ℎ34 64078 9ℎVW
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

1 = 0 1 = 1 1 = 2

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

Conclusion

Sum over all possible final states

5 6;8 =9
!#$

%
:!(< − -)

? @; A
= 0.00076 + 0.00283 + 0.0048
= (. ((+I/

/01ℎ34 64078 9ℎVW
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The Forward procedure

• The naïve approach needed 26 > 8, multiplications.

• The Forward procedure (using dynamic programming) 
needs only 2806 multiplications.

• The Forward procedure gives us '(); !).

• Clearly, but less intuitively, we can also compute the trellis 
from back-to-front, i.e., backwards in time…
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Remember the point

• The point was to compute the equivalent of

' ); ! =H
1

'(), ,; !)

where
' ), ,; ! = ' ) ,; ! ' ,; !

= 1/<2/< ℴ+ 4/</=2/= ℴ. 4/=/>2/> ℴ0 …

The Forward algorithm stores all possible 1-state sequences (from the 
start), to store all possible 2-state sequences (from the start), to store all 
possible 3-state sequences (from the start)…

G+ 0
G+ 1
G+ 2
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Remember the point

• But, we can compute these factors in reverse
; <,=; ? = ; < =; ? ; =; ?

= $^! ….^"#$ ℴ_`a -^"#$^"#%.^"#% ℴ_`b -^"#%^"#&.^"#& ℴ_`M

We can still deal with sequences that evolve forward in time, but simply 
store temporary results in reverse…

c+ ? − 2

c+ ? − 3
c+ ? − 4
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The Backward procedure

• In the ?, @ 59 node of the trellis, we store 
I6 @ = '(ℴ5:.:,-.|ℴ+:5, .5 = C6; !)

= '(ℴ5:.:,-.|.5 = C6; !)

which is computed by summing probabilities on outgoing
arcs from that node.

I6 @ is the probability of starting in state ? at time @ then 
observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.
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Step 1: Backward initialization
St

at
e

Time, 7

9!
0

9"

9#

9$

? − 3

1

1

1

? − 1? − 2

BJ 5 − 1 ≔ 1,
& ≔ 1. . )

(We’ll see why, soon)
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Step 2: Backward induction
St

at
e

Time, 7

9!
0

9"

9#

9$

1

1

1

? − 1

BJ * =,
KLM

N

-JKCY DTPU BK * + 1 ,

3 ≔ 1. . ), * ≔ 5 − 2 . . 0

(Probability of being in state ! at 
time #, then reading everything

to follow)
? − 3 ? − 2

49
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Step 3: Backward conclusion
St

at
e

Time, 7

9!
0

9"

9#

9$

? − 1

Sum over all possible 
initial states.

& '; )

=+
$%'

.
1$2$(ℴ!)4$(0)

? − 3 ? − 2
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The Backward procedure

• Initialization
I6 6 − 1 = 1, $ ≔ 1. . 9

• Induction
I6 @ = ∑8;.< 46828 ℴ5:. I8 @ + 1 , $ ≔ 1. . 9

/ ≔ T − 2. . 0

• Conclusion
1 P; X = ∑!JK

L J!N!(ℴ")Z!(0)
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The Backward procedure – so what?

• The combination of Forward and Backward procedures 
will be vital for solving parameter re-estimation, 
i.e., training.

• Generally, we can combine D and I at any point in time to 
represent the probability of an entire observation 
sequence…
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Combining ! and "
' ), .5 = ?; ! = D6 @ I6 @

∴ ' ); ! =H
6;.

<

D6 @ I6(@)

9!
0 1 2

9"

9#

9$

? − 1

This requires 
the current 
word to be 
incorporated by 
!J * , but not
BJ * .

This isn’t merely 

for fun – it will 

soon become 

useful…
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Fundamental tasks for HMMs

2. Given an observation sequence ) and a model !, 
how do we choose a state sequence ,∗ = {.+, … , .,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Task 2: Choosing #∗ = {&"…&#$%}
• The purpose of finding the best state sequence K∗ out of 

all possible state sequences , is that it tells us what is 
most likely to be going on ‘under the hood’.

• With the Forward algorithm, we didn’t care about specific 
state sequences – we were summing over all possible state 
sequences.
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Task 2: Choosing #∗ = {&"…&#$%}
• In other words,

,∗ = argmax
1

'(), ,; !)

where 

' ), ,; ! = 1/<2/< ℴ+ Q
5;.

,-.

4/fg=/f2/f ℴ5

56



CSC401/2511 – Spring 2020

Why choose #∗ = {&"…&#$%}? 

• Recall the purpose of HMMs:
• To represent multivariate systems where some variable is 

unknown/hidden/latent.

• Finding the best hidden-state sequence 6∗ allows us to:
• Identify unseen parts-of-speech given words,
• Identify equivalent English words given French words,
• Identify unknown phonemes given speech sounds,
• Decipher hidden messages from encrypted symbols,
• Identify hidden relationships from gene sequences,
• Identify hidden market conditions given stock prices,
• …
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Example – PoS state sequences

• Will/MD the/DT chair/NN chair/?? the/DT 
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)
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Recall

• Observation likelihoods depend on the 
state, which changes over time

• We cannot simply choose the state
that maximizes the probability of
,M without considering the state
sequence.

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01
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The Viterbi algorithm

• The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

• We define the probability of the most probable path 
leading to the trellis node at (state ?, time @) as

V2 B = max
/<…/fg=

'(.+….5-., ℴ+…ℴ5, W? = X2; !)

• Y2(B): The best possible previous state, 
if If I’m in state ? at time @.
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Viterbi example

• For illustration, we assume a 
simpler state-transition 
topology:

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

C9

C@

CA

0.4

0.50.1

0.80.21.0

61



CSC401/2511 – Spring 2020

Step 1: Initialization of Viterbi

• Initialize with [! 0 = J!N!(ℴ") and \! 0 = 0 for all states. 

\-h-(ℴ.)
Z

i: max probability
j: backtrace

Time, 7
0 1 2

\/h/(ℴ.)
Z

\0h0(ℴ.)
Z
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Step 1: Initialization of Viterbi

• For example, let’s assume 
JN = 0.8, JO = 0.2 and P = "ℎ$%, *+,(-, /,%"

Z. m n Z. U
Z

i: max probability
j: backtrace

Observations, ℴ$

Z. o n Z. p
Z

Z n Z. oq
Z

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

Z. Zr
Z

i& T = max
*

i* T − U u*& h&(ℴ2)

v& T = argmax
*

i* T − U u*&

The best path to state 70 at time #, 80 # , 
depends on the best path to each 

possible previous state, 8$ # − 1 , and 
their transitions to ", 9$0

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z
Z
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

i- U = max
*

i* Z u*- h-(ℴ3)

v- U = argmax
*

i* Z u*-

i/ U = max
*

i* Z u*/ h/(ℴ3)

v/ U = argmax
*

i* Z u*/

i0 U = max
*

i* Z u*0 h0(ℴ3)

v0 U = argmax
*

i* Z u*0

Specifically…
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

max
*

i* Z u*- h-(ℴ3)

argmax
*

i* Z u*-

i3 x = max
*

i. X u*/ h/(y3)

v. U = argmax
*

i* Z u*/

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

P& 0 = 0, R&' = 0, ∴ P& 0 R&' = 0

P( 0 = 0.06, R(' = 0, ∴ P( 0 R(' = 0

P' 0 = 0.08, R'' = 0.4, ∴ T) ( U)) = (. (I.
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 x = max
*

i. X u*/ h/(y3)

v/ U = argmax
*

i* Z u*/

i0 U = max
*

i* Z u*0 h0(y3)

v3 R = argmax
*

i. X u*0
P' 0 R'' = 0.032, V' WXYZ[ = 0.6

∴ max! T! ( U!) %) ℴ$ = -. /.×-(*+ = -. /.`*+

a was the most likely previous state
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

P& 0 = 0, R&( = 0, ∴ P& 0 R&( = 0

P( 0 = 0.06, R(( = 0.8, ∴ T, ( U,, = (. (3+

P' 0 = 0.08, R'( = 0.5, ∴ P' 0 R'( = 0.04

max
*

i* Z u*/ h/(ℴ3)

argmax
*

i* Z u*/
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

i3 R = max
*

i. X u*0 h0(y3)

v3 R = argmax
*

i. X u*0

z. r{46

x

P( 0 R(( = 0.048, V( WXYZ[ = 0.2

∴ max! T! ( U!, %, ℴ$ = /. 4×-(*- = /. 4`*-
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

max
*

i* Z u*0 h0(ℴ3)

argmax
*

i* Z u*0

P& 0 = 0, R&& = 1.0, ∴ P& 0 R&& = 0

P( 0 = 0.06, R(& = 0.2, ∴ T, ( U,. = (. (-.

P' 0 = 0.08, R'& = 0.1, ∴ P' 0 R'& = 0.008
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

P( 0 R(( = 0.012, V& WXYZ[ = 0.3

∴ max! T! ( U!. %. ℴ$ = I. 4×-(*- = I. 4`*-
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = max
+

}+ 1 B+% C%(ℴ$)

j7 2 = argmax
+

}+ 1 B+7

}8 2 = max
+

}+ 1 B+8 C8(ℴ$)

j8 2 = argmax
+

}+ 1 B+8

}% 2 = max
+

}+ 1 B+% C%(ℴ$)

j% 2 = argmax
+

}+ 1 B+%
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = max
+

}+ 1 B+% C%(ℴ$)

j7 2 = argmax
+

}+ 1 B+7

i5 x = max
*

i3 X u*/ h/(y5)

v/ o = argmax
*

i* U u*/

i5 R = max
*

i3 X u*0 h0(y5)

v5 R = argmax
*

i3 X u*0

P& 1 = 3.6d*/, R&' = 0,
∴ P& 1 R&' = 0

P( 1 = 9.6d*/, R(' = 0,
∴ P( 1 R(' = 0

P' 1 = 1.92d*0, R'' = 0.4,
∴ T) - U)) = (. ((f4+
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Step 2: Induction of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

}7 2 = 7.68Å4# n 0.05
j7 2 = É

}8 2 = 9.6Å4# n 0.4
j8 2 = É

}% 2 = 3.6Å4# n 0.01
j% 2 = 9

Continuing…
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Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ

Choose the best final state:

C%∗ = argmax
'

I' J
FIX!!!!!
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Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ

Recursively choose the best 
previous state:

C$()∗ = K*;∗(7)
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Step 3: Conclusion of Viterbi

Z. Zm
Z

Observations, ℴ$

ℴ1 = 9ℎVW ℴ" = 64078 ℴ$ = 10W9

Z. Zr
Z

Z
Z

U. zo{45

|

z. r{46

x

p. r{46

x

3.84Å49

É

3.84Å4#

É

1.92Å4:

ℎ Sequence 
probability:

!(L, C∗; O)
= max' I'(J)

79



CSC401/2511 – Spring 2020

Aside - Working in the log domain

• Our formulation was
O∗ = argmaxh 1(P, O; X)

this is equivalent to
O∗ = argmin

h
− logi 1(P, O; X)

where 
−logi 1 P, O; X

= −log i Jj!Nj! ℴ" −g
MJK

klK

logi 'j"#$j"Nj" ℴM
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Fundamental tasks for HMMs

3. Given a large observation sequence ) for training, but 
not the state sequence, how do we choose the ‘best’ 
parameters ! = Π, %, & that explain the data )?

This is the task of . 

As with observable Markov models and MLE, we want our 
parameters to be set so that 

the available training data is maximally likely, 
But doing so will involve guessing unseen information…
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Task 3: Choosing ) = *,,, -
• We want to modify the parameters of our model 
! = Π, %, & so that '(); !) is maximized for some 
training data ):

Z! = argmax
P

'(); !)

• Why? E.g., if we later want to choose the best state 
sequence ,∗ for previously unseen test data, the 
parameters of the HMM should be tuned to similar 
training data.
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• E? = argmax
Ö

;(<; ?) = argmax
Ö

∑Ü;(<, =; ?)

• & ', 6; ) = & ;!:1&' & <!:# ;!:# ≈ ∏$%!
# &(;$|;$&')& <$ ;$
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Task 3: Choosing ) = *,,, -

Recall that we 
could use MLE 

when ! was known

Can we do 
this?
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• 1 P, O; X = 1 @":M 1 H":M @":M ≈ ∏!J"
M 1(@!|@!lK)1 H! @!

• If the training data contained state sequences, we could simply 
do maximum likelihood estimation, as before:

• 1 @! @!lK =
nopqM(j%#$ j%)
nopqM(j%#$)

1 H! @! =
nopqM(r%∧j%)
nopqM(j%)

CSC401/2511 – Spring 2020

Task 3: Choosing ) = *,,, -

• But we don’t know the states; we can’t count them.

• However, we can use an iterative hill-climbing approach if we 
can guess the counts using a “good” pre-existing model
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Expecting and maximizing

• If we knew X, we could make expectations such as
• Expected number of times in state "!,
• Expected number of transitions "! → "t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions "! → "t

then we could compute the maximum likelihood estimate of
X = J! , '!t , {N! H }
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Expectation-maximization

• Expectation-maximization (EM) is an iterative training 
algorithm that alternates between two steps:

• Expectation (E): guesses the expected counts for
the hidden sequence using the 
current model Xu. 

• Maximization (M): computes a new X that maximizes
the likelihood of the data, given the
guesses of the E-step. This XuvK is
then used in the next E-step.

• Continue until convergence or stopping condition…
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Baum-Welch re-estimation

• Baum-Welch (BW): n. a specific version of EM for HMMs.
a.k.a.  ‘forward-backward’ algorithm.

1. Initialize the model.
2. Compute expectations for !"#$% &MlK&M and 

!"#$% &M ∧ (M given model, training data ).
3. Adjust our start, transition, and observation 

probabilities to maximize the likelihood of ).
4. Go to 2. and repeat until convergence or stopping 

condition…
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Local maxima

• Baum-Welch changes * to climb a `hill’ in +(); *).
• How we initialize * can have a big effect.

.

/(); .)
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Step 1: BW initialization

• Our initial guess for the parameters, )!, can be:
a) All probabilities are uniform

(e.g., 2$ <2 = 2$(<3) for all
states ! and words <)

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)
ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

C9

C@

CA

0.33

0.330.33

0.50.51.0
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Step 1: BW initialization

• Our initial guess for the parameters, )!, can be:
b) All probabilities are drawn randomly

(subject to the condition 
that ∑$ & ! = 1)

word P(word)
ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)
ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)
ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

C9

C@

CA

0.4

0.50.1

0.80.21.0
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Step 1: BW initialization

• Our initial guess for the parameters, )!, can be:
c) Observation distributions are drawn from prior distributions:

e.g., 2$ <2 = &(<2) for all states !.
sometimes this involves pre-clustering, e.g. A-means

word P(word)
ship 0.2

pass 0.1

camp 0.03

frock 0.5

soccer 0.07

mother 0.02

tops 0.08

All blue dots are 
words in state BLUE. 
Their probability 
distribution is
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What to expect when you’re 
expecting
• If we knew *, we could estimate expectations such as
• Expected number of times in state 1!,
• Expected number of transitions 1! → 1t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions 1! → 1t

then we could compute the maximum likelihood estimate of
* = 5!t , {8! ( }, :!
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BW E-step (occupation)

• We define
B4 C = D(E5 = F|G; H6)

as the probability of being in state ! at time #, based 
on our current model, )7, given the entire observation, '. 

and rewrite as:

I$ # =
&(;# = !, '; )7)

&('; )7)

=
,$ # 4$(#)
&('; )7)

Remember, Q' 7
and R'(7) depend 

on values from 
O = (' , S'+ , T' U
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Combining ! and "
' ), .5 = ?; ! = D6 @ I6 @

∴ ' ); ! =H
6;.

<

D6 @ I6(@)

9!
0 1 2

9"

9#

9$

? − 1
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BW E-step (transition)

• We define
J48 C = D(E5 = F, E59: = K|G; H6)

as the probability of transitioning from state ! at
time # to state " at time # + 1 based on our current model, )7, 
and given the entire observation, '. This is:

L$0 # =
&(;# = !, ;#9' = ", '; )7)

&('; )7)

=
,$ # 9$020(ℴ#9')40(# + 1)

&('; )7)

Again, these 
estimates come 

from our model at 
iteration V, O, .
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BW E-step (transition)

1 1 + 1

X2

1 − 1

;!(%)

XX

<t(% + 1)
1 + 2

5!t8t(ℴMvK)
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Expecting and maximizing

• If we knew *, we could estimate expectations such as
• Expected number of times in state 1!,
• Expected number of transitions 1! → 1t

• If we knew:
• Expected number of times in state s!,
• Expected number of transitions 1! → 1t

then we could compute the maximum likelihood estimate of
* = 5!t , {8! ( }, :!
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BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

@:! = A!(0) for C ≔ 1. . F

II. State-transition probabilities:

@5!t =
∑"&!'#( x%)(M)
∑"&!'#( y% M

for C, G ≔ 1. . F

III. Discrete observation probabilities:

H8t ( =
∑"&!'#$ y) M |ℴ"&+

∑"&!'#$ y) M
for G ≔ 1. . F and ( ∈ J

' (! ("
= *+,-.((" (!)

*+,-.((")

' 1" ("
= *+,-.(1" ∧ (")

*+,-.((")
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Baum-Welch iteration

• We update our parameters after each iteration
!Y:. = [16 , [468 , Z28 \

rinse, and repeat until !Y ≈ !Y:. (until change almost stops).

• Baum proved that
' ); !Y:. ≥ '(); !Y)

although this method does not guarantee a 
global maximum.
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Features of Baum-Welch

• Although we’re not guaranteed to achieve a global 
optimum, the local optima are often ‘good enough’.

• BW does not estimate the number of states, which 
must be ‘known’ beforehand.
• Moreover, some constraints on topology are often 

imposed beforehand to assist training.
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Discrete vs. continuous

• If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities 
6!(8) must also be continuous.

• HMMs generalize to continuous
distributions, or multivariate
observations, 
e.g., .J( −14.28, 0.85, 0.21 ).
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Adaptation

• It can take a LOT of data to train HMMs.
• Imagine that we’re given a trained HMM but not the data.
• Also imagine that this HMM has been trained with data 

from many sources (e.g., many speakers). 

• We want to use this HMM with a particular new source 
for whom we have some data (but not enough to fully train the 
HMM properly from scratch).
• To be more accurate for that source, we want to 

change the original HMM parameters slightly given the 
new data.
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HMM interpolation

• For added robustness, we can combine estimates of a 
generic HMM, _, trained with lots of data

from many sources with a 
specific HMM, `, trained with a little data

from a single source.

'Z[5\]^ ℴ = a' ℴ; !_ + 1 − a '(ℴ; !`)

• This gives us a model tuned to our target source (b), but 
with some general ‘knowledge’ (c) built in.
• How do we pick a ∈ [f. . h] ?
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EM for interpolated models

• Strategy can be used for any ' ); j = ∑6 j6'6 )
• Introduce latent states C such that ' C = ?; j = j6
• Once in state ?, ' ) C = ?; j = '6())
• Like with HMMs, we estimate klmn@ C = ? using EM:

j6[\a =
'(C = ?, ); j3b@)
' ); j3b@

• This is a (simplified) version of what is done for Jelinek-
Mercer interpolation, as well as Gaussian Mixture 
Models (covered in ASR lecture)

104



CSC401/2511 – Spring 2020

Held-out data

• Let 6c = {)} be the data used to learn j, 66 for '6 ⋅
• If for most ) ∈ 6c, p. '6 ) ≥ '8 ) , then j6 → 1
• This can easily occur when 66 = 6c, e.g.:
• If '6 ⋅ is an MLE i-gram model trained on 6c, it will 

outperform 'd6 ⋅ (even if also trained on 6c)
• If ' ℴ; !` was trained on 6c but not ' ℴ; !_

• Less likely to happen when 66 ∩ 6c = ∅
• A disjoint 6c is often called held-out or development 

data
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Aside – Maximum a Posteriori (MAP)

• Given adaptation data )e, the MAP estimate is
Z! =argmaxP' )e ! '(!)

• If we can guess some structure for '(!), we can use EM 
to estimate new parameters (or Monte Carlo).

• For continuous 26(ℴ), we use Dirichlet distribution that 
defines the hyper-parameters of the model and the 
Lagrange method to describe the change in parameters 
! ⟹ Z!.

106



CSC401/2511 – Spring 2020

Summary

• Important ideas to know:
• The definition of an HMM (e.g., its parameters).
• The purpose of the Forward algorithm.
• How to compute D6(@) and I6(@)

• The purpose of the Viterbi algorithm.
• How to compute u6(@) and v6(@).

• The purpose of the Baum-Welch algorithm.
• Some understanding of EM.
• Some understanding of the equations.
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Generative vs. discriminative

• HMMs are generative classifiers. You can generate synthetic 
samples from because they model the phenomenon itself.
(e.g. + ), K; * or + ); * )
• Other classifiers (e.g., artificial neural networks and support 

vector machines) are discriminative in that their probabilities 
are trained specifically to reduce the error in classification.
(e.g. + K ); * )

ANN SVM

...

...
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Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition. In: Readings 
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software: 
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (http://scikit-learn.sourceforge.net/stable/modules/hmm.html)
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