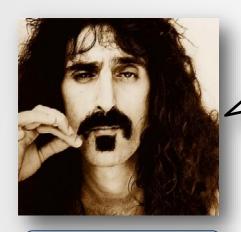


This lecture

- Some text-to-speech architectures.
- Some text-to-speech components.
- Text-to-speech:

n. the conversion of electronic text into equivalent, audible speech waveforms.

Insight?



Frank Zappa

The computer can't tell you the emotional story. It can give you the exact mathematical design, but what's missing is the eyebrows.

Components of TTS systems

 Some components are common to all TTS systems, namely:

1. Text analysis.

- Text normalization
- Homograph ("same spelling") disambiguation
- Grapheme-to-phoneme (letter-to-sound)
- Intonation (prosody)

2. Waveform generation.

Unit and diphone selection.

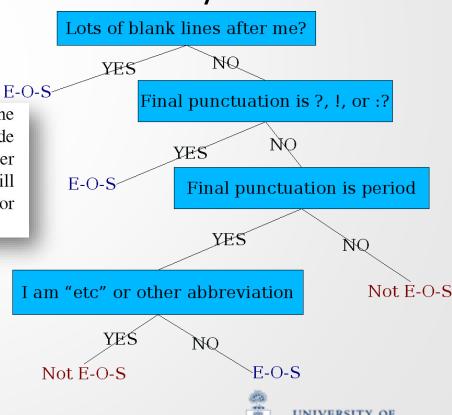
Text analysis

How do we analyze the text we want to read?

Text analysis

- First, we normalize the text. This involves splitting sentences, tokenizing, and sometimes chunking.
- You can also induce decision trees automatically.

He said the increase in credit limits helped B.C. Hydro achieve record net income of about \$1 billion during the year ending March 31. This figure does not include any write-downs that may occur if Powerex determines that any of its customer accounts are not collectible. Cousins, however, was insistent that all debts will be collected: "We continue to pursue monies owing and we expect to be paid for electricity we have sold."



Identifying the types of tokens

- Pronunciation of each token can depend on its type or usage.
 - e.g., "1867" is
 - "eighteen sixty seven" if it's a year,
 - "one eight six seven" if it's in a phone number,
 - "one thousand eight hundred and sixty seven" if it's a quantifier.
 - e.g., "25" is
 - "twenty five" if it's an age,
 - "twenty fifth" if it's a day of the month.

Homograph disambiguation

• Homograph:

n. a set of words that share the same spelling but have different meanings or pronunciations.

- E.g.,
 - "close the door! The monsters are getting close!"
 - "I object to that horrible object!"
 - "I refuse to take that refuse!"
 - "I'm content with the content."
- It's important to pronounce these homographs correctly, or the meaning will be lost.

Homograph disambiguation

- Homographs can often be distinguished by their part-ofspeech.
 - E.g., "live" as a verb (/l ih v/) or an adjective (/l ay v/).

Verb	Noun
Use /y uw z/	Use /y uw s/
House /h aw z/	House /h aw s/
reCORD	REcord
disCOUNT	DIScount
•••	•••

From words to phonemes

- There are at least two methods to convert words to sequences of phonemes:
 - Dictionary lookup.
 - Letter-to-sound (LTS) rules (if the word is not in the dictionary).
- Modern systems tend to use a combination of approaches, relying on large dictionaries and samples for common words, but using rules to assemble unknown words.

Pronunciation dictionaries: CMU

- The CMU dictionary has 127K words.
- Unfortunately,
 - It only contains American pronunciations,
 - It does not contain syllable boundaries (for timing),
 - It does not contain parts-of-speech (it contains no knowledge of homographs),
 - It does not distinguish case,
 - E.g. 'US' is transcribed as both /ah s/ and /y uw eh s/.

Other pronunciation dictionaries

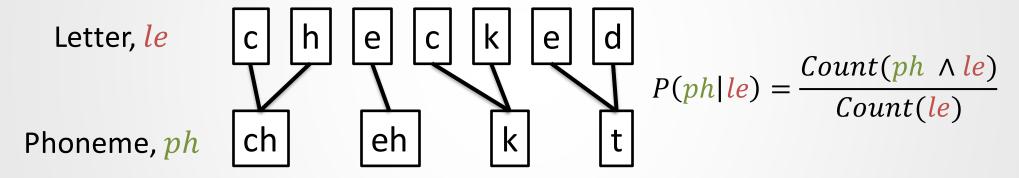
 The UNISYN dictionary has about 110K words, and includes syllabification, stress, and morphology.

```
going: { g * ou }.> i ng >
antecedents: { * a n . t^ i . s ~ ii . d n! t }> s >
dictionary: { d * i k . sh @ . n ~ e . r ii }
```

- Unknown words (a.k.a., "out of vocabulary" (OOV))
 typically increase with the square root of the number of words in a new, previously unseen text.
- Commercial systems often use dictionaries, but back off to stochastic routines when necessary. Such as...

Letter-to-sound rules

- First, we must align letters and phonemes,
- If you have access to these alignments, you can learn these with maximum likelihood estimation, e.g.,



 If you don't have these alignments, they can be learned using expectation-maximization as we saw with, e.g., statistical machine translation.

Letter-to-sound rules

- Alignments can be improved by using hand-written rules that restrict the translation of letters to phonemes (e.g., C goes to /k, ch, s, sh/, or W goes to /w, v, f/).
- Some words have to be dealt with specifically, since their spelling is so different from their pronunciation.
 - E.g., abbreviations: "dept" → /d ih p aa r t m ah n t/
 "wtf" →/w aw dh ae t s f ah n iy/

Prosody

- Once you have a phoneme sequence, you may need to adjust other acoustic characteristics, based on the semantic context.
- Prosodic phrasing:
 - You need to mark phrase boundaries,
 - You need to emphasize certain syllables by modifying either FO, loudness, or the duration of some phonemes.
- In neural networks and HMMs, F0 can be learned (and hence sampled) simultaneously with phonemes.

Three aspects for prosody in TTS

• Prominence: some syllables or words are more prominent

than others, especially content words.

Structure: Sentences have inherent prosodic structure.

Some words group naturally together, others

require a noticeable disjunction.

• Tune: To sound natural, one has to account for the

intonational melody of an utterance.

These are reasons to modify prosody, not the way prosody is modified...

Emphasis in noun phrases

- Proper names: the emphasis is often on the right-most word.
 - E.g., New York CITY; Paris, FRANCE
- Noun-noun compounds: emphasis is often on the left noun.
 - E.g., TABLE lamp; DISK drive,
- Adjective-noun compounds: stress on the noun
 - E.g., large HOUSE; new CAR
- Counterexamples exist, but with some predictability...
 - MEDICAL building; cherry PIE

Waveform Generation

How do we actually produce the sounds, given the phonemes?

Standard TTS architectures

1. Formant synthesis

Synthesizes acoustics based on rules and filter.

2. Concatenative synthesis

Uses databases of stored speech to assemble a dio.

3. Articulatory synthesis

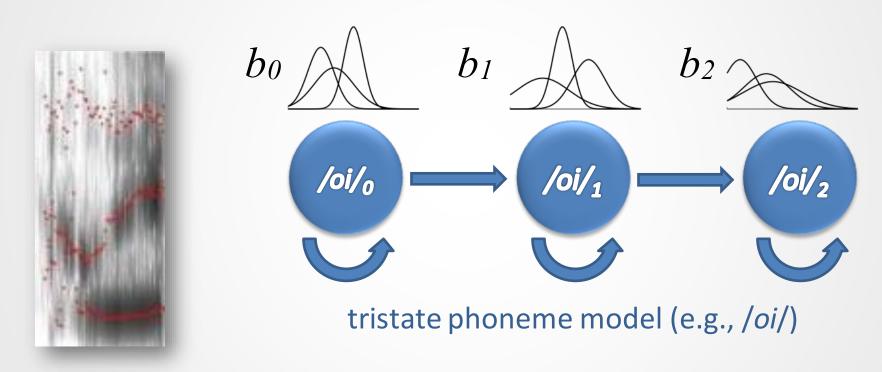
 Models the movements and acoustics of the votal tract.

4. Statistical model synthesis

Samples from some stochastic model

4. Synthesis from HMMs

Use a trained HMM and sample from it.

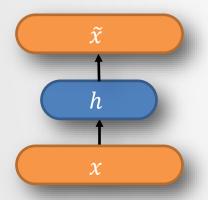


Festival (http://www-2.cs.cmu.edu/~awb/festival_demos/index.html

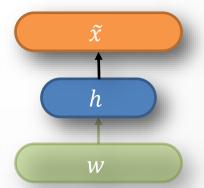
Y.-J. Wu and K. Tokuda (2008) Minimum generation error training with direct log spectral distortion on LSPs for HMM-based speech synthesis. In Proc. Interspeech, pages 577–580, 2008.

4. Synthesis from NNs

- RNNs can predict smoothly-changing acoustic features.
 - It can be difficult to learn high-dimensional acoustic features (e.g., MFCCs or raw spectra).
 - Solution? Learn better features using an autoencoder.



Train a NN that learns to recreate its own input audio signal x

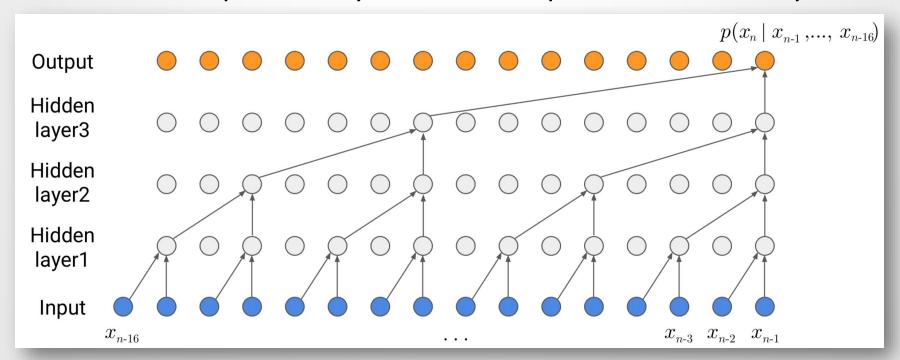


And later use the resulting latent features to learn a mapping from words w

- Y. Fan, Y. Qian, F.-L. Xie, and F. Soong. (2014) TTS synthesis with bidirectional LSTM based recurrent neural networks. In Proc. Interspeech, pages 1964–1968.
- H. Zen, Y. Agiomyrgiannakis, N. Egberts, F. Henderson, and P. Szczepaniak. (2016) Fast, compact, and high quality LSTM-RNN based statistical parametric speech synthesizers for mobile devices. In Proc. Interspeech.
- S. Takaki and J. Yamagishi (2016) A deep auto-encoder based low-dimensional feature extraction from FFT spectral envelopes for statistical parametric speech synthesis. In Proc. ICASSP, pages 5535–5539.

4. Synthesis from NNs

- If x is raw audio, and we use a modest window (e.g., 100ms), your input can be a 1000+ dimensional dense vector, which can be too long for an RNN (or autoencoder).
 - Solution? Exponentially increase receptive field across layers.



Oord, A. et al. (2016). WaveNet: A Generative Model for Raw Audio, 1–15. http://arxiv.org/abs/1609.03499

Aside – WaveNet Residual layers

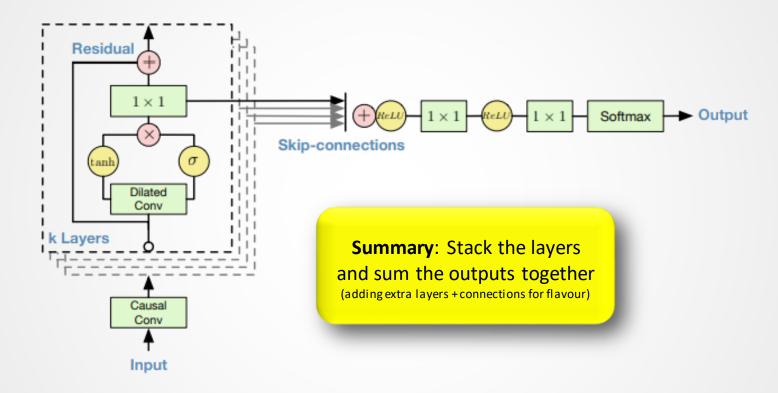


Figure 4: Overview of the residual block and the entire architecture.

Oord, A. et al. (2016). WaveNet: A Generative Model for Raw Audio, 1–15. http://arxiv.org/abs/1609.03499

4. Synthesis from NNs (TacoTron)

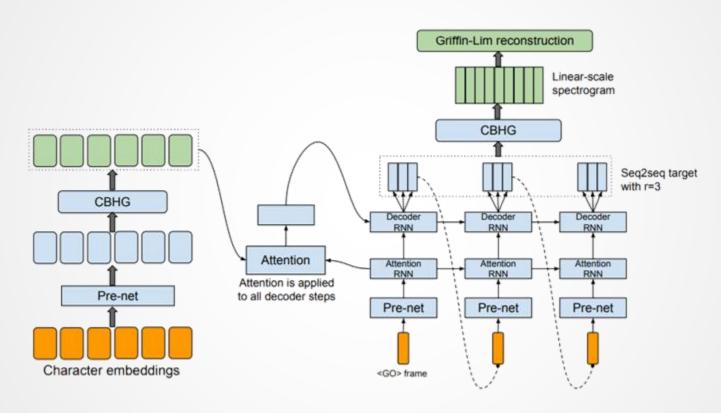
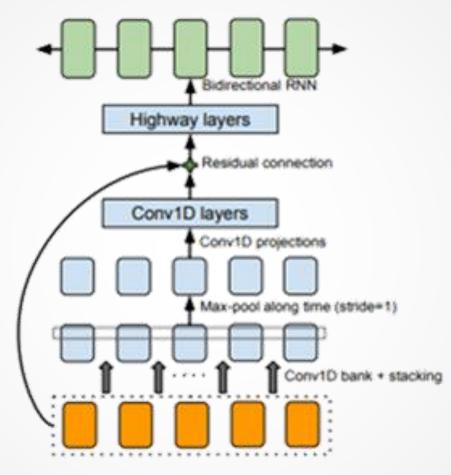


Figure 1: Model architecture. The model takes characters as input and outputs the corresponding raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.

Wang, Y., et al (2017). Tacotron: Towards end-To-end speech synthesis. Proceedings of the INTERSPEECH, 2017-August, 4006–4010. https://doi.org/10.21437/Interspeech.2017-1452

UNIVERSITY OF

Aside – CBHG blocks (TacoTron)



CBHG (1D convolution + highway + bidirectional GRU)

Wang, Y., et al (2017). Tacotron: Towards end-To-end speech synthesis. Proceedings of the INTERSPEECH, 2017-August, 4006–4010. https://doi.org/10.21437/Interspeech.2017-1452

4. Synthesis from NNs

- Typically, neural networks will be employed with other techniques to avoid unpredictability.
- They also open up the potential for dangerous deep fakes.

Evaluation of TTS

How do we declare victory?

Evaluation of TTS

- Intelligibility tests.
 - E.g., the diagnostic rhyme test involves humans identifying synthetic speech from two word choices that differ by a single phonetic feature (e.g., voicing, nasality).
 - E.g., "dense" vs. "tense", "maze" vs. "mace"
- Mean opinion score
 - Have listeners rate synthetic speech on a Likert-like scale (i.e., a goodness-badness scale).

http://www.synsig.org/index.php/Blizzard Challenge 2013 Rules

Evaluation of TTS

Table 2: 5-scale mean opinion score evaluation.

	mean opinion score
Tacotron	3.82 ± 0.085
Parametric	3.69 ± 0.109
Concatenative	4.09 ± 0.119

Mean opinion scores (1-5) from [unknown number of] ratings on 100 test sentences.

Wang, Y., et al (2017). Tacotron: Towards end-To-end speech synthesis. Proceedings of the INTERSPEECH, 2017-August, 4006–4010. https://doi.org/10.21437/Interspeech.2017-1452

	Subjective 5-scale MOS in naturalness	
Speech samples	North American English	Mandarin Chinese
LSTM-RNN parametric	3.67 ± 0.098	3.79 ± 0.084
HMM-driven concatenative	3.86 ± 0.137	3.47 ± 0.108
WaveNet (L+F)	4.21 ± 0.081	4.08 ± 0.085
Natural (8-bit μ-law)	4.46 ± 0.067	4.25 ± 0.082
Natural (16-bit linear PCM)	4.55 ± 0.075	4.21 ± 0.071

Mean opinion scores (1-5) from [unknown number of] ratings on 100 test sentences.

Oord, A. et al. (2016). WaveNet: A Generative Model for Raw Audio, 1–15. http://arxiv.org/abs/1609.03499

APPENDICES

(EVERYTHING THAT FOLLOWS IS AN <u>ASIDE</u>. NOT ON THE EXAM.)

APPENDIX: OTHER APPROACHES TO WAVEFORM GENERATION

1. Formant synthesis

- Historically popular (MITalk in 1979, DECtalk in 1983).
- Stores a small number of parameters such as
 - Formant frequencies and bandwidths for vowels,
 - Lengths of sonorants in time,
 - Periodicity of the fundamental frequency.
- Advantages: This method can be very intelligible, avoids

clipping artefacts between phonemes of

other methods, and is computationally

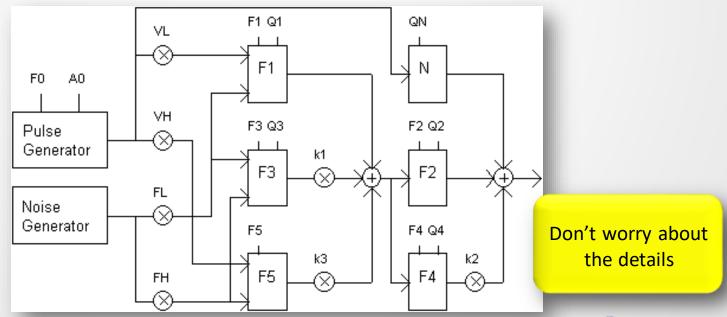
inexpensive.

Disadvantages: This method tends to produce unnatural

robotic-sounding speech.

1. Waveforms from formant synthesis

- The Klatt synthesizer produces either a periodic pulse (for sonorants like vowels) or noise (for fricatives) and passes these signals through filters – one for each formant.
 - These filters were parameterized by desired frequencies and bandwidths.



Aside – linear predictive coding

- Formant synthesis is often performed by linear predictive coding (LPC), which is sometimes an alternative to MFCCs.
 - LPC is a very simple linear function which acts like a moving average filter over a signal x, e.g.,

$$y[n] = \sum_{i=-2}^{2} a_{n+i} x[n+i]$$

 LPC results in very smooth spectra, which can result in high intelligibility, but low naturalness (real human spectra tend to be less smooth).

2. Concatenative synthesis

 Involves selecting short sections of recorded human speech and concatenating them together in time.

Advantages: This method produces very human-like,

natural-sounding speech. It is used in

almost all modern commercial systems.

Disadvantages: To be robust, this method requires a

large (computationally expensive)

database. Concatenating phones

without appropriate blending can result

in abrupt changes (clipping glitches).

2. Waveforms from concatenation

- **Diphone**: *n*. Middle of one phoneme to the middle of the next.
- Diphones are useful units because the middle of a phoneme is often in a steady state and recording diphones allows us to capture relevant acoustic transitions between phonemes.
- One speaker will record at least one version of each diphone, and in some cases whole (popular) words.

2. Waveforms from concatenation

- Given a phoneme dictionary of 50 phonemes, we might expect a (reduced) diphone dictionary of 1000 to 2000 diphones (multiplicatively more if we need to record diphones with/without stress, etc.)
- When synthesizing an utterance, we extract relevant sequences of diphones, concatenate them together, and often perform some acoustic post-processing on the boundaries, or on the overall prosody of the utterance.

 Often involves the uniform tube model or some other biologically-inspired model of air propagation through the vocal tract.

Advantages: This method is computationally

inexpensive and allows us to study speech

production scientifically, and to account

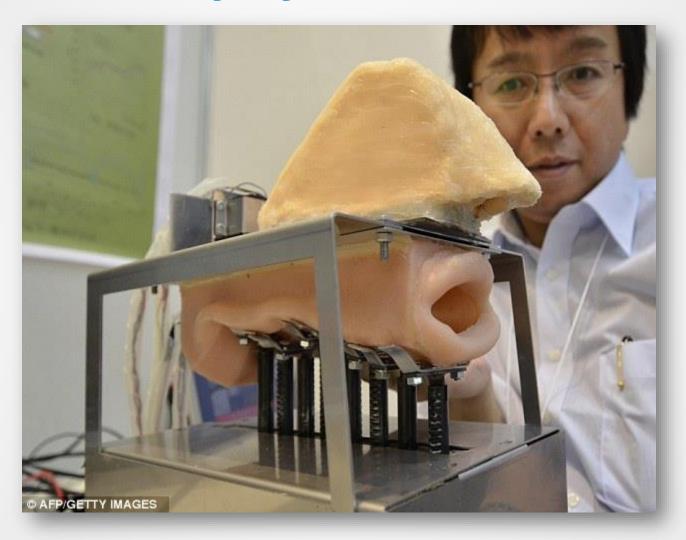
for particular articulatory constraints.

Disadvantages: The resulting speech is not entirely

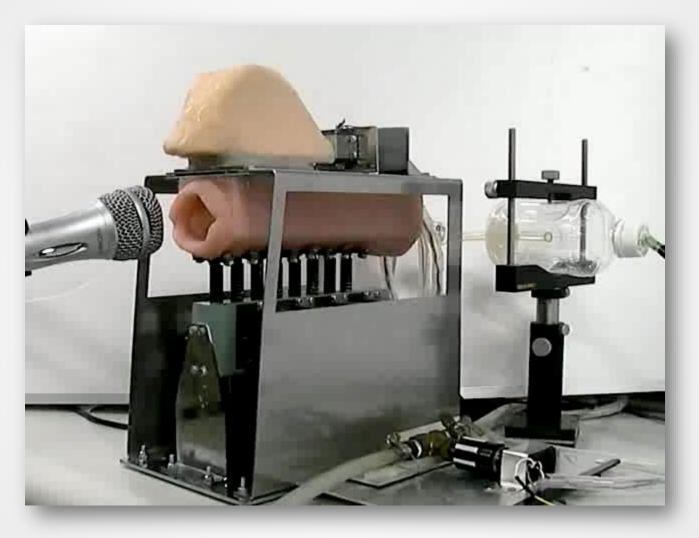
natural, and it can be difficult to modify

these systems to imitate new synthetic

speakers, or even complex articulations.



http://www.youtube.com/watch?v=Bht96voReEo



Note: this is singing, not speech (in case it's not obvious)

