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Logistics (Feb 16, 2022)
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• A2 released on Feb 12, due Mar 11
• Please do not share assignment codes after you are done
• A2 tutorials planned schedule:
• Feb 18: A2 tutorial – 1 (delivery: zoom)
• Mar 4: A2 tutorial – 2  (delivery: in person)
• Mar 11: A2 – Q/A and OH (submission due at mid-night)

• Reading week break next week (no classes or tutorials)

• Course drop deadline: Feb 20, 2022 (see SGS calendar)
• Office hours: Tuesdays 10 am – 11 am (zoom, note the channel)
• Lecture delivery: 
• Online (as is) until Feb 18
• Reading week break: Feb 21-25 (no lectures or tutorials)
• In-person Feb 28th onwards

• Final exam: planned in-person



Hidden Markov Models (HMMs)
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• L7 (1/3) :
• Observable (+ multivariate) models
• HMMs and fundamental tasks

• L7 (2/3) :
• The forward and backward procedures (FP, BP)
• The Viterbi algorithm

• L7 (3/3) :
• EM algorithms
• Baum-Welch (BW)
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Observable Markov model

• We’ve seen this type of model: 
• e.g., consider the 7-word vocabulary:
{𝑠ℎ𝑖𝑝, 𝑝𝑎𝑠𝑠, 𝑐𝑎𝑚𝑝, 𝑓𝑟𝑜𝑐𝑘, 𝑠𝑜𝑐𝑐𝑒𝑟,𝑚𝑜𝑡ℎ𝑒𝑟, 𝑡𝑜𝑝𝑠}

• What is the probability of the sequence
𝑠ℎ𝑖𝑝, 𝑠ℎ𝑖𝑝, 𝑝𝑎𝑠𝑠, 𝑠ℎ𝑖𝑝, 𝑡𝑜𝑝𝑠 ?

• Assuming a bigram model (i.e., 1st-order Markov),
𝑃 𝑠ℎ𝑖𝑝|<s> 𝑃 𝑠ℎ𝑖𝑝 𝑠ℎ𝑖𝑝 𝑃 𝑝𝑎𝑠𝑠 𝑠ℎ𝑖𝑝
6 𝑃 𝑠ℎ𝑖𝑝 𝑝𝑎𝑠𝑠 𝑃(𝑡𝑜𝑝𝑠|𝑠ℎ𝑖𝑝)
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Observable Markov model
• This can be conceptualized 

graphically.

• We start with 𝑁 states,
𝑠!, 𝑠", … , 𝑠# that represent 
unique observations in the 
world.

• Here, 𝑁 = 7 and each 
state represents one of the 
words we can observe. 

5
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Observable Markov model
• We have discrete 

timesteps, 𝑡 = 0, 𝑡 = 1,…

• On the 𝑡$% timestep the 
system is in exactly one of 
the available states, 𝒒𝒕.
• 𝑞$ ∈ {𝑠!, 𝑠", … , 𝑠#}

• We could start in any state. 
The probability of starting 
with a particular state 𝑠 is 
𝑃 𝑞' = 𝑠 = 𝝅(𝒔)

𝑃 𝑞! = 𝑠ℎ𝑖𝑝 = 𝜋(𝑠ℎ𝑖𝑝)
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Observable Markov model
• At each step we must 

move to a state with some 
probability.

• Here, an arrow from 𝑞$ to 
𝑞$(! represents 
𝑃(𝑞$(!|𝑞$)

• 𝑃 𝑠ℎ𝑖𝑝 𝑠ℎ𝑖𝑝
• 𝑃 𝑡𝑜𝑝𝑠 𝑠ℎ𝑖𝑝
• 𝑃 𝑝𝑎𝑠𝑠 𝑠ℎ𝑖𝑝
• 𝑃 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝 = 0
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Observable Markov model
• Probabilities on all outgoing 

arcs must sum to 1.

• 𝑃 𝑠ℎ𝑖𝑝 𝑠ℎ𝑖𝑝 +
𝑃 𝑡𝑜𝑝𝑠 𝑠ℎ𝑖𝑝 +
𝑃 𝑝𝑎𝑠𝑠 𝑠ℎ𝑖𝑝 = 1

• 𝑃 𝑠ℎ𝑖𝑝 𝑡𝑜𝑝𝑠 +
𝑃 𝑡𝑜𝑝𝑠 𝑡𝑜𝑝𝑠 +
𝑃 𝑚𝑜𝑡ℎ𝑒𝑟 𝑡𝑜𝑝𝑠 = 1

• …
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Using the graph

Random walk
Generate sequences by 
transitioning between states.

Observation likelihood
Given a path, build its

probability.

9
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A multivariate system
• What if the probabilities of observing words depended only

on some other variable, like mood?

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

10
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A multivariate system
• What if that variable changes over time?
• e.g., I’m happy one second and 

disgusted the next.
• Here,              state ≡ mood

observation ≡ word.

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01
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• Imagine you have access to my emotional state somehow.

• All your data are completely observable at every time step.

• E.g., 
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Observable multivariate systems

t 0 1 2 …

state …
word mother frock soccer …

≡
𝑚𝑜𝑡ℎ𝑒𝑟, 𝑓𝑟𝑜𝑐𝑘, 𝑠𝑜𝑐𝑐𝑒𝑟 , ∗ , ,∗ ,

12



𝑃 𝑠ℎ𝑖𝑝, 𝑝𝑎𝑠𝑠 , ∗ ,∗ = 𝑃(𝑞; = ∗ )𝑃 𝑠ℎ𝑖𝑝 ∗ 𝑃 ∗ | ∗ 𝑃(𝑝𝑎𝑠𝑠| ∗)

• What is the probability of a sequence of words and states? 
• 𝑃 𝑤!:# , 𝑞!:# = 𝑃 𝑞!:# 𝑃 𝑤!:# 𝑞!:# ≈ ∏$%!

# 𝑃(𝑞$|𝑞$&')𝑃 𝑤$ 𝑞$
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Observable multivariate systems

w P(w)

ship …

pass …

camp …

frock …

soccer …

mother …

tops …

• e.g., 
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• Q: How do you learn these probabilities? 
• 𝑃 𝑤!:# , 𝑞!:# ≈ ∏$%!

# 𝑃(𝑞$|𝑞$&')𝑃 𝑤$ 𝑞$
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Observable multivariate systems

w P(w)

ship …

pass …

camp …

frock …

soccer …

mother …

tops …

• A: When all data are observed, basically the same as before.
• 𝑃 𝑞$ 𝑞$&' = ((*"#$*")

((*"#$)
is learned with MLE from training data.

• 𝑃 𝑤$ 𝑞$ = ((,",*")
((*")

is also learned with MLE from training data.
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• Q: What if you don’t know the states during testing?
• e.g., compute 𝑃( 𝑠ℎ𝑖𝑝, 𝑠ℎ𝑖𝑝, 𝑝𝑎𝑠𝑠, 𝑓𝑟𝑜𝑐𝑘 )

• Q: What if you don’t know the states during training?

CSC401/2511 – Winter 2022

Hidden variables

MD DT NN VB …

ship ship pass frock

15
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Examples of hidden phenomena

• We want to represent surface (i.e., observable) 
phenomena as the output of hidden underlying systems.
• e.g.,
• Words are the outputs of hidden parts-of-speech,
• French phrases are the outputs of hidden English phrases,
• Speech sounds are the outputs of hidden phonemes.

• in other fields,
• Encrypted symbols are the outputs of hidden messages,
• Genes are the outputs of hidden functional relationships,
• Weather is the output of hidden climate conditions,
• Stock prices are the outputs of hidden market conditions,
• …

16
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Definition of an HMM

• A hidden Markov model (HMM) is specified by the 
5-tuple {𝑆,𝑊, Π, 𝐴, 𝐵}:
• 𝑆 = {𝑠!, … , 𝑠#} : set of states (e.g., moods)
• 𝑊 = {𝑤!, … , 𝑤)} : output alphabet (e.g., words)

• Π = {𝜋!, … , 𝜋#} : initial state probabilities
• 𝐴 = 𝑎*+ , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities
• 𝐵 = 𝑏* 𝑤 , 𝑖 ∈ 𝑆, 𝑤 ∈ 𝑊 : state output probabilities 

yielding
• 𝑄 = {𝑞', … , 𝑞,-!}, 𝑞* ∈ 𝑆 : state sequence
• 𝒪 = ℴ', … , ℴ,-! , ℴ* ∈ 𝑊 : output sequence

𝜃

17
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A hidden Markov production process

• 𝑡 ≔ 0
• Start in state 𝑞' = 𝑠* with probability 𝜋*
• Emit observation symbol ℴ' = 𝑤. with probability 𝑏*(ℴ')
• While (not forever)
• Go from state 𝑞$ = 𝑠* to state 𝑞$(! = 𝑠+ with probability 𝑎*+
• Emit observation symbol ℴ$(! = 𝑤. with probability 
𝑏+(ℴ$(!)
• 𝑡 ≔ 𝑡 + 1

• An HMM is a representation of a process in the world.
• We can synthesize data, as in Shannon’s game.

• This is how an HMM generates new sequences:

18
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Fundamental tasks for HMMs

1. Given a model with particular parameters 𝜃 = Π, 𝐴, 𝐵 , 
how do we efficiently compute the likelihood of a 
particular observation sequence, 𝑃(𝒪; 𝜃)?

We previously computed the probabilities of word sequences 
using N-grams.

The probability of a particular sequence is usually useful as a 
means to some other end.

19
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Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃, 
how do we choose a state sequence 𝑄 = {𝑞+, … , 𝑞,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 

20
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Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪, how do we 
choose the best parameters 𝜃 = Π, 𝐴, 𝐵 that explain 
the data 𝒪?

This is the task of . 

As before, we want our parameters to be set so that the 
available training data is maximally likely, 

But doing so will involve guessing unseen information.

21
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Task 1: Computing 𝑃(𝒪; 𝜃)
• We’ve seen the probability of a joint sequence of 

observations and states:

𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃
= 𝜋/<𝑏/< ℴ+ 𝑎/</=𝑏/= ℴ. 𝑎/=/>𝑏/> ℴ0 …

• To get the probability of our observations without seeing 
the state, we must sum over all possible state sequences:

𝑃 𝒪; 𝜃 = ∑1𝑃 𝒪, 𝑄; 𝜃 = ∑1𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .

24
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Computing 𝑃(𝒪; 𝜃) naïvely 
• To get the total probability of our observations, we could 

directly sum over all possible state sequences:

𝑃 𝒪; 𝜃 = ∑1𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃 .

• For observations of length 𝑇, each state sequence involves 
2𝑇 multiplications (1 for each state transition, 
1 for each observation, 1 for the start state, minus 1).
• There are up to 𝑁, possible state sequences of length 𝑇

given 𝑁 states.
∴ ~ 1 + 𝑇 + 𝑇 − 1 > 𝑁, multiplications

25
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Computing 𝑃(𝒪; 𝜃) cleverly

• To avoid this complexity, we use dynamic programming;
we remember, rather than recompute, partial results.

• We make a trellis which is an array of states vs. time.
• The element at (𝑖, 𝑡) is 𝜶𝒊 𝒕

the probability of being in state 𝑖 at time 𝑡
after seeing all observations to that point:
𝑃(ℴ3:5, 𝑞5 = 𝑠6; 𝜃)

26



CSC401/2511 – Winter 2022

Trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 = 2

𝑎%!%"𝑏%" ℴ"

𝑎%#%$𝑏%$ ℴ$

27
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 = 2

28
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 = 2
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 =2

Notice that I already computed a 
path through this node

31
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Alternative paths through the trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Probability of 
being in state 𝑠#

at time 𝑡 =2

Notice that I already computed a 
path through this node

Each path 
through this node 

will have 
probability 

𝑃 … 𝑎%"%$𝑏%$ ℴ$

∑𝑃 … = 𝛼$(1)
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AND SO ON…

33
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Trellis
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

To compute the probabilities of 
the black node and the yellow
node, I need (among others) the 
probabilities of the orange node 
and the purple node:

I compute once, and save them.

34
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The Forward procedure

• To compute
𝛼6 𝑡 = 𝑃(ℴ+:5, 𝑞5 = 𝑠6; 𝜃)

we can compute 𝛼8(𝑡 − 1) for possible previous states 𝑠8,
then use our knowledge of 𝑎86 and 𝑏6(ℴ5)

• We compute the trellis left-to-right (because of the 
convention of time) and top-to-bottom (‘just because’).

• Remember: ℴ5 is fixed and known.
𝛼6(𝑡) is agnostic of the future.

35
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The Forward procedure

• The trellis is computed left-to-right and top-to-bottom.

• There are three steps in this procedure:
• Initialization: Compute the nodes in the first

column of the trellis (𝑡 = 0).

• Induction: Iteratively compute the nodes in the
rest of the trellis (1 ≤ 𝑡 < 𝑇).

• Conclusion: Sum over the nodes in the last
column of the trellis (𝑡 = 𝑇 − 1).

36
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Initialization of Forward procedure
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

𝛼J 0 ≔ 𝜋J𝑏* ℴ' ,
𝑖 ≔ 1. . 𝑁

(Probability of starting in 
state 𝑖 and reading the first 

word there)
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Induction of Forward procedure
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

𝛼K 𝑡 + 1 ≔ ,
JLM

N

𝛼J 𝑡 𝑎JK𝑏K ℴOPM ,

for 𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 0. . (𝑇 − 2)

(Probability of getting to state 𝑗 at 
time 𝑡 + 1)
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Induction of Forward procedure

𝒔𝑵
𝜶𝑵 𝒕

𝑡 𝑡 + 1

𝒔𝟏
𝜶𝟏 𝒕

𝒔𝟐
𝜶𝟐 𝒕

𝒔𝟑
𝜶𝟑 𝒕 𝒔𝒋

𝜶𝒋 𝒕 + 𝟏

𝑎#'𝑏'(ℴ()")

𝑎
"' 𝑏' (ℴ

()" )𝑎
$' 𝑏' (ℴ

()" )

𝑎!'
𝑏'(ℴ

()"
)
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Conclusion of Forward procedure
St

at
e

Time, 𝑡

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

Sum over all possible final 
states.

𝑃 𝒪; 𝜃 =3
$%'

.

𝛼$(𝑇 − 1)
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑚𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝
We need initial state probabilities 
𝚷 and transition probabilities 𝜶𝒊𝒋

𝚷 = 0.80

𝚷 = 0.20

𝚷 = 0

0.4

0.1

0.80.2

1.0

0.5

41
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

𝑡 = 0 𝑡 = 1 𝑡 = 2

Initialization

Compute the probability of starting in state 
𝑖 and reading the first word there

𝜶𝒊 𝟎 ≔ 𝝅𝒊𝒃𝒊 𝓸𝟎

𝛂 𝟎 = 𝟎. 𝟖𝟎 ×𝟎. 𝟏𝟎 = 𝟎. 𝟎𝟖

𝛂 𝟎 = 𝟎. 𝟐𝟎 ×𝟎. 𝟎𝟗 = 𝟎. 𝟎𝟏𝟖

𝛂 𝟎 = 𝟎 ×𝟎. 𝟎𝟓 = 𝟎

0.08

0.018

0

𝑚𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

𝑡 = 0 𝑡 = 1 𝑡 = 2

Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

𝛼' 𝑡 + 1 ≔ ]
+,"

!

𝛼+ 𝑡 𝑎+'𝑏' ℴ()"

𝛂 𝒕 + 𝟏 = 𝟎. 𝟎𝟖 𝟎. 𝟒 𝟎. 𝟔
+ 𝟎. 𝟎𝟏𝟖 𝟎 𝟎. 𝟔
+ 𝟎 𝟎 𝟎. 𝟔
= 𝟎. 𝟎𝟏𝟗𝟐

0.08

0.018

0

0.0192

𝑚𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

𝑡 = 0 𝑡 = 1 𝑡 = 2

Induction

Iteratively compute the rest of the nodes in 
the trellis; i.e., the probability of getting to 
state j at time t+1

𝛼' 𝑡 + 1 ≔ ]
+,"

!

𝛼+ 𝑡 𝑎+'𝑏' ℴ()"

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

𝑚𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝
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The Forward procedure - Example

• Let’s compute P mother, frock, ship

𝑡 = 0 𝑡 = 1 𝑡 = 2

0.08

0.018

0

0.0192

0.0078

0.008

0.00076
8

0.00283

0.0048

Conclusion

Sum over all possible final states

𝑷 𝓞;𝜽 =D
𝒊#𝟏

𝑵

𝜶𝒊(𝑻 − 𝟏)

𝑃 𝒪; 𝜃
= 0.00076 + 0.00283 + 0.0048
= 𝟎. 𝟎𝟎𝟖𝟑𝟗

𝑚𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑐𝑘 𝑠ℎ𝑖𝑝
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The Forward procedure

• The naïve approach needed 2𝑇 > 𝑁, multiplications.

• The Forward procedure (using dynamic programming) 
needs only 2𝑁0𝑇 multiplications.

• The Forward procedure gives us 𝑃(𝒪; 𝜃).

• Clearly, but less intuitively, we can also compute the trellis 
from back-to-front, i.e., backwards in time…

46



CSC401/2511 – Winter 2022

Remember the point

• The point was to compute the equivalent of

𝑃 𝒪; 𝜃 =H
1

𝑃(𝒪, 𝑄; 𝜃)

where
𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋/<𝑏/< ℴ+ 𝑎/</=𝑏/= ℴ. 𝑎/=/>𝑏/> ℴ0 …

The Forward algorithm stores all possible 1-state sequences (from the 
start), to store all possible 2-state sequences (from the start), to store all 
possible 3-state sequences (from the start)…

𝛼+ 0
𝛼+ 1
𝛼+ 2
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Remember the point

• But, we can compute these factors in reverse
𝑃 𝒪,𝑄; 𝜃 = 𝑃 𝒪 𝑄; 𝜃 𝑃 𝑄; 𝜃

= 𝜋^! …𝑏^"#$ ℴ_`a 𝑎^"#$^"#%𝑏^"#% ℴ_`b 𝑎^"#%^"#&𝑏^"#& ℴ_`M

We can still deal with sequences that evolve forward in time, but simply 
store temporary results in reverse…

𝛽+ 𝑇 − 2

𝛽+ 𝑇 − 3
𝛽+ 𝑇 − 4
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The Backward procedure

• In the 𝑖, 𝑡 59 node of the trellis, we store 
𝛽6 𝑡 = 𝑃(ℴ5:.:,-.|ℴ+:5, 𝑞5 = 𝑠6; 𝜃)

= 𝑃(ℴ5:.:,-.|𝑞5 = 𝑠6; 𝜃)

which is computed by summing probabilities on outgoing
arcs from that node.

𝛽6 𝑡 is the probability of starting in state 𝑖 at time 𝑡 then 
observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.
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Step 1: Backward initialization
St

at
e

Time, 𝑡

𝑠!
0

𝑠"

𝑠#

𝑠$

𝑇 − 3

1

1

1

𝑇 − 1𝑇 − 2

𝛽J 𝑇 − 1 ≔ 1,
𝑖 ≔ 1. . 𝑁

(We’ll see why, soon)
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Step 2: Backward induction
St

at
e

Time, 𝑡

𝑠!
0

𝑠"

𝑠#

𝑠$

1

1

1

𝑇 − 1

𝛽J 𝑡 =,
KLM

N

𝑎JK𝒃𝒋 𝓸𝒕P𝟏 𝛽K 𝑡 + 1 ,

𝑗 ≔ 1. . 𝑁, 𝑡 ≔ 𝑇 − 2 . . 0

(Probability of being in state 𝑖 at 
time 𝑡, then reading everything

to follow)
𝑇 − 3 𝑇 − 2
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Step 3: Backward conclusion
St

at
e

Time, 𝑡

𝑠!
0

𝑠"

𝑠#

𝑠$

𝑇 − 1

Sum over all possible 
initial states.

𝑃 𝒪; 𝜃

=3
$%'

.

𝜋$𝑏$(ℴ!)𝛽$(0)

𝑇 − 3 𝑇 − 2
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The Backward procedure

• Initialization
𝛽6 𝑇 − 1 = 1, 𝑖 ≔ 1. . 𝑁

• Induction
𝛽6 𝑡 = ∑8;.< 𝑎68𝑏8 ℴ5:. 𝛽8 𝑡 + 1 , 𝑖 ≔ 1. . 𝑁

𝑡 ≔ 𝑇 − 2. . 0

• Conclusion
𝑃 𝒪; 𝜃 = ∑*U!# 𝜋*𝑏*(ℴ')𝛽*(0)
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The Backward procedure – so what?

• The combination of Forward and Backward procedures 
will be vital for solving parameter re-estimation, 
i.e., training.

• Generally, we can combine 𝛼 and 𝛽 at any point in time to 
represent the probability of an entire observation 
sequence…
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Combining 𝜶 and 𝜷
𝑃 𝒪, 𝑞5 = 𝑖; 𝜃 = 𝛼6 𝑡 𝛽6 𝑡

∴ 𝑃 𝒪; 𝜃 =H
6;.

<

𝛼6 𝑡 𝛽6(𝑡)

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1

This requires 
the current 
word to be 
incorporated by 
𝛼J 𝑡 , but not
𝛽J 𝑡 .

This isn’t merely 
for fun – it will 
soon become 
useful…
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Fundamental tasks for HMMs

2. Given an observation sequence 𝒪 and a model 𝜃, 
how do we choose a state sequence 𝑄∗ = {𝑞+, … , 𝑞,-.}
that best explains the observations?

This is the task of inference – i.e., guessing at the best 
explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification. 
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Task 2: Choosing 𝑸∗ = {𝒒𝟎…𝒒𝑻$𝟏}
• The purpose of finding the best state sequence 𝑸∗ out of 

all possible state sequences 𝑄 is that it tells us what is 
most likely to be going on ‘under the hood’.

• With the Forward algorithm, we didn’t care about specific 
state sequences – we were summing over all possible state 
sequences.
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Task 2: Choosing 𝑸∗ = {𝒒𝟎…𝒒𝑻$𝟏}
• In other words,

𝑄∗ = argmax
1

𝑃(𝒪, 𝑄; 𝜃)

where 

𝑃 𝒪, 𝑄; 𝜃 = 𝜋/<𝑏/< ℴ+ Q
5;.

,-.

𝑎/fg=/f𝑏/f ℴ5
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Why choose 𝑸∗ = {𝒒𝟎…𝒒𝑻$𝟏}? 
• Recall the purpose of HMMs:
• To represent multivariate systems where some variable is 

unknown/hidden/latent.

• Finding the best hidden-state sequence 𝑄∗ allows us to:
• Identify unseen parts-of-speech given words,
• Identify equivalent English words given French words,
• Identify unknown phonemes given speech sounds,
• Decipher hidden messages from encrypted symbols,
• Identify hidden relationships from gene sequences,
• Identify hidden market conditions given stock prices,
• …
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Example – PoS state sequences

• Will/MD the/DT chair/NN chair/?? the/DT 
meeting/NN from/IN that/DT chair/NN?

MD DT NN VB …

Will the chair chair

a)

MD DT NN NN …

Will the chair chair

b)
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Recall
• Observation likelihoods depend on the 

state, which changes over time

• We cannot simply choose the state
that maximizes the probability of
𝑜$ without considering the state
sequence.

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01
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The Viterbi algorithm

• The Viterbi algorithm is an inductive dynamic-
programming algorithm that uses a new kind of trellis.

• We define the probability of the most probable path 
leading to the trellis node at (state 𝑖, time 𝑡) as

𝜹𝒊 𝒕 = max
/<…/fg=

𝑃(𝑞+…𝑞5-., ℴ+…ℴ5, 𝒒𝒕 = 𝒔𝒊; 𝜃)

• 𝝍𝒊(𝒕): The best possible previous state, 
if If I’m in state 𝑖 at time 𝑡.
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Viterbi example
• For illustration, we assume a 

simpler state-transition 
topology:

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

𝑠9

𝑠@

𝑠A

0.4

0.50.1

0.80.21.0
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Step 1: Initialization of Viterbi
• Initialize with 𝛿* 0 = 𝜋*𝑏*(ℴ') and 𝜓* 0 = 0 for all states. 

𝝅𝒅𝒃𝒅(ℴ𝟎)
𝟎

𝜹: max probability

𝜓: backtrace

Time, 𝑡
0 1 2

𝝅𝒉𝒃𝒉(ℴ𝟎)
𝟎

𝝅𝒔𝒃𝒔(ℴ𝟎)
𝟎
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Step 1: Initialization of Viterbi
• For example, let’s assume 

𝜋V = 0.8, 𝜋% = 0.2 and 𝒪 = 𝑠ℎ𝑖𝑝, 𝑓𝑟𝑜𝑐𝑘, 𝑡𝑜𝑝𝑠

𝟎. 𝟖 n 𝟎. 𝟏
𝟎

𝜹: max probability

𝜓: backtrace

Observations, ℴ(

𝟎. 𝟐 n 𝟎. 𝟑
𝟎

𝟎 n 𝟎. 𝟐𝟓
𝟎

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

𝟎. 𝟎𝟔
𝟎

𝜹𝒋 𝒕 = max
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋 𝒃𝒋(ℴ𝒕)

𝝍𝒋 𝒕 = argmax
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋

The best path to state 𝑠0 at time 𝑡, 𝛿0 𝑡 , 
depends on the best path to each 

possible previous state, 𝛿$ 𝑡 − 1 , and 
their transitions to 𝑗, 𝑎$0

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎
𝟎
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝜹𝒅 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

𝝍𝒅 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝒉 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

𝝍𝒔 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

Specifically…
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝟎 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿& 0 = 0, 𝑎&' = 0, ∴ 𝛿& 0 𝑎&' = 0

𝛿( 0 = 0.06, 𝑎(' = 0, ∴ 𝛿( 0 𝑎(' = 0

𝛿' 0 = 0.08, 𝑎'' = 0.4, ∴ 𝜹𝒅 𝟎 𝒂𝒅𝒅 = 𝟎. 𝟎𝟑𝟐
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝜹𝟏 𝒉 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟏)

𝝍𝒉 𝟏 = argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉

𝜹𝒔 𝟏 = max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔
𝛿' 0 𝑎'' = 0.032, 𝑏' 𝑓𝑟𝑜𝑐𝑘 = 0.6

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒅 𝒃𝒅 ℴ𝟏 = 𝟏. 𝟗𝟐×𝟏𝟎*𝟐 = 𝟏. 𝟗𝟐𝑬*𝟐

𝑑 was the most likely previous state

69



CSC401/2511 – Winter 2022

Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝛿& 0 = 0, 𝑎&( = 0, ∴ 𝛿& 0 𝑎&( = 0

𝛿( 0 = 0.06, 𝑎(( = 0.8, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒉 = 𝟎. 𝟎𝟒𝟖

𝛿' 0 = 0.08, 𝑎'( = 0.5, ∴ 𝛿' 0 𝑎'( = 0.04

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝜹𝟏 𝒔 = max
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟏)

𝝍𝟏 𝒔 = argmax
𝒊

𝜹𝟎 𝒊 𝒂𝒊𝒔

𝟗. 𝟔𝑬4𝟑

𝒉

𝛿( 0 𝑎(( = 0.048, 𝑏( 𝑓𝑟𝑜𝑐𝑘 = 0.2

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒉 𝒃𝒉 ℴ𝟏 = 𝟗. 𝟔×𝟏𝟎*𝟑 = 𝟗. 𝟔𝑬*𝟑
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔(ℴ𝟏)

argmax
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔

𝛿& 0 = 0, 𝑎&& = 1.0, ∴ 𝛿& 0 𝑎&& = 0

𝛿( 0 = 0.06, 𝑎(& = 0.2, ∴ 𝜹𝒉 𝟎 𝒂𝒉𝒔 = 𝟎. 𝟎𝟏𝟐

𝛿' 0 = 0.08, 𝑎'& = 0.1, ∴ 𝛿' 0 𝑎'& = 0.008
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

𝛿( 0 𝑎(( = 0.012, 𝑏& 𝑓𝑟𝑜𝑐𝑘 = 0.3

∴ max
𝒊

𝜹𝒊 𝟎 𝒂𝒊𝒔 𝒃𝒔 ℴ𝟏 = 𝟑. 𝟔×𝟏𝟎*𝟑 = 𝟑. 𝟔𝑬*𝟑
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

𝛿7 2 = max
+

𝛿+ 1 𝑎+% 𝑏%(ℴ$)

𝜓7 2 = argmax
+

𝛿+ 1 𝑎+7

𝛿8 2 = max
+

𝛿+ 1 𝑎+8 𝑏8(ℴ$)

𝜓8 2 = argmax
+

𝛿+ 1 𝑎+8

𝛿% 2 = max
+

𝛿+ 1 𝑎+% 𝑏%(ℴ$)

𝜓% 2 = argmax
+

𝛿+ 1 𝑎+%
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

𝛿7 2 = max
+

𝛿+ 1 𝑎+% 𝑏%(ℴ$)

𝜓7 2 = argmax
+

𝛿+ 1 𝑎+7

𝜹𝟐 𝒉 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒉 𝒃𝒉(𝒐𝟐)

𝝍𝒉 𝟐 = argmax
𝒊

𝜹𝒊 𝟏 𝒂𝒊𝒉

𝜹𝟐 𝒔 = max
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔 𝒃𝒔(𝒐𝟐)

𝝍𝟐 𝒔 = argmax
𝒊

𝜹𝟏 𝒊 𝒂𝒊𝒔

𝛿& 1 = 3.6𝐸*/, 𝑎&' = 0,
∴ 𝛿& 1 𝑎&' = 0

𝛿( 1 = 9.6𝐸*/, 𝑎(' = 0,
∴ 𝛿( 1 𝑎(' = 0

𝛿' 1 = 1.92𝐸*0, 𝑎'' = 0.4,
∴ 𝜹𝒅 𝟏 𝒂𝒅𝒅 = 𝟎. 𝟎𝟎𝟕𝟔𝟖
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Step 2: Induction of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

𝛿7 2 = 7.68𝐸4# n 0.05
𝜓7 2 = 𝑑

𝛿8 2 = 9.6𝐸4# n 0.4
𝜓8 2 = 𝑑

𝛿% 2 = 3.6𝐸4# n 0.01
𝜓% 2 = 𝑠

Continuing…
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

3.84𝐸49

𝑑

3.84𝐸4#

𝑑

1.92𝐸4:

ℎ

Choose the best final state:

𝑄)∗ = argmax
+

𝛿+ 𝑇
FIX!!!!!
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

3.84𝐸49

𝑑

3.84𝐸4#

𝑑

1.92𝐸4:

ℎ

Recursively choose the best 
previous state:

𝑄(,-∗ = 𝜓.;∗(𝑡)
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Step 3: Conclusion of Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ(

ℴ1 = 𝑠ℎ𝑖𝑝 ℴ" = 𝑓𝑟𝑜𝑐𝑘 ℴ$ = 𝑡𝑜𝑝𝑠

𝟎. 𝟎𝟔
𝟎

𝟎
𝟎

𝟏. 𝟗𝟐𝑬4𝟐

𝒅

𝟗. 𝟔𝑬4𝟑

𝒉

𝟑. 𝟔𝑬4𝟑

𝒉

3.84𝐸49

𝑑

3.84𝐸4#

𝑑

1.92𝐸4:

ℎ Sequence 
probability:

𝑃(𝒪, 𝑄∗; 𝜃)
= max

+
𝛿+(𝑇)
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Aside - Working in the log domain

• Our formulation was
𝑄∗ = argmaxo 𝑃(𝒪, 𝑄; 𝜃)

this is equivalent to
𝑄∗ = argmin

o
− log" 𝑃(𝒪, 𝑄; 𝜃)

where 
−log" 𝑃 𝒪, 𝑄; 𝜃

= −log " 𝜋p!𝑏p! ℴ' −[
$U!

,-!

log" 𝑎p"#$p"𝑏p" ℴ$
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Fundamental tasks for HMMs

3. Given a large observation sequence 𝒪 for training, but 
not the state sequence, how do we choose the ‘best’ 
parameters 𝜃 = Π, 𝐴, 𝐵 that explain the data 𝒪?

This is the task of . 

As with observable Markov models and MLE, we want our 
parameters to be set so that 

the available training data is maximally likely, 
But doing so will involve guessing unseen information…
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Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩
• We want to modify the parameters of our model 
𝜃 = Π, 𝐴, 𝐵 so that 𝑃(𝒪; 𝜃) is maximized for some 
training data 𝒪:

Z𝜃 = argmax
P

𝑃(𝒪; 𝜃)

• Why? E.g., if we later want to choose the best state 
sequence 𝑄∗ for previously unseen test data, the 
parameters of the HMM should be tuned to similar 
training data.
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• E𝜃 = argmax
�

𝑃(𝒪; 𝜃) = argmax
�

∑�𝑃(𝒪, 𝑄; 𝜃)

• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞!:1&' 𝑃 𝑤!:# 𝑞!:# ≈ ∏$%!
# 𝑃(𝑞$|𝑞$&')𝑃 𝑤$ 𝑞$
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Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

Recall that we 
could use MLE 

when 𝑄 was known

Can we do 
this?
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• 𝑃 𝒪, 𝑄; 𝜃 = 𝑃 𝑞':$ 𝑃 𝑤':$ 𝑞':$ ≈ ∏*U'
$ 𝑃(𝑞*|𝑞*-!)𝑃 𝑤* 𝑞*

• If the training data contained state sequences, we could simply 
do maximum likelihood estimation, as before:

• 𝑃 𝑞* 𝑞*-! = rstu$(p%#$ p%)
rstu$(p%#$)

𝑃 𝑤* 𝑞* = rstu$(v%∧p%)
rstu$(p%)

CSC401/2511 – Winter 2022

Task 3: Choosing 𝜽 = 𝚷,𝑨, 𝑩

• But we don’t know the states; we can’t count them.

• However, we can use an iterative hill-climbing approach if we 
can guess the counts using a “good” pre-existing model
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Expecting and maximizing

• If we knew 𝜃, we could make expectations such as
• Expected number of times in state 𝑠*,
• Expected number of transitions 𝑠* → 𝑠+

• If we knew:
• Expected number of times in state s*,
• Expected number of transitions 𝑠* → 𝑠+

then we could compute the maximum likelihood estimate of
𝜃 = 𝜋* , 𝑎*+ , {𝑏* 𝑤 }
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Expectation-maximization

• Expectation-maximization (EM) is an iterative training 
algorithm that alternates between two steps:

• Expectation (E): guesses the expected counts for
the hidden sequence using the 
current model 𝜃.. 

• Maximization (M): computes a new 𝜃 that maximizes
the likelihood of the data, given the
guesses of the E-step. This 𝜃.(! is
then used in the next E-step.

• Continue until convergence or stopping condition…
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Baum-Welch re-estimation
• Baum-Welch (BW): n. a specific version of EM for HMMs.

a.k.a.  ‘forward-backward’ algorithm.

1. Initialize the model.
2. Compute expectations for 𝐶𝑜𝑢𝑛𝑡 𝑞$-!𝑞$ and 

𝐶𝑜𝑢𝑛𝑡 𝑞$ ∧ 𝑤$ given model, training data 𝒪.
3. Adjust our start, transition, and observation 

probabilities to maximize the likelihood of 𝒪.
4. Go to 2. and repeat until convergence or stopping 

condition…
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Local maxima

• Baum-Welch changes 𝜃 to climb a `hill’ in 𝑃(𝒪; 𝜃).
• How we initialize 𝜃 can have a big effect.

𝜽

𝑷(𝒪; 𝜽)
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Step 1: BW initialization
• Our initial guess for the parameters, 𝜃!, can be:

a) All probabilities are uniform
(e.g., 𝑏$ 𝑤2 = 𝑏$(𝑤3) for all
states 𝑖 and words 𝑤)

word P(word)

ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)

ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

word P(word)

ship 0.143

pass 0.143

camp 0.143

frock 0.143

soccer 0.143

mother 0.143

tops 0.143

𝑠9

𝑠@

𝑠A

0.33

0.330.33

0.50.51.0
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Step 1: BW initialization
• Our initial guess for the parameters, 𝜃!, can be:

b) All probabilities are drawn randomly
(subject to the condition 
that ∑$ 𝑃 𝑖 = 1)

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

𝑠9

𝑠@

𝑠A

0.4

0.50.1

0.80.21.0
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Step 1: BW initialization
• Our initial guess for the parameters, 𝜃!, can be:

c) Observation distributions are drawn from prior distributions:
e.g., 𝑏$ 𝑤2 = 𝑃(𝑤2) for all states 𝑖.
sometimes this involves pre-clustering, e.g. 𝑘-means

word P(word)

ship 0.2

pass 0.1

camp 0.03

frock 0.5

soccer 0.07

mother 0.02

tops 0.08

All blue dots are 
words in state BLUE. 
Their probability 
distribution is
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What to expect when you’re 
expecting
• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠*,
• Expected number of transitions 𝑠* → 𝑠+

• If we knew:
• Expected number of times in state s*,
• Expected number of transitions 𝑠* → 𝑠+

then we could compute the maximum likelihood estimate of
𝜃 = 𝑎*+ , {𝑏* 𝑤 }, 𝜋*
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BW E-step (occupation)
• We define

𝜸𝒊 𝒕 = 𝑷(𝒒𝒕 = 𝒊|𝓞; 𝜽𝒌)

as the probability of being in state 𝑖 at time 𝑡, based 
on our current model, 𝜃7, given the entire observation, 𝒪. 

and rewrite as:

𝛾$ 𝑡 =
𝑃(𝑞# = 𝑖, 𝒪; 𝜃7)

𝑃(𝒪; 𝜃7)

=
𝛼$ 𝑡 𝛽$(𝑡)
𝑃(𝒪; 𝜃7)

Remember, 𝛼+ 𝑡
and 𝛽+(𝑡) depend 

on values from 
𝜃 = 𝜋+ , 𝑎+/ , 𝑏+ 𝑤
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Combining 𝜶 and 𝜷
𝑃 𝒪, 𝑞5 = 𝑖; 𝜃 = 𝛼6 𝑡 𝛽6 𝑡

∴ 𝑃 𝒪; 𝜃 =H
6;.

<

𝛼6 𝑡 𝛽6(𝑡)

𝑠!
0 1 2

𝑠"

𝑠#

𝑠$

𝑇 − 1
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BW E-step (transition)
• We define

𝝃𝒊𝒋 𝒕 = 𝑷(𝒒𝒕 = 𝒊, 𝒒𝒕9𝟏 = 𝒋|𝓞; 𝜽𝒌)

as the probability of transitioning from state 𝑖 at
time 𝑡 to state 𝑗 at time 𝑡 + 1 based on our current model, 𝜃7, 
and given the entire observation, 𝒪. This is:

𝜉$0 𝑡 =
𝑃(𝑞# = 𝑖, 𝑞#9' = 𝑗, 𝒪; 𝜃7)

𝑃(𝒪; 𝜃7)

=
𝛼$ 𝑡 𝑎$0𝑏0(ℴ#9')𝛽0(𝑡 + 1)

𝑃(𝒪; 𝜃7)

Again, these 
estimates come 

from our model at 
iteration 𝑘, 𝜃0 .
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BW E-step (transition)

𝑡 𝑡 + 1

𝒔𝒊

𝑡 − 1

𝛼*(𝑡)

𝒔𝒋

𝛽+(𝑡 + 1)
𝑡 + 2

𝑎*+𝑏+(ℴ$(!)
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Expecting and maximizing

• If we knew 𝜃, we could estimate expectations such as
• Expected number of times in state 𝑠*,
• Expected number of transitions 𝑠* → 𝑠+

• If we knew:
• Expected number of times in state s*,
• Expected number of transitions 𝑠* → 𝑠+

then we could compute the maximum likelihood estimate of
𝜃 = 𝑎*+ , {𝑏* 𝑤 }, 𝜋*
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BW M-step

We update our parameters as if we were doing MLE:
I. Initial-state probabilities:

h𝜋* = 𝛾*(0) for 𝑖 ≔ 1. . 𝑁

II. State-transition probabilities:

h𝑎*+ =
∑"&!
'#( y%)($)
∑"&!
'#( z% $

for 𝑖, 𝑗 ≔ 1. . 𝑁

III. Discrete observation probabilities:

j𝑏+ 𝑤 =
∑"&!
'#$ z) $ |ℴ"&+
∑"&!
'#$ z) $

for 𝑗 ≔ 1. . 𝑁 and 𝑤 ∈ 𝒱

𝑃 𝑞! 𝑞"

=
𝐶𝑜𝑢𝑛𝑡(𝑞" 𝑞!)
𝐶𝑜𝑢𝑛𝑡(𝑞")

𝑃 𝑤" 𝑞"
=
𝐶𝑜𝑢𝑛𝑡(𝑤" ∧ 𝑞")
𝐶𝑜𝑢𝑛𝑡(𝑞")
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Baum-Welch iteration

• We update our parameters after each iteration
𝜃Y:. = [𝜋6 , [𝑎68 , Z𝑏8 𝑤

rinse, and repeat until 𝜃Y ≈ 𝜃Y:. (until change almost stops).

• Baum proved that
𝑃 𝒪; 𝜃Y:. ≥ 𝑃(𝒪; 𝜃Y)

although this method does not guarantee a 
global maximum.
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Features of Baum-Welch

• Although we’re not guaranteed to achieve a global 
optimum, the local optima are often ‘good enough’.

• BW does not estimate the number of states, which 
must be ‘known’ beforehand.
• Moreover, some constraints on topology are often 

imposed beforehand to assist training.
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Discrete vs. continuous

• If our observations are drawn from a continuous
space (e.g., speech acoustics), the probabilities 
𝑏!(𝑋) must also be continuous.

• HMMs generalize to continuous
distributions, or multivariate
observations, 
e.g., 𝑏J( −14.28, 0.85, 0.21 ).
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Adaptation

• It can take a LOT of data to train HMMs.
• Imagine that we’re given a trained HMM but not the data.
• Also imagine that this HMM has been trained with data 

from many sources (e.g., many speakers). 

• We want to use this HMM with a particular new source 
for whom we have some data (but not enough to fully train the 
HMM properly from scratch).
• To be more accurate for that source, we want to 

change the original HMM parameters slightly given the 
new data.
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HMM interpolation

• For added robustness, we can combine estimates of a 
generic HMM, 𝑮, trained with lots of data

from many sources with a 
specific HMM, 𝑺, trained with a little data

from a single source.

𝑃Z[5\]^ ℴ = 𝝀𝑃 ℴ; 𝜃_ + 1 − 𝝀 𝑃(ℴ; 𝜃`)

• This gives us a model tuned to our target source (𝑆), but 
with some general ‘knowledge’ (𝐺) built in.
• How do we pick 𝝀 ∈ [𝟎. . 𝟏] ?
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EM for interpolated models

• Strategy can be used for any 𝑃 𝒪; 𝜆 = ∑6 𝜆6𝑃6 𝒪
• Introduce latent states 𝑠 such that 𝑃 𝑠 = 𝑖; 𝜆 = 𝜆6
• Once in state 𝑖, 𝑃 𝒪 𝑠 = 𝑖; 𝜆 = 𝑃6(𝒪)
• Like with HMMs, we estimate 𝐶𝑜𝑢𝑛𝑡 𝑠 = 𝑖 using EM:

𝜆6[\a =
𝑃(𝑠 = 𝑖, 𝒪; 𝜆3b@)
𝑃 𝒪; 𝜆3b@

• This is a (simplified) version of what is done for Jelinek-
Mercer interpolation, as well as Gaussian Mixture 
Models (covered in ASR lecture)
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Held-out data

• Let 𝑇c = {𝒪} be the data used to learn 𝜆, 𝑇6 for 𝑃6 ⋅
• If for most 𝒪 ∈ 𝑇c, 𝑗. 𝑃6 𝒪 ≥ 𝑃8 𝒪 , then 𝜆6 → 1
• This can easily occur when 𝑇6 = 𝑇c, e.g.:
• If 𝑃6 ⋅ is an MLE i-gram model trained on 𝑇c, it will 

outperform 𝑃d6 ⋅ (even if also trained on 𝑇c)
• If 𝑃 ℴ; 𝜃` was trained on 𝑇c but not 𝑃 ℴ; 𝜃_

• Less likely to happen when 𝑇6 ∩ 𝑇c = ∅
• A disjoint 𝑇c is often called held-out or development 

data
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Aside – Maximum a Posteriori (MAP)

• Given adaptation data 𝒪e, the MAP estimate is
Z𝜃 =argmaxP𝑃 𝒪e 𝜃 𝑃(𝜃)

• If we can guess some structure for 𝑃(𝜃), we can use EM 
to estimate new parameters (or Monte Carlo).

• For continuous 𝑏6(ℴ), we use Dirichlet distribution that 
defines the hyper-parameters of the model and the 
Lagrange method to describe the change in parameters 
𝜃 ⟹ Z𝜃.

108



CSC401/2511 – Winter 2022

Generative vs. discriminative
• HMMs are generative classifiers. You can generate synthetic 

samples from because they model the phenomenon itself.
(e.g. 𝑃 𝒪, 𝑄; 𝜃 or 𝑃 𝒪; 𝜃 )
• Other classifiers (e.g., artificial neural networks and support 

vector machines) are discriminative in that their probabilities 
are trained specifically to reduce the error in classification.
(e.g. 𝑃 𝑄 𝒪; 𝜃 )

ANN SVM

...

...
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Summary

• Important ideas to know:
• The definition of an HMM (e.g., its parameters).
• The purpose of the Forward algorithm.
• How to compute 𝛼6(𝑡) and 𝛽6(𝑡)

• The purpose of the Viterbi algorithm.
• How to compute 𝛿6(𝑡) and 𝜓6(𝑡).

• The purpose of the Baum-Welch algorithm.
• Some understanding of EM.
• Some understanding of the equations.
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Reading

• (optional) Manning & Schütze: Section 9.2—9.4.1
• Note that they use another formulation…

• Rabiner, L. (1990) A Tutorial on Hidden Markov Models and 
Selected Applications in Speech Recognition. In: Readings 
in speech recognition. Morgan Kaufmann.
(posted on course website)

• Optional software: 
• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/)

• Sci-kit’s HMM (https://github.com/hmmlearn/hmmlearn)
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