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2CSC401/2511 – Spring 2022

• Assignment 1: due Feb 11, 2022 
• Assignment 2: release Feb 12, 2022
• Lecture delivery: 
• Online (as is) until Feb 18
• Reading week break: Feb 21-25 (no lectures)
• In-person Feb 28th onwards

• Final exam: planned in-person



Neural networks
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• Introduction
• Word-level representations
• Neural language models
• Recurrent neural networks
• Sequence-to-sequence modelling
• Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou
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Artificial neural networks

• Artificial neural networks (ANNs) were (kind of) inspired 
from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).
• The nucleus fires (sends an electric signal along the axon) 

given input from other neurons.
• ‘Learning’ occurs at the synapses that connect neurons, 

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus
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Perceptron: an artificial neuron

• Each neuron calculates a weighted sum of its inputs and 
compares this to a threshold, !. If the sum exceeds the 
threshold, the neuron fires.
• Inputs "$ are activations from adjacent neurons, each 

weighted by a parameter #$.

If % > ', ) ≔ 1
Else, ) ≔ 0
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McCullogh-Pitts model

&()



CSC401/2511 – Spring 2022 6

Perceptron output

• Perceptron output is determined by activation functions, 
%(), which can be non-linear functions of weighted input.
• Popular activation functions include tanh and the sigmoid:

% ( = * ( =
1

1 + -01
• The sigmoid’s derivative is the easily computable )% = ) ⋅ (1 − ))
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Rectified Linear Units (ReLUs)

• Since 2011, the ReLU $ = % ( = max(0, () has become 
more popular.
• More biologically plausible, sparse activation, limited (vanishing) 

gradient problems, efficient computation.

Input

O
ut

pu
t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is
the softplus log(1 + -1), 
which has a simple 
derivative 1/(1 + -21)

• Why do we care about the 
derivatives?
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Perceptron learning

• Weights are adjusted in proportion to the error (i.e., the 
difference between the desired, 7, and the actual output, $.
• The derivative %′ allows us to assign blame proportionally.

• Given a small learning rate, 9 (e.g., 0.05), we can repeatedly 
adjust each of the weight parameters by

#3 ≔ #3 + 9 ⋅ >
$4-

5

?@@$ ⋅ %′(($) ⋅ "3[B]

where ?@@$ = (7$ − $$), among E training examples.
!"
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McCullogh-Pitts model

,()

Assumes 
mean-square 
error objective
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Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by 
threshold perceptra (since they are not linearly separable).

!!

!"

6! ∧ 6"
!!

!"

6! ∨ 6"
!!

!"

6!⨁6"
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Artificial neural networks

• Complex functions can be represented by layers of 
perceptron (multi-layer perceptron, MLPs). 

MLP

...

...
• Inputs are passed to the 

input layer.
• Activations are propagated 

through hidden layers
to the output layer. 

• MLPs are quite robust to noise, 
and are trained specifically to 
reduce error.
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Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?
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Words

• Given a corpus with F (e.g., = 100G) unique words, the 
classical approach is to uniquely assign each word with an 
index in F-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features
to each index in a much denser vector.

• E.g., ‘VBG’, ‘negative’, ‘age-of-acquisition’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
" ≪ !

lugubrious



been feeling lugubrious all day
felt a lugubrious sadness in

…

-($& = ./&/0123/4|$&'# = 677.28&, $&'( = 0778, … )

https://code.google.com/p/word2vec/

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model1. 
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"You shall know a word by the company it keeps." 
— J.R. Firth (1957)

Learning word semantics

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.

https://code.google.com/p/word2vec/


Continuous bag of words (1 word context)

14

feeling lugubrious all
a lugubrious sadness

…

" ##
(%×') )$

#%
('×%) *

D
 =

 1
00

K

0,0,0,…1,… , 0
feeling

D
 =

 1
00

K

0,1,0,… , 0,… , 0
lugubrious

Note: we have two
vector representations of 
each word:
)$ = "⊺## (+'( row of ##)
,$ = #%

⊺* (+'( col of #%) 
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- +) +* =
exp(,$!

⊺ )$")
∑$+!, exp(,$⊺)$")Where 

)$ is the ‘input’ vector for word +,
,$ is the ‘output’ vector for word +,

‘softmax’:

‘embedding’

w

W



Continuous bag of words (! words context)
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• If we want to use more context, H, 
we need to change the network 
architecture somewhat.
• Each input word will produce one 

of H embeddings
• We just need to add an

intermediate layer, usually this 
just averages the embeddings. 

been feeling lugubrious all
felt a lugubrious sadness

…



Skip-grams

16CSC401/2511 – Spring 2022

• Skip-grams invert the task – we predict 
context words given the current word.

• According to Mikolov, 
Skip-gram: works well with small amounts 
of training data, represents rare words.

CBOW: several times faster to train, slightly 
better accuracy for frequent words 

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word 
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf


Actually doing the learning
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! =

#!
#!!"#$!"%

⋮
#&'()"*'

%!
%!!"#$!"%

⋮
%&'()"*'

∈ ℝ+,×.

• Given I-dimensional embeddings, and J word types, our 
parameters, K, are:



Actually doing the learning
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We have many options. Gradient descent is popular.
We want to optimize, given ! tokens of training data,

! " = 1
%&
$%&

'

&
()*+*),+-.

log*(,$/+|,$)

And we want to update vectors "/345 then #/3 within $
$ 01/ = $ 234 − '(5) $

so we’ll need to take the derivative of the (log of the) 
softmax function:

- $) $! =
exp(>*%

⊺ ?*&)
∑*"#
, exp(>*⊺?*&)

Where )$ is the ‘input’ vector for word +,
and ,$ is the ‘output’ vector for word +,



Actually doing the learning
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We need the derivative of the (log of the) softmax function:

!
!"'#

log & '()* '( = !
!"'#

log
exp(-'#$%

⊺ "'#)
∑',-. exp(-'⊺"'#)

= !
!"'#

log exp -'#$%
⊺ "'# − log1

',-

.
exp(-'⊺"'#)

= -'#$% − !
!"'#

log1
',-

.
exp(-'⊺"'#)

[apply the chain rule 0102-.
= 01

03
03
02-.

]
= -'#$% −1

',-

.
2 ' '( -'

More details: http://arxiv.org/pdf/1411.2738.pdf

http://arxiv.org/pdf/1411.2738.pdf


Using word representations
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" ##

D
 =

 1
00

K

Without a latent space,
lugubrious = 0,0,0, … , 0,1,0, … , 0 , &
sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos((, 7) = 0.0

In latent space,
lugubrious = 0.8,0.69,0.4, … , 0.05 :, &
sad = 0.9,0.7,0.43, … , 0.05 : so

Similarity = cos((, 7) = 0.9

EMBEDDING

"A = $ ⊺%B

H = 300

Reminder:
cos >, ? =

> ⋅ ?

> ×| ? |



Skip-grams with negative sampling
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• The default process is inefficient.
• For one – what a waste of time! 

We don’t want to update C×E weights! 
• For two – we want to avoid confusion!

‘Hallucinated’ (negative) contexts should be 
minimized.

• For the observed (true) pair (lugubrious, sadness), 
only the output neuron for sadness should be 1, and 
all E − 1 others should be 0.

• Mathematical Intuition:

• U #D #E) =
FGH(I45J6)

∑789
: FGH(I7

5J6) Computationally 

infeasible 



Skip-grams with negative sampling
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• We want to maximize the association of 
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of 
‘hallucinated’ contexts:

lugubrious happy
lugubrious roof
lugubrious truth



Skip-grams with negative sampling
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• Choose a small number F of ‘negative’ words, and just 
update the weights for the ‘positive’ word plus the F
‘negative’ words.

• 5 ≤ N ≤ 20 can work in practice for fewer data. 
• For P = 100Q, we only update 0.006% 

of the weights in the output layer.

• Mimno and Thompson (2017) choose the top
F words by modified unigram probability:

R∗ S%&' =
T S%&'

(
)

∑*T S
(
)

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017, 2873–2878. [link]

! " = log 7(8;'8)) + &
<%&

=

:+~?(A)[log7(−8+'8))]

https://doi.org/10.18653/v1/d17-1308


Smell the GloVe
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https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162 

• GloVe (‘Global Vectors’) is an alternative method of 
obtaining word embeddings. 
• Instead of predicting words at particular positions, look 

at the co-occurrence matrix.

Word +* occurs 
6*,0(= 60,*)

times with word +0, 
within some context 

window (e.g., 10 words,
a sentence, …).

https://nlp.stanford.edu/projects/glove/


Smell the GloVe
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https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. 

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162 

• Populating the co-occurrence matrix requires a complete 
pass through the corpus, but needs only be done once. 

• Let U$,3 = U #3 #$ = V$,3/V$,

https://nlp.stanford.edu/projects/glove/


Aside – smell the GloVe
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• Minimize W = ∑$,34-J Y V$,3 ZUC
V ZUD + [$ + \[3 − log V$,3

.

where, 0! and G0- are input and output bias terms associated
with $! and $-, respectively

• Weighting function Y V$,3 : 

Weighting function f with alpha = ¾, xmax = 100



Aside – evaluation
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• Intrinsic evaluation: popular (though perhaps dishonest) method was 
to cherry-pick a few k-nearest neighbours examples that match 
expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety of 
tasks[1,2]. 

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks



Linguistic regularities in vector space
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Trained on the Google news corpus with over 300 billion words.



Linguistic regularities in vector space
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Linguistic regularities in vector space
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Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: queen – king ≈ woman – man



Importance of in-domain data
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Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical 
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400

http://arxiv.org/abs/1802.00400


Biases: let’s talk about gender
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Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? 
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News, 
man:woman::programmer:homemaker. 



Biases: let’s talk about gender
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Solution?
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1. Hand-pick words $W that are ’gender definitional’. 
‘Neutral’ words are the complement, ] = J \ $W.



Solution?
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2. Project away gender subspace from gender-neutral words,
# ≔ # − # ⋅ _ for # ∈ ], where _ is the gender subspace.  



Solution?
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2. Project away gender subspace from gender-neutral words,
# ≔ # − # ⋅ _ for # ∈ ], where _ is the gender subspace.  



Results
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He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ?

• Generate many analogies, see which ones preserve gender 
stereotypes.



NEURAL LANGUAGE MODELS
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Trigram models

• CBOW: prediction of current word (/ given (/01. 
• Let’s reconsider predicting (/ given multiple (/02?
• I.e., let’s think about language modelling.

*

ℎ

"

MLP

ℎ = 8 ##9 + ;
< = #%=+ >

?'

ℎ'

trigram

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector,
• ?' is a distribution, and
• +* = ?' = |,|

(i.e., the size of the vocabulary)
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Sampling from trigram models

• Since )/ ∼ +((/|(/0+ (/01), we just feed forward and 
sample from the output vector.

ℎ'

+'2" +'2!

two riders

were

?'

ℎ'5!

+'2! +'

riders were

?'5!

approaching
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Training trigram models

• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)
2. Propagate words through the current model
3. Obtain word likelihoods (loss)
4. Back-propagate loss
5. Gradient step to update model
6. Go to (1)
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Training trigram models

• The typical training objective is the cross entropy (see Lecture 4) 

of the corpus / given the model 0:
ℱ = I(H;c) = − XYZE [F \

\

?'

ℎ'

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector, and
• ?' is a distribution.

;FEH'

+'

log( -$(K) = log(L
&".

/
-($&) = #

&".

/
log( - $&

Minimize

Maximize

log( -($&) = $&⊺ log M&
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Training trigram models

?'

ℎ'

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector, and
• ?' is a distribution.

;FEH'

+'

• Compute our gradients, using ℱ = − NOP3 Q4 R
R

and 

logS +(-T) = -T⊺ log /T and back-propagate.

Vℱ
VW0

= −
1
K

#
&

VY34Z&
VM&

VM&
V[0

Vℱ
VW1

= −
1
K

#
&

VY34Z&
VM&

VM&
Vℎ&

Vℎ&
V[1
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So what?
• J Neural language models of this type:
• Can generalize better than MLE LMs to unseen n-grams, 
• Can use semantic information as in word2vec.

• L Neural language models of this type:
• Can take relatively long to train. “GPUs kill the Earth.”
• Number of parameters scale poorly with increasing 

context. 

- Zℎ7 Y%Z 4%Z 38 Zℎ7 ]^_ ≈ -(Zℎ7 Y%Z 4%Z 38 Zℎ7 abc)

Let’s improve both of these issues…
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Dealing with that bottleneck
• Traditional datasets for neural language modeling include:
• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types) 

• Much of the computational effort is in the initial 
embedding, and in the softmax.
• Can we simplify and speed up the process?   
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Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b; 
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]
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Hierarchical softmax with grouping

• Group words into distinct classes, 1, e.g., by frequency.
• E.g., d- is top 5% of words by frequency, d. is the next 5%, … 

• Factorize e #D #$ = e d #$ e(#D|#$ , d)

- +) +* =
exp(,$!

⊺ )$")
∑$+!, exp(,$⊺)$")Where 

)$ is the ‘input’ vector for word +,
,$ is the ‘output’ vector for word +,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(;0)$")
∑6 exp(;)$")

×
exp(,$!

⊺ )$")
∑$∈6 exp(,$⊺)$")



RECURRENT NEURAL NETWORKS
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Statistical language models
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• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each 
observation only depends on a short linear history of 
length L.

• Probabilities are estimated by computing unigrams and 
bigrams

- 4 = L
!"(

&
-($!|$!'($!'#)- 4 =L

!"#

&
-($!|$!'#)

U(#]|#-: ]2- ) ≈ U(#]|# ]2_`- : ]2- )

bigram trigram



Statistical language models
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• Using higher n-gram counts (with smoothing) improves 
performance*

*From Lecture 2

• Computational burden: too many n-grams (combinations)
• Infeasible RAM requirements 

• RNN intuition: 
• Use the same set of weight parameters for each word 

(or across all time steps)
• Condition the neural network on all previous words (or 

time steps)
• Memory requirement now scales with number of words



Recurrent neural networks (RNNs)
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• An RNN has feedback connections in its structure so that it 
‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back 

Jordan network (not shown) feed output units back 

h

K*

x

Whx

Whh

Why

LFEE

* Ground Truth

Backpropagate



RNNs: Unrolling the !!
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• Copies of the same network can be applied (i.e., unrolled) at 
each point in a time series.
• These can be applied to various tasks.

*8

ℎ8

"8

→
*!

ℎ!

"!

*"

ℎ"

""

You lovely person

PRP ADJ NN

ℎ' = 8 ##[=124; 9] + ;
<1 = #%=1 + >



RNNs: One time step snapshot

53CSC401/2511 – Spring 2022

• Given a list of word vectors h: (-, (., …, (a , (a`-, … , (V

were

ℎ& = & [[22e3'4 +[25gG] + Y

ℎ'

M*'

"'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

• At a single time-step:

R %%&' = ?+ %%, … , %') = cd%,+

ℎ& = & [1[e3'4; gG] + Y (equivalent notation)

jk& = 436Zl%! ([26e3 + 0)



RNNs: Training
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• Given a list of word vectors h: (-, (., …, (a , (a`-, … , (V

were

ℎ'

M*'

"'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

R %%&' = ?+ %%, … , %') = cd%,+

jk ∈ ℝ|8| is a probability distribution 
over the vocabulary

The output ok&,- is the word (index) prediction 
of the next word (xt+1) 

Evaluation
- Same cross-entropy loss function

p & q = − #
-"#

|8|
k&,- log rk&,-

- Perplexity: 2J  (lower is better)
prediction

Ground truth



Sampling from a RNN LM
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• If ℎ$ < |J|, we’ve already reduced the number of 
parameters from the trigram NN.
• In ‘theory’, information is maintained in ℎ$ across arbitrary 

lengths of time…

*8

ℎ'2!

"'2!

*!

ℎ'

"'

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

ℎ' = 8 [#((=124;#(99!] + ;
M*' = EFGHI!" (#(:=1 + >)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs and retrograde amnesia
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• Unfortunately, catastrophic forgetting is common.
• E.g., the relevant context in “The sushi the sister of your 

friend’s programming teacher told you about was…” 
has likely been overwritten by the time ℎ-e is produced.

*8

ℎ8

"8

*!

ℎ!

"!

*!;

ℎ!;

"!;

The sushi tasty

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

Informational bottleneck



RNNs and retrograde amnesia
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• One challenge with RNNs is that the gradient decays quickly 
as one pushes it back in time. Can we store relevant 
information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short-term memory (LSTM)
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• In each module, in an LSTM, there are four interacting neural 
network layers.

The cell state is a special vector stream that 
runs through the entire chain and stores the 
long-term information.



Long short-term memory (LSTM)

59CSC401/2511 – Spring 2022

• In each module, in an LSTM, there are four interacting neural 
network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×. 
Values near 0 block information; values near 1 pass information.



LSTM step 1: decide what to forget
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• The forget gate layer compares ℎa2- and the current input (a
to decide which elements in cell state Ha2- to keep and which 
to turn off.
• E.g., the cell state might ‘remember’ the number (sing./plural) of the 

current subject, in order to predict appropriately conjugated verbs, 
but decide to forget it when a new subject is mentioned at !&.

• (There’s scant evidence that such information is so explicit.)



LSTM step 2: decide what to store
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• The input gate layer has two steps.
• First, a sigmoid layer s decides which cell units to update.
• Next, a tanh layer creates new candidate values GK&.
• E.g., the ) can turn on the ‘number’ units, and the tanh can push 

information on the current subject.
• The ) layer is important – we don’t want to push information on 

units (i.e., latent dimensions) for which we have no information.



LSTM step 3: update the cell state
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• Update Ha2- to K&. 
• First, forget what we want to forget: multiply K&'# by 6&.
• Then, create a ‘mask vector’ of information we want to store, 2&× GK&.
• Finally, write this information to the new cell state K&.

... →
N<2!

... →
×G'

... →

...
O'×PN'

+
...

N<

K& = 6&×K&'# + 2&× GK&



LSTM step 4: output and feedback 
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• Output something, ma, based on the current (a and ℎ&'#.
• Combine the output with the cell to give your ℎa.
• Normalize cell K& on [-1,1] using tanh and combine with 3&

• In some sense, K& is long-term memory and ℎ& is the short-term 
memory (hence the name).

F' = Q #) ℎ'2!, "' + >)

ℎ' = F'×tanh(N')



Variants of LSTMs
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• There are various variations on LSTMs.
• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally), 

learn 

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal 
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.



Variants of LSTMs
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• Gers & Schmidhuber (2000) add ‘peepholes’ that allow 
all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.
• Joint decisioning is more efficient. 



Aside - Variants of LSTMs
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Reset gate (0: replace units in ℎ"#$
with those in I")

Update gate

• Which of these variants is best? Do the differences matter?
• Greff, et al. (2015) do a nice comparison of popular variants, 

finding that they’re all about the same
• Jozefowicz, et al. (2015) tested more than ten thousand RNN 

architectures, finding some that worked better than LSTMs on 
certain tasks.

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step 
further and also merge the cell and hidden states.

http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf


RECENT-ISH BREAKTHROUGHS
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Deep contextualized representations
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

http://arxiv.org/abs/1802.05365


NLM: the bigger is better trend
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• Cons:
• Deep learning == Deep pockets?
• Environmental impact: “training BERT on GPU is roughly 

equivalent to a trans-American flight”1

1 S. Emma, A. Ganesh, and A. McCallum. "Energy and policy considerations for deep learning in NLP. (2019)" [arxiv]

https://arxiv.org/pdf/1906.02243.pdf


ELMo: Embeddings from Language Models
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• Instead of a fixed embedding for each word type, ELMo
considers the entire sentence before embedding each token.
• It uses a bi-directional LSTM trained on a specific task.
• Outputs are softmax probabilities on words, as before.

*!

ℎ!

"!

*"

ℎ"

""

The play

ℎ′! ℎ′"
LSTMs

*!

ℎ#$"

"#$"

*"

ℎ#

"#

the actors

ℎ′#$" ℎ′#

exhausted
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• Task specific weighting produces the final embedding for 
word token n.

• where t: is the set of all u hidden layers, h;,-
4-
&<=; is the task’s weight on the layer, and
w&<=; is a weight on the entire task

ELMo: Embeddings from Language Models
For each token, a L-layer biLM computes (2L+1) representations:



ELMo: Embeddings from Language Models
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""
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ℎ′"
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""
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis

http://arxiv.org/abs/1802.05365
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Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding. http://arxiv.org/abs/1810.04805

BERT: Bidirectional encoder 
representations from transformers

Code and models: https://github.com/google-research/bert

• Unlike ELMo, BERT is deeply bidirectional.
• i.e., every embedding conditions every other in the next 

layer.

• This is difficult, because when predicting word (a, you would 
already have ‘seen’  that word in modelling its own contexts. 

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert
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BERT: Bidirectional encoder 
representations from transformers
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BERT: Bidirectional encoder 
representations from transformers
• This can be solved by masking the word being predicted.

• (actually, 80% we use [MASK]. 10% we replace the target word with another 
actual word; 10% we keep the word as-is, to bias ‘towards the observation’.)

• We can also predict other relationships, like whether one 
sentence follows another. 

• (actually, you can fine-tune on many different tasks)
Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.

https://www.aclweb.org/anthology/2020.emnlp-main.403/
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BERT: Bidirectional encoder 
representations from transformers

(From http://jalammar.github.io/illustrated-bert/) 

http://jalammar.github.io/illustrated-bert/
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BERT: Bidirectional encoder 
representations from transformers
• The age of humans is over?

Humans

BERT
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Aside – ClosedAI

• There are, of course, alternatives.

• FastText: Represent each word as a bag of character-grams
Paper: https://arxiv.org/abs/1607.04606
Code: https://fasttext.cc

• ULMFit: Model fine-tuning for classification tasks
Paper: https://arxiv.org/abs/1801.06146
Code: Here

• GPT-2/3: Spooky, closed uni-directional model
Paper: Here
Blog: Here

https://arxiv.org/abs/1607.04606
https://fasttext.cc/
https://arxiv.org/abs/1801.06146
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://blog.openai.com/better-language-models/


*Adapted from GPT3 - Raeid Saqur
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The Open AI GPT Papers

● The GPT papers:
● GPT (2018)
● GPT2 (2019)
● GPT3 (2020)

● Each builds on the 
predecessor
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Approach: Model & Architectures
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● Architecture evolution: GPT3 ← GPT2+mods ← GPT+mods

● Core architecture is classic ‘language modeling’:

● Learning to perform a task as estimating distribution P(output | input)

● Original GPT1 trains a standard LM objective to maximize the 
likelihood:

● Given an unsupervised corpus of tokens f = {h1, … , h,}, where k is 
context window, P is modelled using a neural network with parameters θ

● GPT uses a multi-layer Transformer decoder for the language 
model 

Approach: Model & Architectures – GPT  

85
[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018): 12.
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● Also used in (w/ caveats) in current SOTA language modeling 
and NLP architectures like BERT and BERT-variants (RoBERTa, 
XLNet, Transformer XL etc.)

● GPT vs. BERT-variants: 
● GPT uses ‘transformer’ blocks as decoders, and BERT as encoders. 
● Underlying (block level) ideology is same
● GPT (later Transformer XL, XLNet) is an autoregressive model, BERT 

is not
– At the cost of auto-regression, BERT has bi-directional context awareness

● GPT, like traditional LMs, outputs one token at a time

Aside: GPT Architecture – Transformer

86
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• Research in neural networks is exciting, expansive, and 
explorative.
• We have many hyperparameters we can tweak 

(e.g., activation functions, number and size of layers).
• We have many architectures we can use 

(e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific 
skepticism. 
• What are our biases and expectations?
• When are neural networks the wrong choice?
• How are we actually evaluating these systems? 

Neural networks
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