

Neural models of language

CSC401/2511 – Natural Language Computing – Spring 2022 Lecture 5 University of Toronto

Logistics

- Assignment 1: due Feb 11, 2022
- Assignment 2: release Feb 12, 2022
- Lecture delivery:
 - Online (*as is*) until Feb 18
 - Reading week break: Feb 21-25 (no lectures)
 - In-person Feb 28th onwards
- Final exam: planned in-person

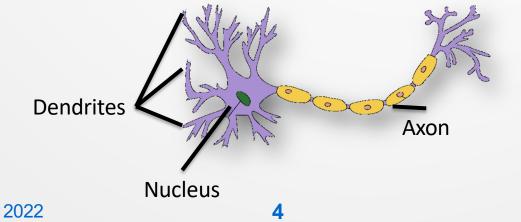
Neural networks

- Introduction
- Word-level representations
- Neural language models
- Recurrent neural networks
- Sequence-to-sequence modelling
- Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

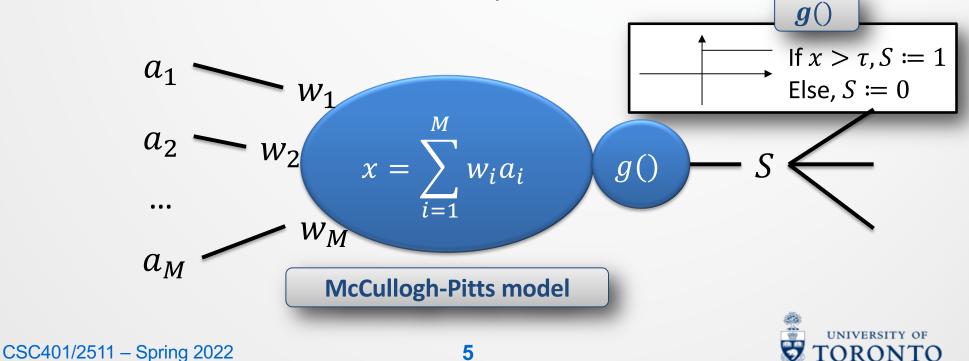
Artificial neural networks

- Artificial neural networks (ANNs) were (kind of) inspired from neurobiology (Widrow and Hoff, 1960).
 - Each unit has many inputs (dendrites), one output (axon).
 - The nucleus fires (sends an electric signal along the axon) given input from other neurons.
 - 'Learning' occurs at the synapses that connect neurons, either by amplifying or attenuating signals.



Perceptron: an artificial neuron

- Each neuron calculates a weighted sum of its inputs and compares this to a threshold, τ. If the sum exceeds the threshold, the neuron fires.
 - Inputs a_i are activations from adjacent neurons, each weighted by a parameter w_i.

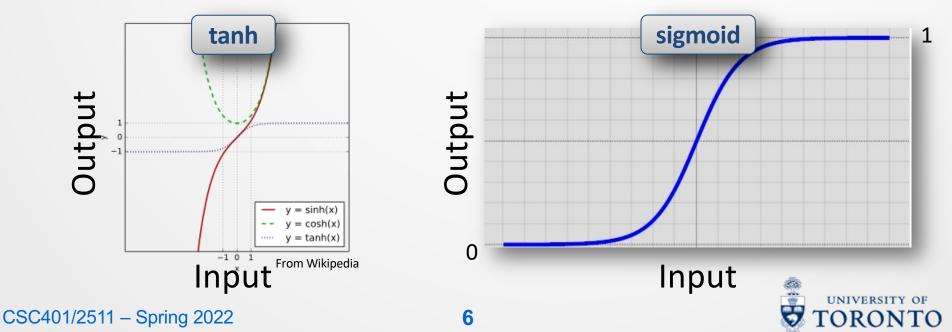


Perceptron output

- Perceptron output is determined by activation functions, g(), which can be non-linear functions of weighted input.
- Popular activation functions include tanh and the sigmoid:

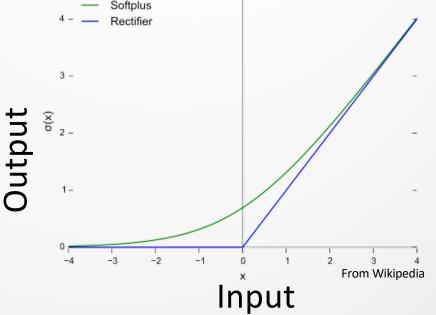
$$g(x) = \sigma(x) = \frac{1}{1 + e^{\rho x}}$$

• The sigmoid's derivative is the easily computable $\sigma' = \sigma \cdot (1 - \sigma)$



Rectified Linear Units (ReLUs)

- Since 2011, the **ReLU** S = g(x) = max(0, x) has become more popular.
 - More biologically plausible, sparse activation, limited (vanishing) gradient problems, efficient computation.
- A smooth approximation is the **softplus** $log(1 + e^{x})$, which has a simple derivative $1/(1 + e^{-x})$
- Why do we care about the derivatives?



Nonlinearities

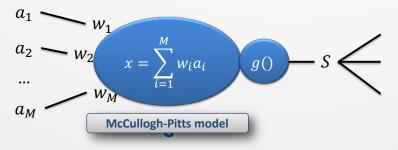
Perceptron learning

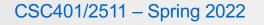
- Weights are adjusted in proportion to the error (i.e., the **difference** between the desired, *y*, and the actual output, *S*.
- The **derivative** g' allows us to assign blame proportionally.
- Given a small learning rate, α (e.g., 0.05), we can repeatedly adjust each of the weight parameters by

$$w_{j} \coloneqq w_{j} + \alpha \cdot \sum_{i=1}^{R} Err_{i} \cdot g'(x_{i}) \cdot a_{j}[i]$$
Assumes
mean-square
error objective

objective

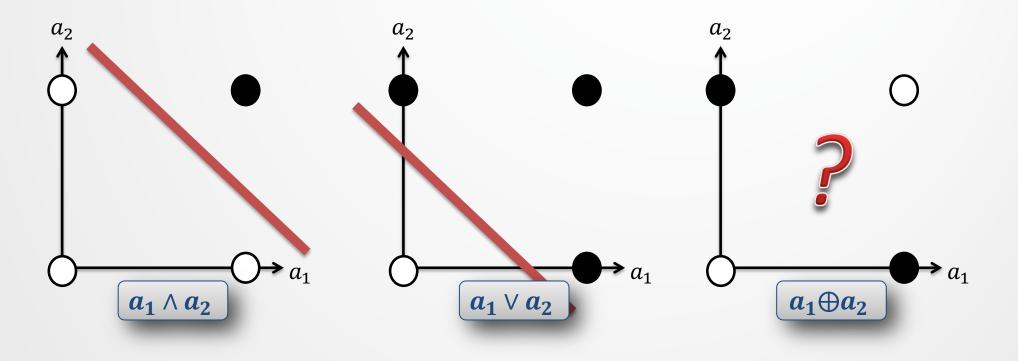
where $Err_i = (y_i - S_i)$, among R training examples.





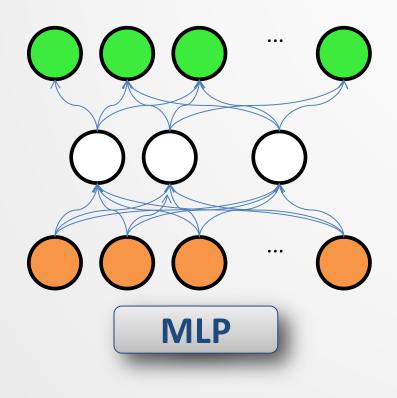
Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by threshold perceptra (since they are not linearly separable).



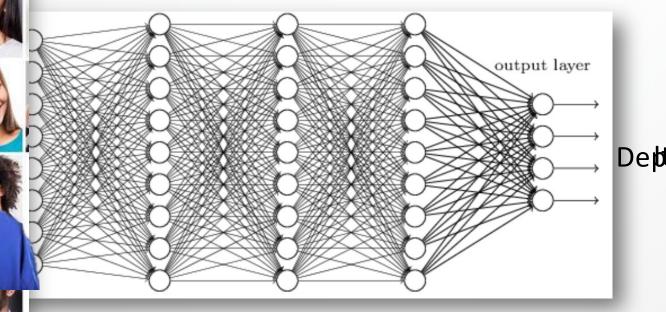
Artificial neural networks

 Complex functions can be represented by layers of perceptron (multi-layer perceptron, MLPs).



- Inputs are passed to the input layer.
- Activations are propagated through hidden layers to the output layer.
- MLPs are quite robust to noise, and are trained specifically to reduce error.

Deep



Deptressicent.

CSC401/2511 - Spring 2022

0

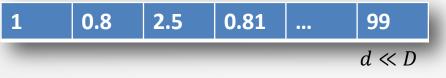
'hidden' representations are learned here Can we find hidden patterns in words?

> UNIVERSITY OF TORONTO

Words

 Given a corpus with D (e.g., = 100K) unique words, the classical approach is to uniquely assign each word with an index in D-dimensional vectors ('one-hot' representation).

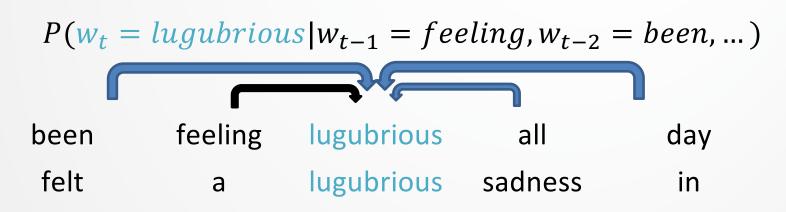
- Classic word-feature representation assigns features to each index in a much denser vector.
 - E.g., 'VBG', 'negative', 'age-of-acquisition'.



Can we learn a dense representation? What will it give us?

Learning word semantics

"You shall know a word by the company it keeps." — J.R. Firth (1957)

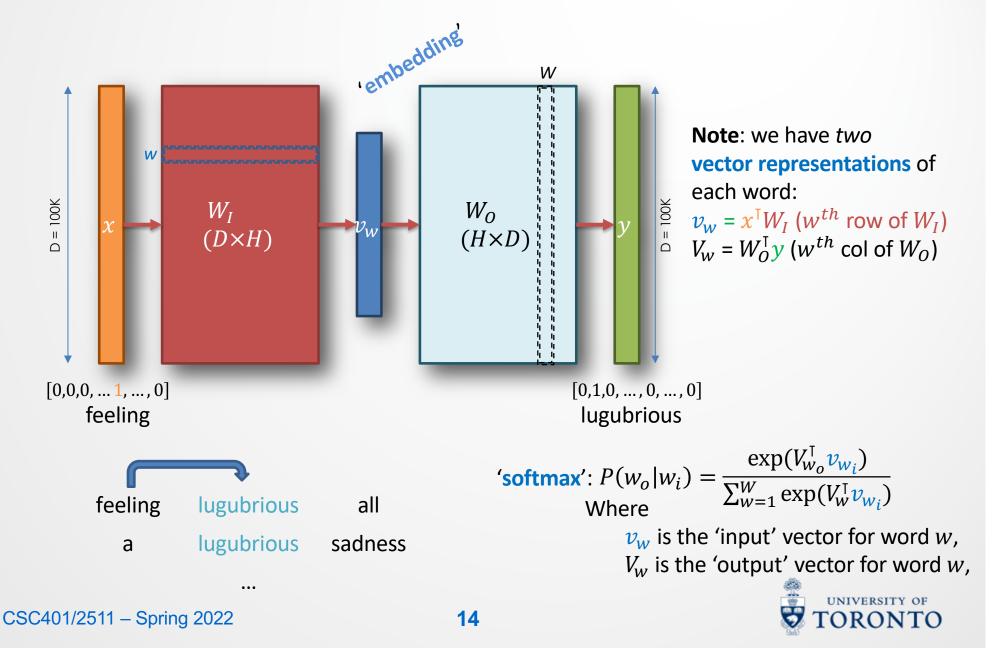


Here, we're predicting the *center* word given the context. This is called the **'continuous bag of words'** (CBOW) model¹.

...

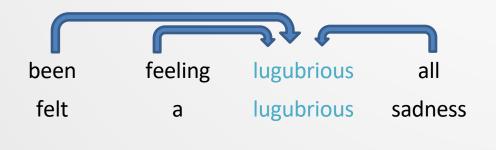
¹ Mikolov T, Corrado G, Chen K, *et al.* Efficient Estimation of Word Representations in Vector Space. *Proc (ICLR 2013)* 2013;:1–12. https://code.google.com/p/word2vec/

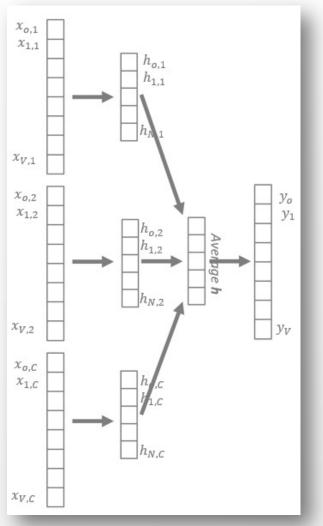
Continuous bag of words (1 word context)



Continuous bag of words (*C* words context)

- If we want to use more context, C, we need to change the network architecture somewhat.
 - Each input word will produce one of *C* embeddings
 - We just need to add an intermediate layer, usually this just averages the embeddings.



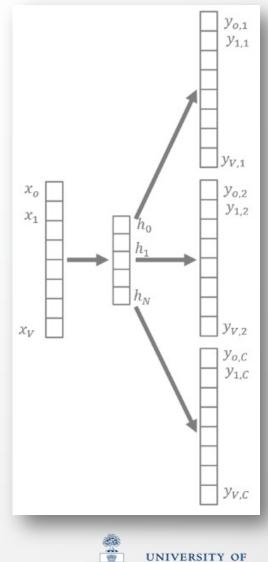


Skip-grams

- Skip-grams invert the task we predict context words given the current word.
- According to Mikolov,
 Skip-gram: works well with small amounts of training data, represents rare words.

CBOW: several times faster to train, slightly better accuracy for frequent words

Mikolov T, Corrado G, Chen K, *et al.* Efficient Estimation of Word Representations in Vector Space. *Proc (ICLR 2013)* 2013;:1–12. <u>https://arxiv.org/pdf/1301.3781.pdf</u>



Actually doing the learning

 Given *H*-dimensional embeddings, and *V* word types, our parameters, θ, are:

$$\theta = \begin{bmatrix} v_{a} \\ v_{aardvark} \\ \vdots \\ v_{zymurgy} \\ V_{a} \\ V_{aardvark} \\ \vdots \\ V_{zymurgy} \end{bmatrix} \in \mathbb{R}^{2V \times H}$$

Actually doing the learning

We have many options. Gradient descent is popular. We want to optimize, given *T* tokens of training data,

$$I(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log P(w_{t+j} | w_t)$$

And we want to update vectors $V_{w_{t+j}}$ then v_{w_t} within θ $\theta^{(new)} = \theta^{(old)} - \alpha \nabla_{\theta} J(\theta)$

so we'll need to take the derivative of the (log of the) softmax function:

$$P(w_o|w_i) = \frac{\exp(V_{w_o}^{\dagger} v_{w_i})}{\sum_{w=1}^{W} \exp(V_w^{\dagger} v_{w_i})}$$

Where v_w is the 'input' vector for word w, and V_w is the 'output' vector for word w,

Actually doing the learning

We need the derivative of the (log of the) softmax function:

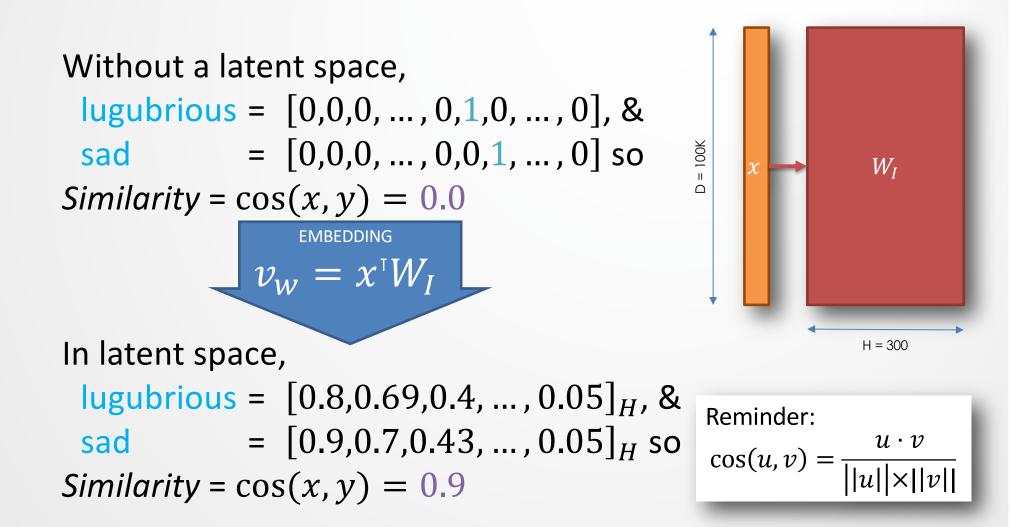
$$\frac{\delta}{\delta v_{w_t}} \log P(w_{t+j}|w_t) = \frac{\delta}{\delta v_{w_t}} \log \frac{\exp(V_{w_{t+j}}^{\dagger} v_{w_t})}{\sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t})}$$

$$= \frac{\delta}{\delta v_{w_t}} \left[\log \exp\left(V_{w_{t+j}}^{\dagger} v_{w_t}\right) - \log \sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t}) \right]$$

$$= V_{w_{t+j}} \qquad -\frac{\delta}{\delta v_{w_t}} \log \sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t})$$
[apply the chain rule $\frac{\delta f}{\delta v_{w_t}} = \frac{\delta f}{\delta z} \frac{\delta z}{\delta v_{w_t}}$]
$$= V_{w_{t+j}} - \sum_{w=1}^{W} p(w|w_t) V_w$$

More details: <u>http://arxiv.org/pdf/1411.2738.pdf</u>

Using word representations



Skip-grams with negative sampling

- The default process is inefficient.
 - For one what a waste of time!
 We don't want to update H×D weights!
 - For two we want to avoid confusion!
 'Hallucinated' (negative) contexts should be minimized.
- For the observed (true) pair (*lugubrious, sadness*), only the output neuron for *sadness* should be 1, and all *D* - 1 others should be 0.
- Mathematical Intuition:

•
$$P(w_o|w_c) = \frac{\exp(v_o^T V_c)}{\sum_{w=1}^{D} \exp(v_w^T V_c)}$$

Y0.1 y1.1 VV 1 xo χ_1 h_0 χ_{V} Yo.C y1.c yv.c

Computationally

infeasible

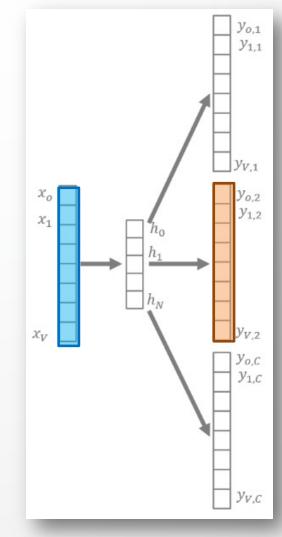
Skip-grams with negative sampling

 We want to maximize the association of observed (positive) contexts:

IugubrioussadIugubriousfeelingIugubrioustired

 We want to minimize the association of 'hallucinated' contexts:

lugubrioushappylugubriousrooflugubrioustruth



Skip-grams with negative sampling

- Choose a small number k of 'negative' words, and just update the weights for the 'positive' word plus the k 'negative' words.
 - $5 \le k \le 20$ can work in practice for fewer data.
 - For D = 100K, we only update 0.006% of the weights in the output layer.

$$J(\theta) = \log \sigma(v_o^T v_c) + \sum_{i=1}^k \mathbb{E}_{j \sim P(w)}[\log \sigma(-v_j^T v_c)]$$

 Mimno and Thompson (2017) choose the top k words by modified unigram probability:

$$P^*(w_{t+1}) = \frac{C(w_{t+1})^{\frac{3}{4}}}{\sum_w C(w)^{\frac{3}{4}}}$$

 h_N

 x_o

 χ_1

 χ_{V}

У_{0,1} У_{1.1}

y1.2

Yo.C

y1.c

YV.C

Smell the GloVe

- GloVe ('Global Vectors') is an alternative method of obtaining word embeddings.
 - Instead of predicting words at particular positions, look at the co-occurrence matrix.

		Ι	like	enjoy	deep	learning	NLP	flying	•	
	Ι	Γ0	2	1	0	0	0	0	0]	
	like	2	0	0	1	0	1	0	0	
	enjoy	1	0	0	0	0	0	1	0	Word <i>w_i</i> occurs
X =	deep	0	1	0 0 1 0 0 0	$X_{i,j}(=X_{j,i})$					
$\Lambda =$	learning	0	0	0	1	0	0	0	1	times with word w_j ,
	NLP	0	1	0	0	0	0	0	1	within some context
	flying	0	0	1	0	0	0	0	1	window (e.g., 10 words, a sentence,).
		0	0	0	0	1	1	1	0	

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. *Proc EMNLP 2014*:1532–43. doi:10.3115/v1/D14-1162 <u>https://nlp.stanford.edu/projects/glove/</u>

Smell the GloVe

- Populating the co-occurrence matrix requires a complete pass through the corpus, but needs only be done once.
- Let $P_{i,j} = P(w_j | w_i) = X_{i,j} / X_i$,

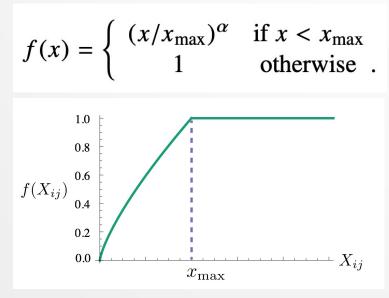
Table 1: Co-occurrence probabilities for target words *ice* and *steam* with selected context words from a 6 billion token corpus. Only in the ratio does noise from non-discriminative words like *water* and *fashion* cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
	1.9×10^{-4}			
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. *Proc EMNLP 2014*:1532–43. doi:10.3115/v1/D14-1162 <u>https://nlp.stanford.edu/projects/glove/</u>

Aside – smell the GloVe

- Minimize $J = \sum_{i,j=1}^{V} f(X_{i,j}) \left(v_{w_i}^T v_{w_j} + b_i + \tilde{b_j} \log X_{i,j} \right)^2$ where, b_i and $\tilde{b_j}$ are input and output bias terms associated with w_i and w_j , respectively
- Weighting function $f(X_{i,j})$:



Weighting function f with alpha = $\frac{3}{4}$, x_{max} = 100

- 1. f(0) = 0. If f is viewed as a continuous function, it should vanish as $x \to 0$ fast enough that the $\lim_{x\to 0} f(x) \log^2 x$ is finite.
- 2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.
- 3. f(x) should be relatively small for large values of x, so that frequent co-occurrences are not overweighted.

Aside – evaluation

- Intrinsic evaluation: popular Redacted method was to cherry-pick a few k-nearest neighbours examples that match expectations.
 - 0. frog
 - 1. frogs
 - 2. toad
 - 3. litoria
 - 4. leptodactylidae
 - 5. rana
 - 6. lizard
 - 7. eleutherodactylus

tasks^[1,2].

4. leptodactylidae

5. rana

7. eleutherodactylus

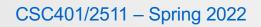
UNIVERSITY OF

• Extrinsic evaluation: embed resulting vectors into a variety of

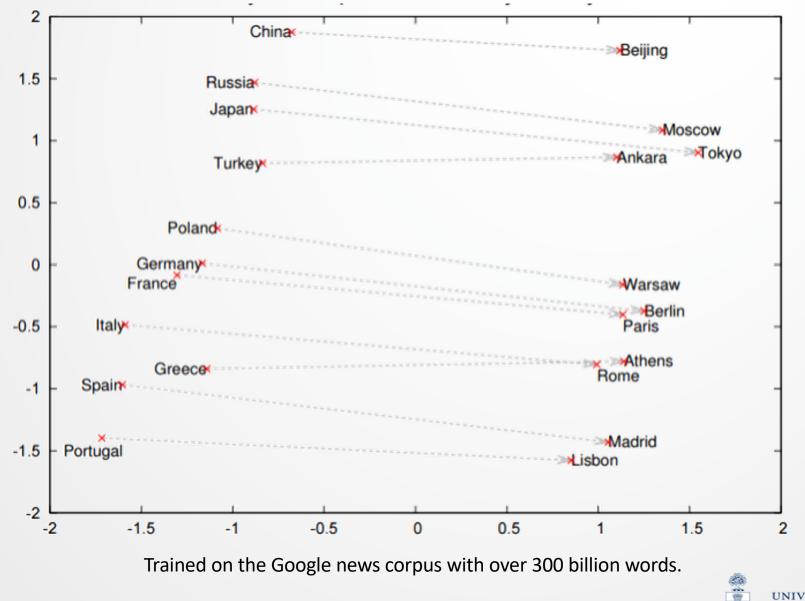
SuperGLUE	🕆 GLUE	Leaderboar	Leaderboard Version: 2.0										
Rank Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
1 Liam Fedus	SS-MoE		91.0	92.3	96.9/98.0	99.2	89.2/65.2	95.0/94.2	93.5	77.4	96.6	72.3	96.1/94.1
2 Microsoft Alexander v-team	Turing NLR v5		90.9	92.0	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
3 ERNIE Team - Baidu	ERNIE 3.0	1 2	90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7

¹ https://gluebenchmark.com/tasks

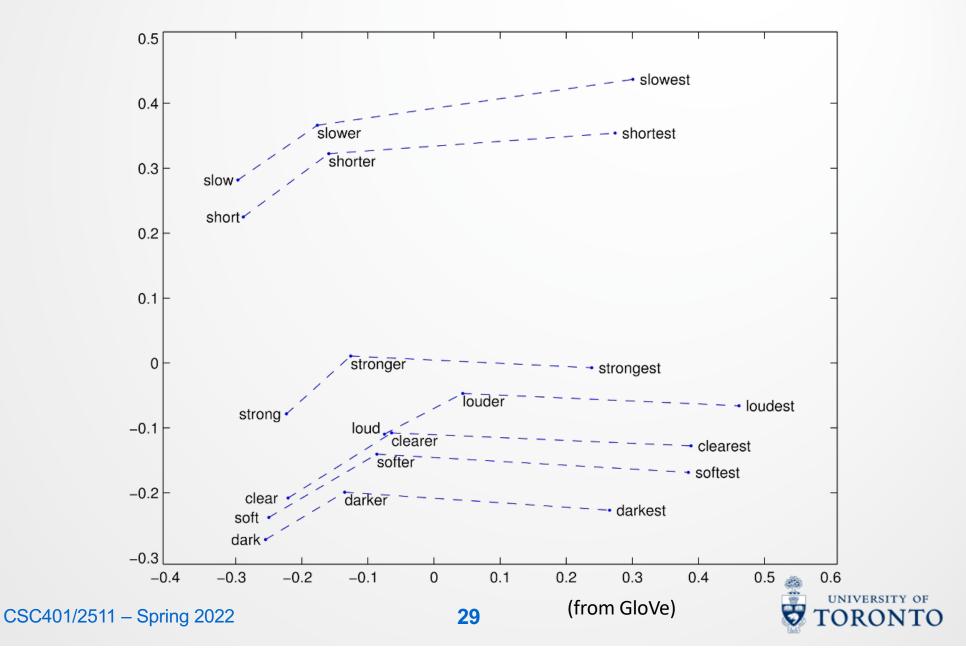
² https://super.gluebenchmark.com/tasks



Linguistic regularities in vector space



Linguistic regularities in vector space

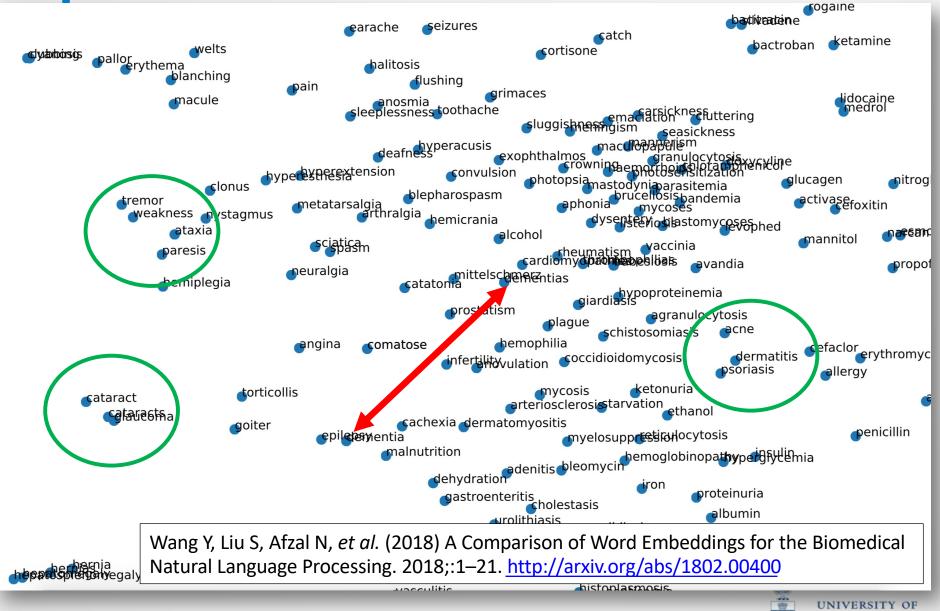


Linguistic regularities in vector space

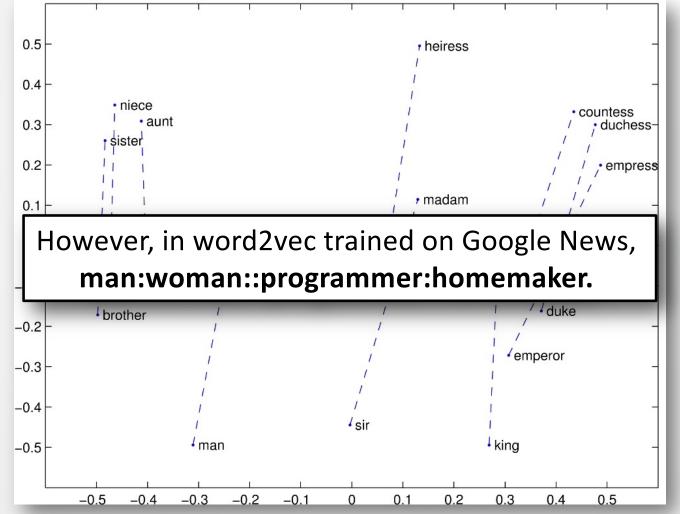
Expression	Nearest token		
Paris – France + Italy	Rome		
Bigger – big + cold	Colder		
Sushi – Japan + Germany	bratwurst		
Cu – copper + gold	Au		
Windows – Microsoft + Google	Android		

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: queen – king ≈ woman – man

Importance of in-domain data



Biases: let's talk about gender



Bolukbasi T, Chang K, Zou J, *et al.* Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In: *NIPS*. 2016. 1–9.

CSC401/2511 - Spring 2022

RONTO

Biases: let's talk about gender

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai² ¹Boston University, 8 Saint Mary's Street, Boston, MA ²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

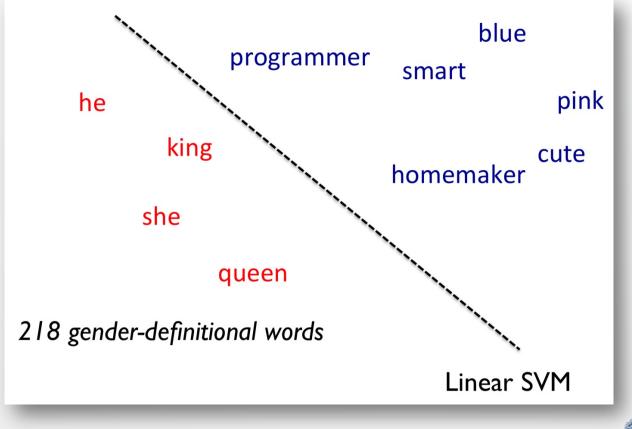
Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with *word embedding*, a popular framework to represent text data as vectors which has been used in many machine learning and

Extreme she 1. homemaker 2. nurse	Extreme <i>he</i> 1. maestro 2. skipper	sewing-carpentry	Gender stereotype she-he an registered nurse-physician	housewife-shopkeeper		
 receptionist librarian 	 3. protege 4. philosopher 	nurse-surgeon blond-burly giggle-chuckle	interior designer-architect feminism-conservatism vocalist-guitarist	softball-baseball cosmetics-pharmaceuticals petite-lanky		
 socialite hairdresser nanny 	 captain architect financier 	sassy-snappy volleyball-football	1	charming-affable lovely-brilliant		
 8. bookkeeper 9. stylist 10. housekeeper 	 8. warrior 9. broadcaster 10. magician 	queen-king waitress-waiter	Gender appropriate she-he and sister-brother ovarian cancer-prostate cancer	mother-father		

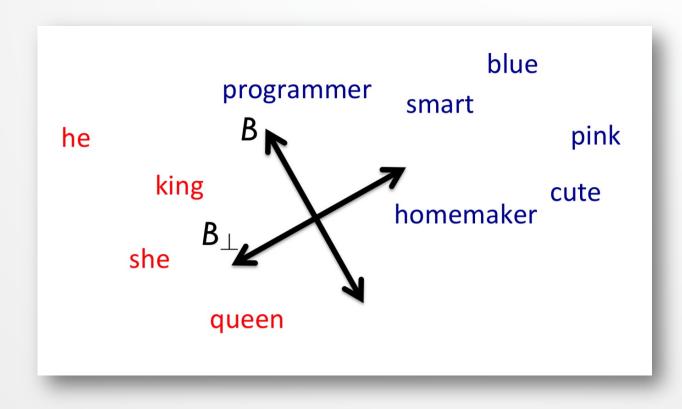
Solution?

1. Hand-pick words S_0 that are 'gender definitional'. 'Neutral' words are the complement, $N = V \setminus S_0$.



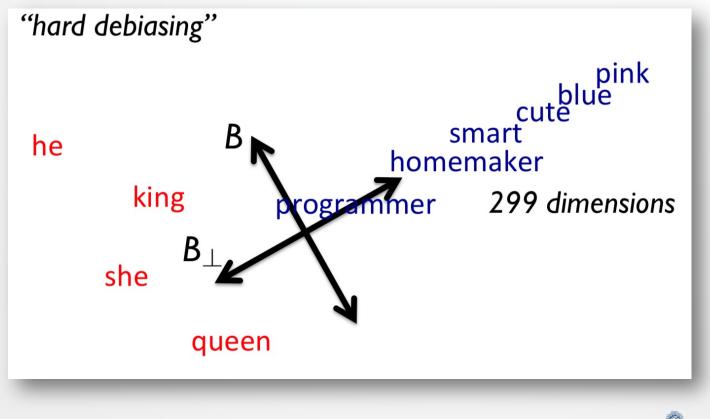
Solution?

2. Project away gender subspace from gender-neutral words, $w \coloneqq w - w \cdot B$ for $w \in N$, where B is the gender subspace.



Solution?

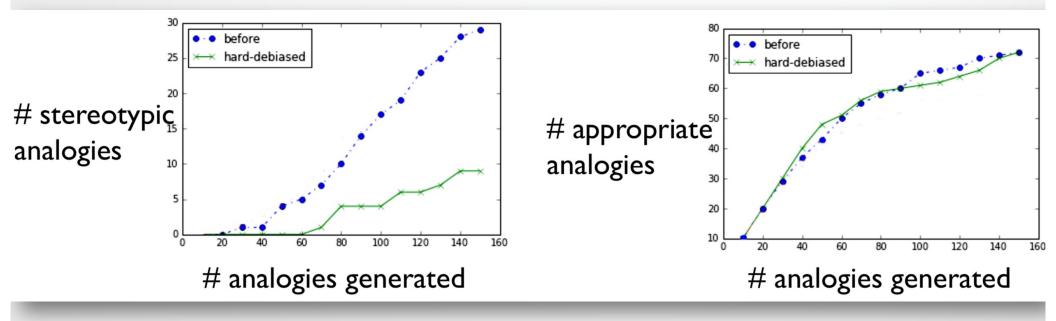
2. Project away gender subspace from gender-neutral words, $w \coloneqq w - w \cdot B$ for $w \in N$, where B is the gender subspace.



Results

 Generate many analogies, see which ones preserve gender stereotypes.
 He:Blue :: She: ? He:Doctor :: She: ?

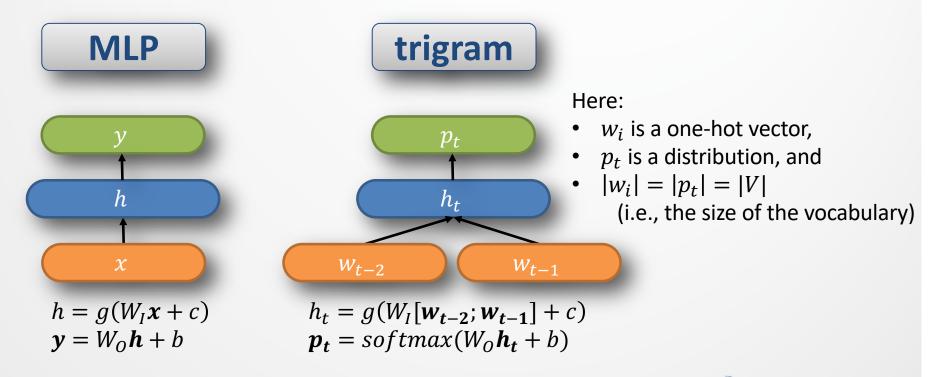
He:Doctor :: She: ? He:Brother :: She: ?



NEURAL LANGUAGE MODELS

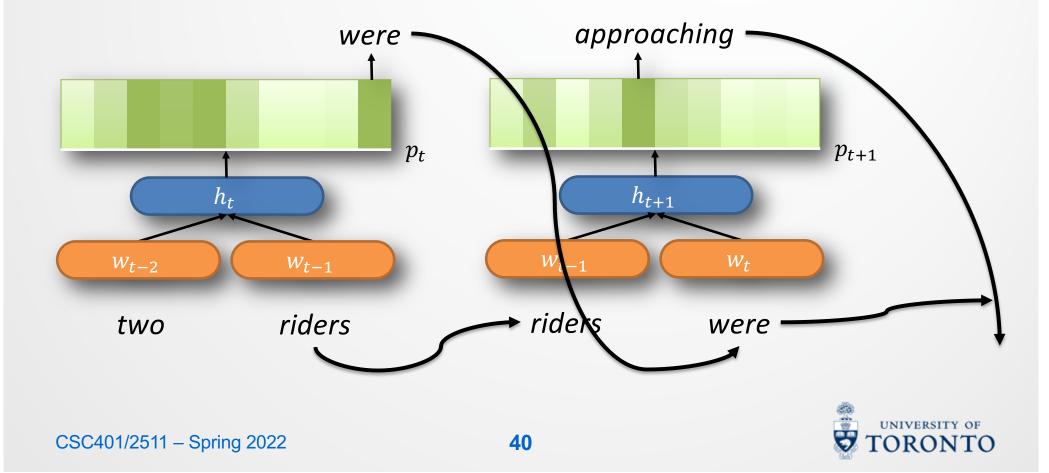
Trigram models

- CBOW: prediction of current word w_t given w_{t-1} .
- Let's reconsider predicting w_t given multiple w_{t-j} ?
 - I.e., let's think about language modelling.



Sampling from trigram models

 Since p_t ~ P(w_t | w_{t-2} w_{t-1}), we just feed forward and sample from the output vector.

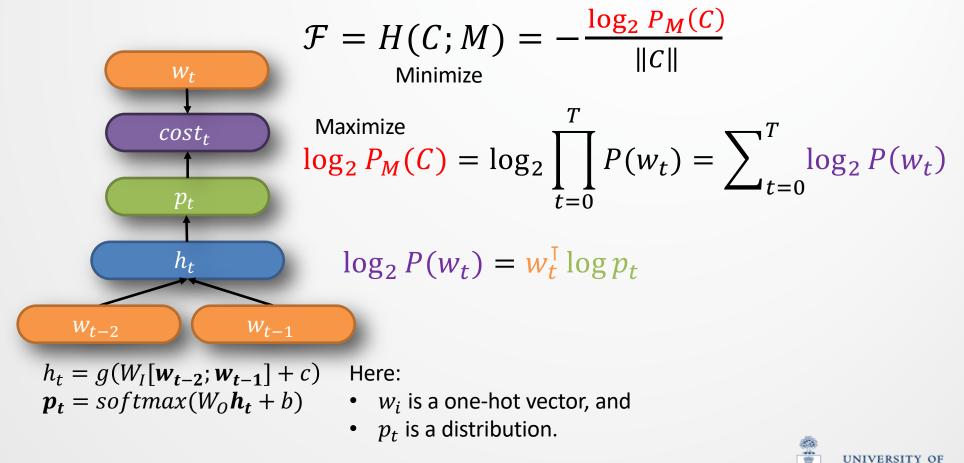


Training trigram models

- Here's one approach:
- 1. Randomly choose a batch (e.g., 10K consecutive words)
- 2. Propagate words through the current model
- 3. Obtain word likelihoods (loss)
- 4. Back-propagate loss
- 5. Gradient step to update model
- 6. Go to (1)

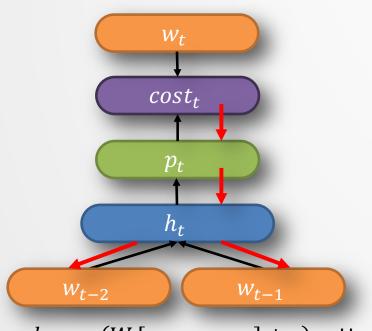
Training trigram models

• The typical training objective is the cross entropy (see Lecture 4) of the corpus *C* given the model *M*:



Training trigram models

• Compute our gradients, using $\mathcal{F} = -\frac{\log_2 P_M(C)}{\|C\|}$ and $\log_2 P(w_t) = w_t^{\mathsf{T}} \log p_t$ and back-propagate.



$$\frac{\delta \mathcal{F}}{\delta W_{O}} = -\frac{1}{\|C\|} \sum_{t} \frac{\delta cost_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta W_{O}}$$
$$\frac{\delta \mathcal{F}}{\delta W_{I}} = -\frac{1}{\|C\|} \sum_{t} \frac{\delta cost_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta h_{t}} \frac{\delta h_{t}}{\delta W_{I}}$$

 $h_t = g(W_I[\boldsymbol{w_{t-2}}; \boldsymbol{w_{t-1}}] + c)$ $\boldsymbol{p_t} = softmax(W_O \boldsymbol{h_t} + b)$

- Here:
- w_i is a one-hot vector, and
- p_t is a distribution.

So what?

- 😳 Neural language models of this type:
 - Can generalize better than MLE LMs to unseen *n*-grams,
 - Can use semantic information as in word2vec.

 $P(\text{the cat sat on the mat}) \approx P(\text{the cat sat on the rug})$

- 🛞 Neural language models of this type:
 - Can take relatively long to train. "GPUs kill the Earth."
 - Number of parameters scale poorly with increasing context.

Let's improve both of these issues...

Dealing with that bottleneck

- Traditional datasets for neural language modeling include:
 - AP News (14M tokens, 17K types)
 - HUB-4 (1M tokens, 25K types)
 - Google News (6B tokens, 1M types)
 - Wikipedia (3.2B tokens, 2M types)
- Datasets for **medical/clinical** LM include:
 - EMRALD/ICES (3.5B tokens, 13M types)
- Much of the computational effort is in the initial embedding, and in the softmax.
 - Can we simplify and speed up the process?

Dealing with that bottleneck

- Replace rare words with <out-of-vocabulary> token.
- Subsample frequent words.
- Hierarchical softmax.
- Noise-contrastive estimation.
- Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b; Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

46

Hierarchical softmax with grouping

- Group words into distinct classes, *c*, e.g., by frequency.
 E.g., *c*₁ is top 5% of words by frequency, *c*₂ is the next 5%, ...
- Factorize $p(w_o|w_i) = p(c|w_i)p(w_o|w_i, c)$

[Mikolov et al, 2011, Auli et al, 2013]

RECURRENT NEURAL NETWORKS

Statistical language models

CSC40

- Probability is conditioned on (window of) n previous words^{*}
- A necessary (but incorrect) Markov assumption: each observation only depends on a short linear history of length L.

$$P(w_n|w_{1:(n-1)}) \approx P(w_n|w_{(n-L+1):(n-1)})$$

 Probabilities are estimated by computing unigrams and bigrams

$$P(s) = \prod_{i=1}^{t} P(w_i | w_{i-1})$$

$$P(s) = \prod_{i=2}^{t} P(w_i | w_{i-2} w_{i-1})$$

$$\frac{\text{trigram}}{\text{trigram}}$$

$$SC401/2511 - \text{Spring 2022}$$

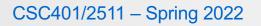
$$P(s) = \prod_{i=2}^{t} P(w_i | w_{i-2} w_{i-1})$$

$$\frac{\text{trigram}}{\text{trigram}}$$

Statistical language models

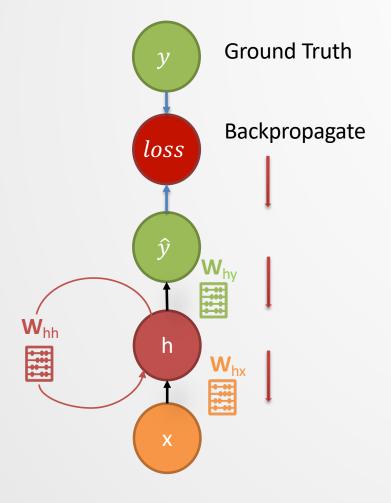
- Using higher n-gram counts (with smoothing) improves performance*
- Computational burden: too many n-grams (combinations)
 - Infeasible RAM requirements
- RNN intuition:
 - Use the same set of weight parameters for each word (or across all time steps)
 - Condition the neural network on all previous words (or time steps)
 - Memory requirement now scales with number of words

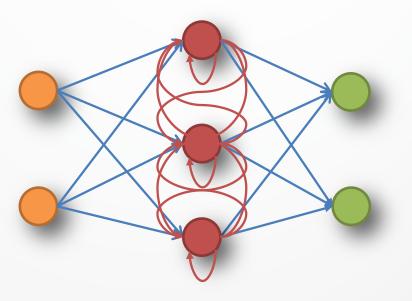
*From Lecture 2



Recurrent neural networks (RNNs)

 An RNN has feedback connections in its structure so that it *'remembers'* previous states, when reading a sequence.

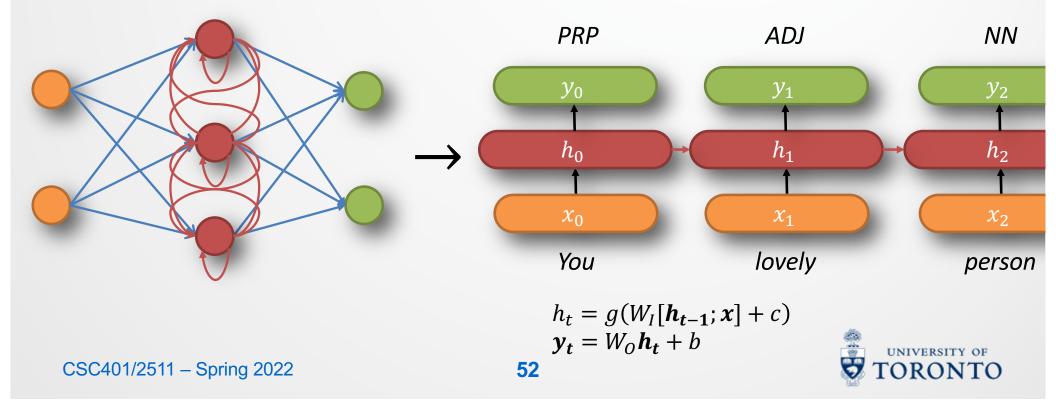




Elman network feed hidden units back Jordan network (not shown) feed output units back

RNNs: Unrolling the *h*_{*i*}

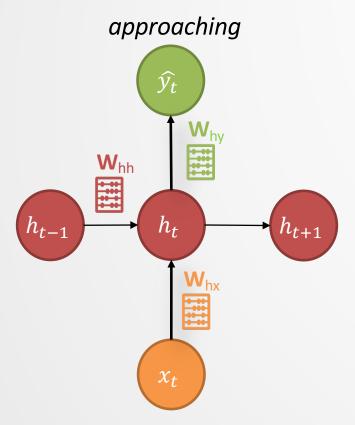
- Copies of the same network can be applied (i.e., unrolled) at each point in a time series.
 - These can be applied to various tasks.



RNNs: One time step snapshot

Two riders .. approaching .. horses. • Given a list of word vectors $X: x_1, x_2, ..., x_t, x_{t+1}, ..., x_T$

import numpy as np



were

$$P(x_{t+1} = v_j | x_t, ..., x_1) = \widehat{y_{t,j}}$$

CSC401/2511 - Spring 2022

At a single time-step:

$$h_{t} = g([W_{hh}h_{t-1} + W_{hx}x_{t}] + c)$$

$$h_{t} = g(W_{I}[h_{t-1}; x_{t}] + c) \text{ (equivalent notation)}$$

$$\widehat{y_t} = softmax \left(W_{hy} h_t + b \right)$$

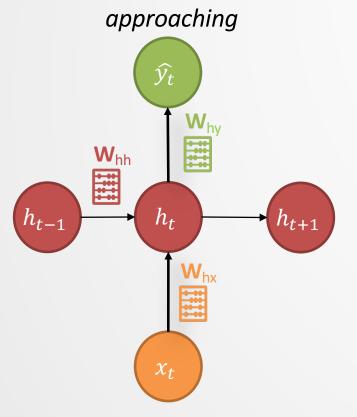
def softmax(x): f_x = np.exp(x) / np.sum(np.exp(x)) return f_x class RNN: # ... def step(self, x, is_normalized=False): # update the hidden state self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))

compute the output vector
y = np.dot(self.W_hy, self.h)

```
return softmax(y) if is_normalized else y
```


RNNs: Training

Two riders .. approaching .. horses. • Given a list of word vectors $X: x_1, x_2, ..., x_t, x_{t+1}, ..., x_T$



were

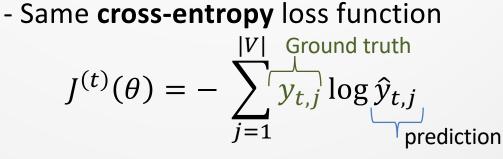
$$P(x_{t+1} = v_j | x_t, \dots, x_1) = \widehat{y_{t,j}}$$

CSC401/2511 - Spring 2022

 $\widehat{y} \in \mathbb{R}^{|V|}$ is a probability distribution over the vocabulary

The output $\widehat{y_{t,j}}$ is the word (index) prediction of the next word ($\mathbf{x_{t+1}}$)

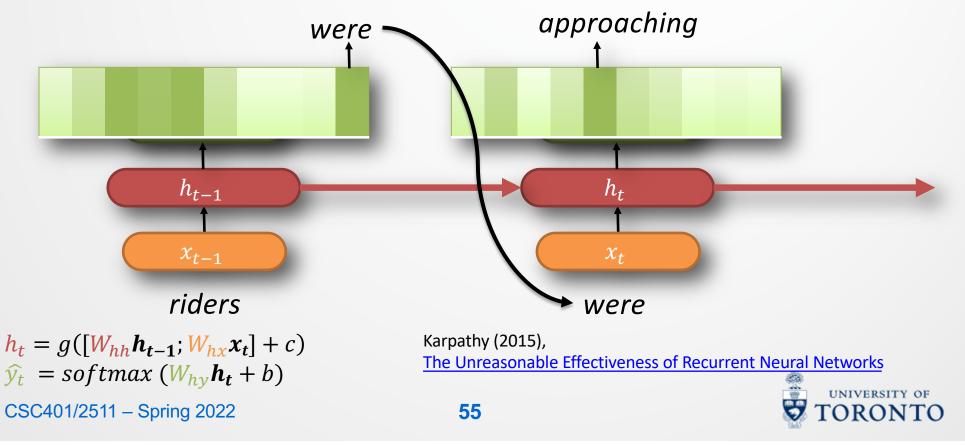
Evaluation



- **Perplexity**: 2^J (lower is better)

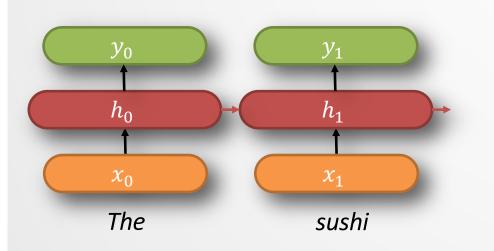
Sampling from a RNN LM

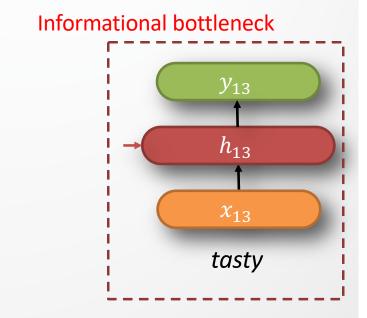
- If $|h_i| < |V|$, we've already reduced the number of parameters from the trigram NN.
 - In 'theory', information is maintained in h_i across arbitrary lengths of time...



RNNs and retrograde amnesia

- Unfortunately, catastrophic forgetting is common.
 - E.g., the relevant context in "The sushi the sister of your friend's programming teacher told you about was..." has likely been overwritten by the time h₁₃ is produced.

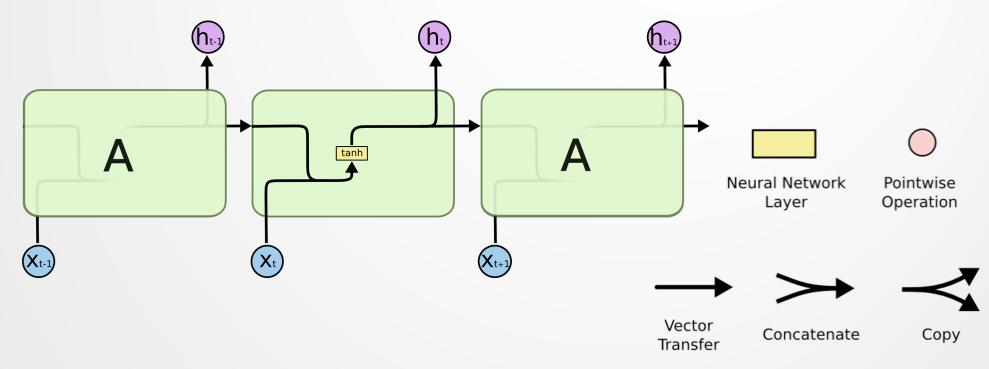




Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

RNNs and retrograde amnesia

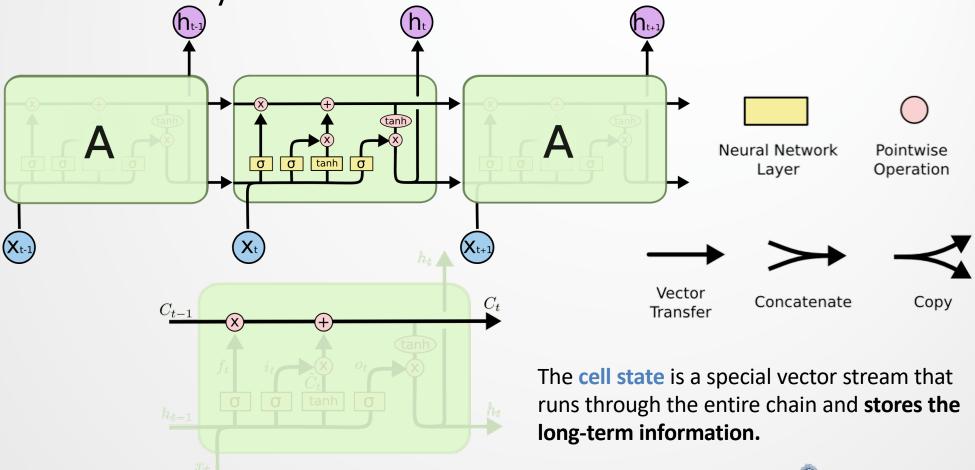
 One challenge with RNNs is that the gradient decays quickly as one pushes it back in time. Can we store relevant information?



Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

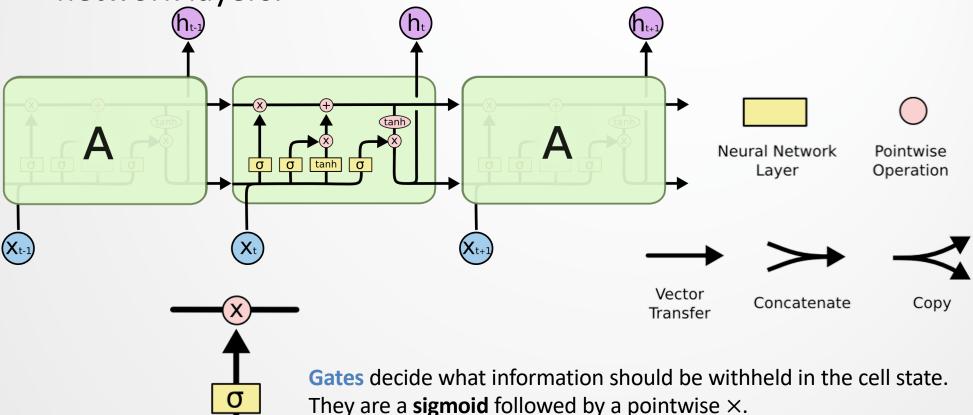
Long short-term memory (LSTM)

 In each module, in an LSTM, there are four interacting neural network layers.



Long short-term memory (LSTM)

 In each module, in an LSTM, there are four interacting neural network layers.

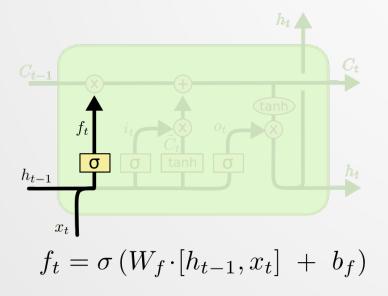


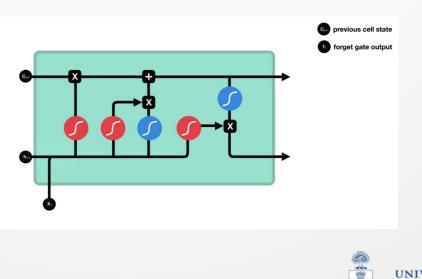
Values near 0 block information; values near 1 pass information.

59

LSTM step 1: decide what to forget

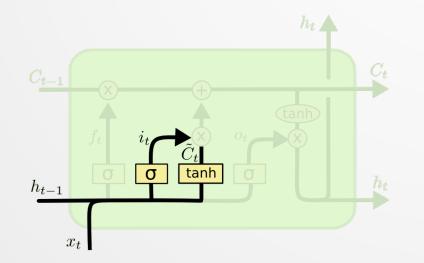
- The forget gate layer compares h_{t-1} and the current input x_t to decide which elements in cell state C_{t-1} to keep and which to turn off.
 - E.g., the cell state might 'remember' the number (sing./plural) of the current subject, in order to predict appropriately conjugated verbs, but decide to forget it when a new subject is mentioned at x_t.
 - (There's scant evidence that such information is so explicit.)





LSTM step 2: decide what to store

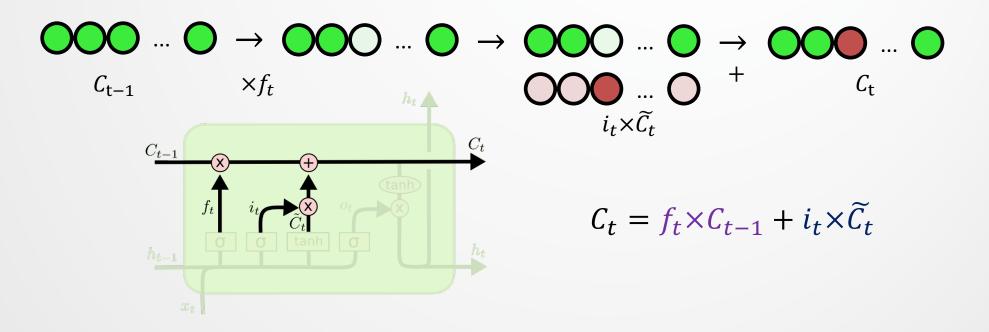
- The input gate layer has two steps.
 - First, a sigmoid layer σ decides which cell units to update.
 - Next, a tanh layer creates new candidate values \widetilde{C}_t .
 - E.g., the σ can turn on the 'number' units, and the tanh can push information on the current subject.
 - The σ layer is important we don't want to push information on units (i.e., latent dimensions) for which we have no information.



 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

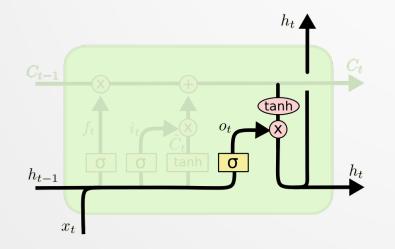
LSTM step 3: update the cell state

- Update C_{t-1} to C_t .
 - First, forget what we want to forget: multiply C_{t-1} by f_t .
 - Then, create a 'mask vector' of information we want to store, $i_t \times \widetilde{C}_t$.
 - Finally, write this information to the new cell state C_t .



LSTM step 4: output and feedback

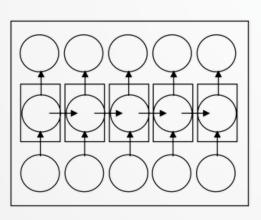
- Output something, o_t , based on the current x_t and h_{t-1} .
- Combine the output with the cell to give your h_t .
 - Normalize cell C_t on [-1,1] using tanh and combine with o_t
- In some sense, C_t is long-term memory and h_t is the short-term memory (hence the name).

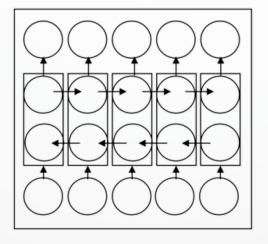


 $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$ $h_t = o_t \times \tanh(C_t)$

Variants of LSTMs

- There are various variations on LSTMs.
 - 'Bidirectional LSTMs' (and bidirectional RNNs generally), learn





(a)

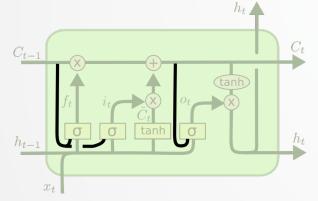
(b)

Structure overview (a) unidirectional RNN (b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. *Signal Processing, IEEE Transactions on* **45(**11) (1997): 2673-2681.2.

Variants of LSTMs

• Gers & Schmidhuber (2000) add '**peepholes**' that allow all sigmoids to read the cell state.

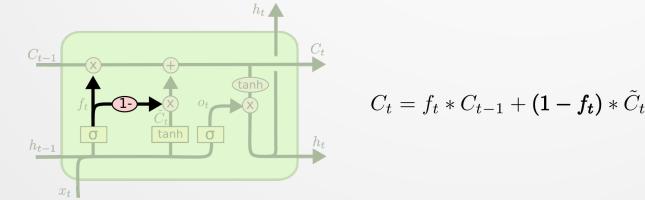


$$f_{t} = \sigma \left(W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i} \right)$$

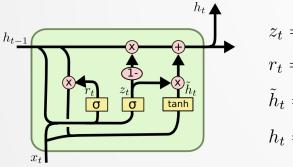
$$o_{t} = \sigma \left(W_{o} \cdot [C_{t}, h_{t-1}, x_{t}] + b_{o} \right)$$

- We can **couple** the 'forget' and 'input' gates.
 - Joint decisioning is more efficient.



Aside - Variants of LSTMs

 Gated Recurrent units (GRUs; <u>Cho et al (2014)</u>) go a step further and also merge the cell and hidden states.



 $\begin{aligned} z_t &= \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \text{ Update gate} \\ r_t &= \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \text{ Reset gate } (0: \text{ replace units in } h_{t-1} \\ \tilde{h}_t &= \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right) \\ h_t &= (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \end{aligned}$

- Which of these variants is best? Do the differences matter?
 - <u>Greff, et al. (2015)</u> do a nice comparison of popular variants, finding that they're all about the same
 - Jozefowicz, et al. (2015) tested more than ten thousand RNN architectures, finding some that worked better than LSTMs on certain tasks.

RECENT-ISH BREAKTHROUGHS

Deep contextualized representations

What does the word play mean?

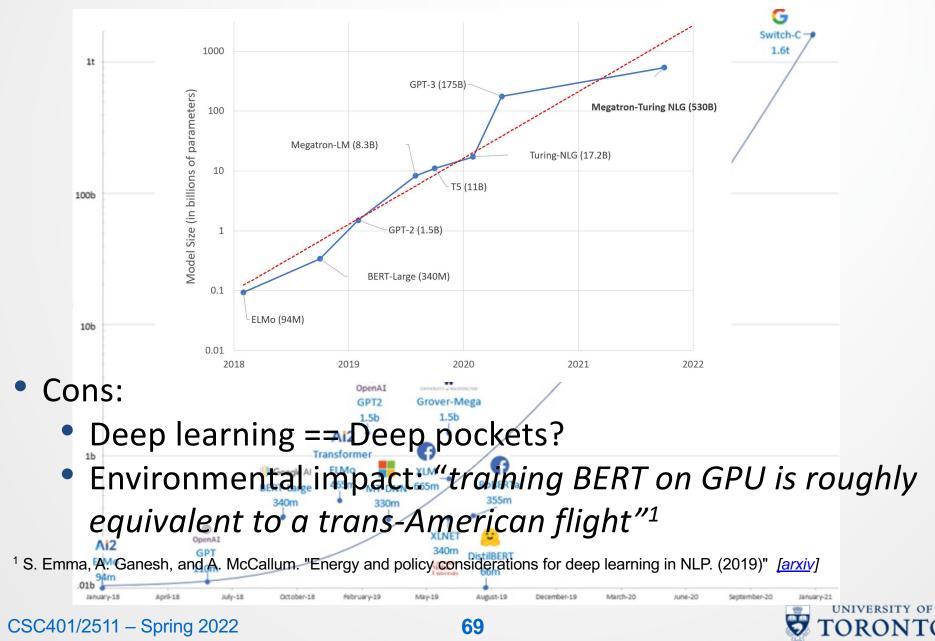
AllenNLP

UNIVERSITY OF

RONTO

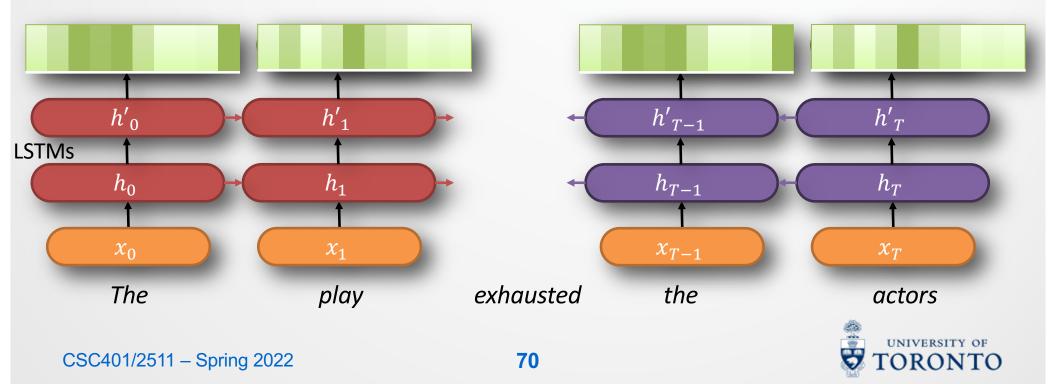
Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; <u>http://arxiv.org/abs/1802.05365</u>

NLM: the bigger is better trend



ELMO: Embeddings from Language Models

- Instead of a fixed embedding for each word type, ELMo considers the entire sentence before embedding each token.
 - It uses a bi-directional LSTM trained on a specific task.
 - Outputs are softmax probabilities on words, as before.



ELMO: Embeddings from Language Models

For each token, a L-layer biLM computes (2L+1) representations:

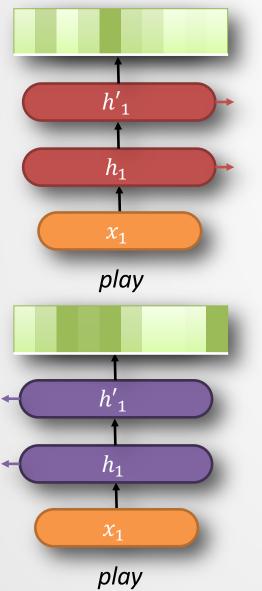
$$R_{k} = \{\mathbf{x}_{k}^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

 Task specific weighting produces the final embedding for word token k.

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

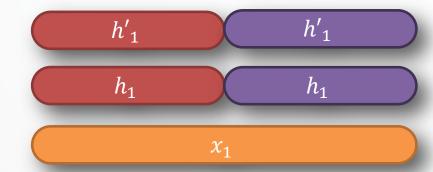
• where R_K is the set of all L hidden layers, $\mathbf{h}_{k,j}$ s_j^{task} is the task's weight on the layer, and γ^{task} is a weight on the entire task

ELMO: Embeddings from Language Models

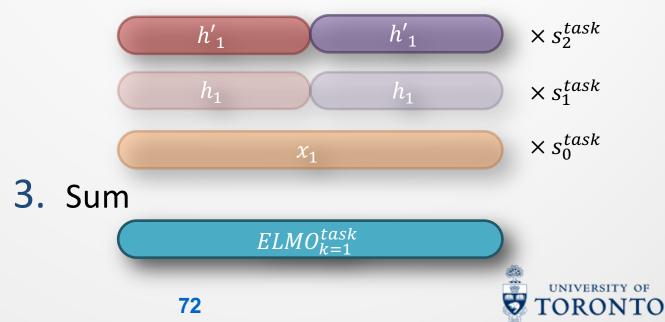


CSC401/2511 - Spring 2022

1. Concatenate



2. Multiply by weight vectors



ELMO: Embeddings from Language Models

• What does the word *play* mean?

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spec- tacular <u>play</u> on Alusik 's grounder {} Olivia De Havilland signed to do a Broadway <u>play</u> for Garson {}	Kieffer , the only junior in the group , was commended for his ability to hit in the clutch , as well as his all-round excellent <u>play</u> . {} they were actors who had been handed fat roles in a successful <u>play</u> , and had talent enough to fill the roles competently , with nice understatement .

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; <u>http://arxiv.org/abs/1802.05365</u>

UNIVERSITY OF

ELMO: Embeddings from Language Models

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + baseline	INCREASE (ABSOLUTE/ RELATIVE)
	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
Textual entailment		Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
Semantic role labelling		He et al. (2017)	81.7	81.4	84.6	3.2/17.2%
Coreference resolution		Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
Name entity resolution		Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
Sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F_1 for SQuAD, SRL and NER; average F_1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

UNIVERSITY OF

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; <u>http://arxiv.org/abs/1802.05365</u>

- Unlike ELMo, BERT is **deeply** bidirectional.
 - i.e., every embedding conditions every other in the next layer.
- This is difficult, because when predicting word x_t , you would already have 'seen' that word in modelling its own contexts.

Code and models: <u>https://github.com/google-research/bert</u>

Devlin J, Chang M-W, Lee K, *et al.* BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. <u>http://arxiv.org/abs/1810.04805</u>

Google Al

BERT: Bidirectional encoder representations from transformers **ELMo** h'_1 h'_0 h'_0 h'_1 h_0 h_1 h_0 h_1 x_0 **BERT** l've seen me already h_{T-1} h_0 h_T h_1 x_0 UNIVERSITY OF CSC401/2511 – Spring 2022 76 TORONTO

• This can be solved by **masking** the word being predicted.

Input: The man went to the [MASK]₁ . He bought a [MASK]₂ of milk .
Labels: [MASK]₁ = store; [MASK]₂ = gallon

- (actually, 80% we use [MASK]. 10% we replace the target word with another actual word; 10% we keep the word as-is, to bias 'towards the observation'.)
- We can also predict other relationships, like whether one sentence follows another.

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

• (actually, you can fine-tune on *many* different tasks)

Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.

(From http://jalammar.github.io/illustrated-bert/)

• The age of humans is over?

	Ranl	k Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	
	1	T5 Team - Google	Т5		89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	4
	2	ALBERT-Team Google Languag	eALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	BERT
+	3	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)		89.0	69.2	97.1	93.6/91.5	92.7/92.3	74.4/90.7	N
	4	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	
	5	Facebook Al	RoBERTa		88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	
	6	XLNet Team	XLNet-Large (ensemble)		88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	
+	7	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	Human
	8	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	Humans
	9	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	
	10	XLM Systems	XLM (English only)		83.1	62.9	95.6	90.7/87.1	88.8/88.2	73.2/89.8	

Aside – ClosedAl

- There are, of course, alternatives.
- FastText: Represent each word as a bag of character-grams Paper: <u>https://arxiv.org/abs/1607.04606</u> Code: <u>https://fasttext.cc</u>
- **ULMFit**: Model fine-tuning for classification tasks

Paper: https://arxiv.org/abs/1801.06146

Code: <u>Here</u>

• GPT-2/3: Spooky, closed uni-directional model

Paper: <u>Here</u> Blog: <u>Here</u>

Available for everyone, funded by readers

Contribute \rightarrow Subscribe \rightarrow

Sport Culture Lifestyle News Opinion

Gú

Wow.

The Guardian view Columnists Cartoons Opinio

Opinion Artificial intelligence (AI)

TECH ARTIFICIAL INTELLIGENCE

A college stude posts and ende

He says he wanted to prove the By Kim Lyons | Aug 16, 2020, 1:55pm EDT

GPT-3 CREATIVE FICTION

Creative writing by OpenAI's GPT-3 model, demonstrating poetry, dialogue, puns, literary parodies, and storytelling.

Sharif Shameem @sharifshameem · Jul 19

CSC401/2511 – Spring 2022

V

nguage

lis

Google GPT 3 + Medium

X 🤳 Q

Q All 🖾 Images 🧷 Shopping 🔠 News 🗉 Videos i More Settings Tools About 2,030,000 results (0.37 seconds)

Crazy GPT-3 Use Cases. Discover how powerful ... - Medium code (websites, machine learning models, design); c reasoning. GPT-3 ... Jul 27, 2020 - Uploaded by Przemek Chojecki

ro.medium.com > gpt-3-is-an-amazin GPT-3 Is an Amazing Research Tool, But OpenAl Isn't Sharing ... 16 hours ago - At lits heart, GPT-3 is an incredibly powerful tool for writing in the English language... GPT-3 can be accessed only through an API run by OpenAI, similar ... Create a free Medium account to get Pattern Matching in your inbox.

hole-30h1cf * GPT-3: Conversational AI & Chatbots | by Cobus ... - Medium Jul 26, 2020 - There has been much talk and hype regarding GPT-3 the last couple of days. Even though though I have not built any prototypes with GPT yet, ...

What GPT-3 Means for Non-Technical Professionals - Medium Jul 23, 2020 - Earlier this week I was lucky to get early access to a beta version of OpenAl's latest generative pre-trained transformer model (GPT-3) — a new ...

OpenAl Unveils 175 Billion Parameter GPT-3 ... - Medium May 29, 2020 - The researchers show through GPT-3 training that scaling up language models can greatly improve task-agnostic, few-shot performance, ...

OpenAI's GPT-3 Is The Future We've Been Waiting For - Medium Jul 19, 2020 - What we do with it, for good or evil, is only limited by Pre-Trained Transformer (GPT) — 3. The original paper on ...

f GPT 3 Demo and Explanation - An AI revolution from OpenAl Half Ideas - Startups and Entrepreneurship • 97K views • 1 month app Ś GPT 3 can write poetry, translate text, chat convincingly, and answer abstract tions. It's being used to code, design and much Trending Ē

. .

HJKB 12

OPENAI

OpenAl

GPT 3

😑 🛛 🖸 YouTube 🖙

Library

Ð

History

OpenAl GPT-3 - Good At Almost Everything! 🍲 Two Minute Papers 🕲 205K views • 1 week age Check out Weights & Biases and sign up for a free demo here

nttps://www.wandb.com/papers 💗 Their instrumentation of a . AV

GPT-3: Language Models are Few-Shot Learners (Paper Explained) 78K views
 2 months ago pt3 #openai #gpt-3 How far can you go with ONLY language modeling? Can a arge enough language model perform NLP task ...

Q
 Dif III
 E
 Si²
 Si²

Thoughts about GPT-3 | Dileep George and Lex Fridman Lex Clips • 10K views • 4 days ago

Full episode with Dileep George (Aug 2020): https://www.voutube.com/watch? ta_m_LxxRwM Clips channel (Lex Clips); GPT3: An Even Bigger Language Model -

Computerphile mputerphile 🕲 148K views · 1 month ago sic mathematics from a language model? Rob Miles on GPT3, where it seems e size does matter! More from Rob Miles: ...

Google GPT3

Settings Tools

× 🌷 c

About 1,340,000 results (0.56 seconds) Did you mean: GPT 3

openai.com > blog > openai-api *

OpenAl API

Jun 11, 2020 - Today the API runs models with weights from the GPT-3 family with many speed and throughput improvements. Machine learning is moving ...

www.theverge.com > gpt-3-explainer-openai-examples-... *

OpenAI's latest breakthrough is astonishingly powerful, but still ... Jul 30, 2020 - As the name suggests, GPT-3 is the third in a series of autocomplete tools designed ... I made a fully functioning search engine on top of GPT3.

OpenA Change and Change Change

manga 📓 4 hours ago

🚯 🛛 @channel reminder about the RG tomorrow, Friday from 1030 EST. Tomorrow we have @Raeid Saqur presenting the GPT-3 paper https://arxiv.org/abs/2005.14165

<u>©</u> arXiv.org Language Models are Few-Shot Learners

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic...

💗 3 😅

Raeid Saqur 10 minutes ago

📸 sigh ... now I know how it would feel for an underground grunge metal band to cover Nickelback. 😐 It's soo'...' mainstream/pop-cultureesque ... Shia LaBeouf would +1 me easy 😐

Google GPT3 + Medium X 🤳 🔾

Q All ⊘ Shopping 🖾 Images 🕑 Videos ♡ Maps 🗄 More Settings Tools

About 400,000 results (0.50 seconds)

Did you mean: GPT 3 + Medium

rdsdata-

medium.com > crypto-oracle > openais-gpt-3-is-the-fut... *

OpenAI's GPT-3 Is The Future We've Been Waiting For - Medium Jul 19, 2020 - OpenAl is an artificial intelligence research laboratory started in 2015 by Elon Musk, Sam Altman, Peter Thiel, Reid Hoffman, Marc Benioff and ...

medium.com > crazy-gpt-3-use-cases-232c22142044 ~

zv GPT-3 Use Cases. Discover how powerful ... - Medium 2020 - code (websites, machine learning models, design); completed sentences; layout; le reasoning. GPT-3 definitely will influence how we ..

ium.com > gpt-3-conversational-ai-chatbots-3fb1cf... *

T-3: Conversational AI & Chatbots | by Cobus ... - Medium 5, 2020 - The fact that OpenAI is in the process of releasing an API will have a significant ct on the Conversational Al marketplace. OpenAl states ...

ium.com > openai-unveils-175-billion-parameter-g ... *

enAl Unveils 175 Billion Parameter GPT-3 ... - Medium 29. 2020 - When it comes to large language models, it turns out that even 1.5 billion meters is not large enough. While that was the size of the GPT-2 ...

rdsdata cles ⁻ Google	GPT3 tutorial		x 🌢 🍳
4, 2020 Machini	Q All E Videos 🖴 Images	⊘ Maps III News i More	Settings Tools
rdsdata T-3: 1 2, 2020 te a fre	About 113,000 results (0.46 secon Did you mean: GPT 3 tuto Videos		GENERATE
	REGINNERS TUTORIAL	GPT 3	MATPLOTER FIGHTRES USING GPT-3
	OpenAl GPT-3: Beginners Tutorial	GPT 3 Tutorial GPT 3 Explained What Is GPT 3(Generative	OpenAl's GPT-3 Model Generates Codel
	Bhavesh Bhatt YouTube - Jul 23, 2020	Simplilearn YouTube - Aug 10, 2020	Bhavesh Bhatt YouTube - Jul 30, 2020

wilio.com > blog > openal-gpt-3-chatbot-pytho

Building a Chatbot with OpenAI's GPT-3 engine, Twilio SMS ... Aug 3, 2020 - In this tutorial I'm going to show you how easy it is to build a chatbot for Twilio SMS using the OpenAl platform and the Flask framework for ...

mariodian.com > blog > how-to-get-early-access-to-gpt... > How to to get an early access to GPT-3 and how to talk to it Jul 23, 2020 - In the meantime, follow this short tutorial on how to get around it and start playing with it now. Al Dungeon. Al Dungeon is a free text based game ...

openal.com > blog > openal-api * OpenAl API

Jun 11, 2020 - Today the API runs models with weights from the GPT-3 family with many speed and throughout improvements. Machine learning is moving

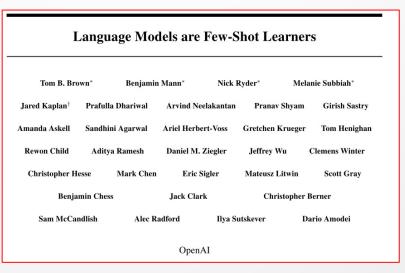
CSC401/2511 – Spring 2022

82

The Open AI GPT Papers

- The GPT papers:
 - GPT (2018)
 - GPT2 (2019)
 - GPT3 (2020)
- Each builds on the predecessor

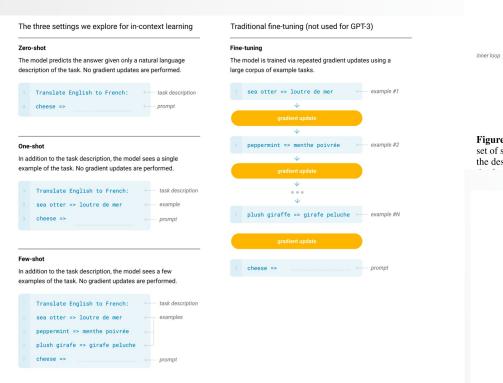
Alec Radford	Karthik Narasimhan	Tim Salimans	Ilya Sutskever OpenAI
	karthikn@openai.com	tim@openai.com	ilyasu@openai.co
	Alec Radford OpenAI c@openai.com	OpenAI OpenAI	OpenAI OpenAI OpenAI

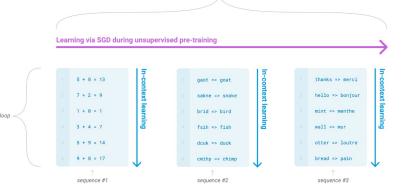


CSC401/2511 - Spring 2022

83

Approach: Model & Architectures





outer loop

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task. We use the term "in-context learning" to describe the inner loop of this process, which occurs within

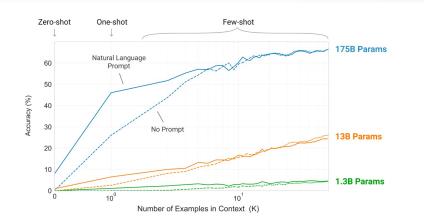


Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning

Approach: Model & Architectures – GPT

- Architecture evolution: GPT3 ← GPT2+mods ← GPT+mods
- Core architecture is classic 'language modeling': $p(x) = \prod_{n=1}^{n} p(s_n|s_1, ..., s_{n-1})$
- Learning to perform a task as estimating distribution *P(output | input)*
- Original GPT¹ trains a standard LM objective to maximize the likelihood:

$$L_1(\mathcal{U}) = \sum_i \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

- Given an unsupervised corpus of tokens $\mu = {\mu_1, ..., \mu_n}$, where k is context window, P is modelled using a neural network with parameters θ
- GPT uses a multi-layer Transformer decoder for the language model

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018): 12.

85

Aside: GPT Architecture – Transformer

- Also used in (w/ caveats) in current SOTA language modeling and NLP architectures like BERT and BERT-variants (RoBERTa, XLNet, Transformer XL etc.)
- GPT vs. BERT-variants:
 - GPT uses 'transformer' blocks as decoders, and BERT as encoders.
 - Underlying (block level) ideology is same
 - GPT (later Transformer XL, XLNet) is an autoregressive model, BERT is not
 - At the cost of auto-regression, BERT has bi-directional context awareness
 - GPT, like traditional LMs, outputs one token at a time

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018): 12.

Neural networks

101/2511 - Spring 2022

- Research in neural networks is exciting, expansive, and explorative.
- We have many hyperparameters we can tweak (e.g., activation functions, number and size of layers).
 We have many architectures we can use (e.g., deep networks, LSTMs, attention mechanisms).
 - Given the fevered hype, it's important to retain our scientific skepticism.
 - What are our biases and expectations?
 - When are neural networks the wrong choice?
 - How are we actually evaluating these systems?