

Logistics

2CSC401/2511 – Spring 2022

• Assignment 1: due Feb 11, 2022
• Assignment 2: release Feb 12, 2022
• Lecture delivery:
• Online (as is) until Feb 18
• Reading week break: Feb 21-25 (no lectures)
• In-person Feb 28th onwards

• Final exam: planned in-person

Neural networks

3CSC401/2511 – Spring 2022

• Introduction
• Word-level representations
• Neural language models
• Recurrent neural networks
• Sequence-to-sequence modelling
• Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

CSC401/2511 – Spring 2022 4

Artificial neural networks

• Artificial neural networks (ANNs) were (kind of) inspired
from neurobiology (Widrow and Hoff, 1960).
• Each unit has many inputs (dendrites), one output (axon).
• The nucleus fires (sends an electric signal along the axon)

given input from other neurons.
• ‘Learning’ occurs at the synapses that connect neurons,

either by amplifying or attenuating signals.

Dendrites
Axon

Nucleus

!()

CSC401/2511 – Spring 2022 5

Perceptron: an artificial neuron

• Each neuron calculates a weighted sum of its inputs and
compares this to a threshold, !. If the sum exceeds the
threshold, the neuron fires.
• Inputs "$ are activations from adjacent neurons, each

weighted by a parameter #$.

If % > ',) ≔ 1
Else,) ≔ 0

"-

! = #
!"#

$
$!%!

".

"/

#-
#.

#/
…

$

McCullogh-Pitts model

&()

CSC401/2511 – Spring 2022 6

Perceptron output

• Perceptron output is determined by activation functions,
%(), which can be non-linear functions of weighted input.
• Popular activation functions include tanh and the sigmoid:

% (= * (=
1

1 + -01
• The sigmoid’s derivative is the easily computable)% =) ⋅ (1 −))

Input

O
ut

pu
t

Input

O
ut

pu
t

From Wikipedia

tanh sigmoid

0

1

CSC401/2511 – Spring 2022
7

Rectified Linear Units (ReLUs)

• Since 2011, the ReLU $ = % (= max(0, () has become
more popular.
• More biologically plausible, sparse activation, limited (vanishing)

gradient problems, efficient computation.

Input

O
ut

pu
t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is
the softplus log(1 + -1),
which has a simple
derivative 1/(1 + -21)

• Why do we care about the
derivatives?

CSC401/2511 – Spring 2022 8

Perceptron learning

• Weights are adjusted in proportion to the error (i.e., the
difference between the desired, 7, and the actual output, $.
• The derivative %′ allows us to assign blame proportionally.

• Given a small learning rate, 9 (e.g., 0.05), we can repeatedly
adjust each of the weight parameters by

#3 ≔ #3 + 9 ⋅ >
$4-

5

?@@$ ⋅ %′(($) ⋅ "3[B]

where ?@@$ = (7$ − $$), among E training examples.
!"

=%&'!'
(

')"

!*

!(

&"
&*
&(

…
+

McCullogh-Pitts model

,()

Assumes
mean-square
error objective

CSC401/2511 – Spring 2022 9

Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).

!!

!"

6! ∧ 6"
!!

!"

6! ∨ 6"
!!

!"

6!⨁6"

CSC401/2511 – Spring 2022 10

Artificial neural networks

• Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

MLP

...

...
• Inputs are passed to the

input layer.
• Activations are propagated

through hidden layers
to the output layer.

• MLPs are quite robust to noise,
and are trained specifically to
reduce error.

CSC401/2511 – Spring 2022 11

Deep

It’s a cat.

‘hidden’ representations are learned here

Depression.

Can we find hidden patterns in words?

CSC401/2511 – Spring 2022 12

Words

• Given a corpus with F (e.g., = 100G) unique words, the
classical approach is to uniquely assign each word with an
index in F-dimensional vectors (‘one-hot’ representation).

• Classic word-feature representation assigns features
to each index in a much denser vector.

• E.g., ‘VBG’, ‘negative’, ‘age-of-acquisition’.

• Can we learn a dense representation? What will it give us?

0 0 0 0 .. 0 1 0 … 0

!

1 0.8 2.5 0.81 … 99
" ≪ !

lugubrious

been feeling lugubrious all day
felt a lugubrious sadness in

…

-($& = ./&/0123/4|$&'# = 677.28&, $&'(= 0778, …)

https://code.google.com/p/word2vec/

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model1.

13CSC401/2511 – Spring 2022

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

Learning word semantics

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.

https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)

14

feeling lugubrious all
a lugubrious sadness

…

" ##
(%×'))$

#%
('×%) *

D
 =

 1
00

K

0,0,0,…1,… , 0
feeling

D
 =

 1
00

K

0,1,0,… , 0,… , 0
lugubrious

Note: we have two
vector representations of
each word:
)$ = "⊺## (+'(row of ##)
,$ = #%

⊺* (+'(col of #%)

CSC401/2511 – Spring 2022

- +) +* =
exp(,$!

⊺)$")
∑$+!, exp(,$⊺)$")Where

)$ is the ‘input’ vector for word +,
,$ is the ‘output’ vector for word +,

‘softmax’:

‘embedding’

w

W

Continuous bag of words (! words context)

15CSC401/2511 – Spring 2022

• If we want to use more context, H,
we need to change the network
architecture somewhat.
• Each input word will produce one

of H embeddings
• We just need to add an

intermediate layer, usually this
just averages the embeddings.

been feeling lugubrious all
felt a lugubrious sadness

…

Skip-grams

16CSC401/2511 – Spring 2022

• Skip-grams invert the task – we predict
context words given the current word.

• According to Mikolov,
Skip-gram: works well with small amounts
of training data, represents rare words.

CBOW: several times faster to train, slightly
better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word
Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf

Actually doing the learning

17CSC401/2511 – Spring 2022

! =

#!
#!!"#$!"%

⋮
#&'()"*'

%!
%!!"#$!"%

⋮
%&'()"*'

∈ ℝ+,×.

• Given I-dimensional embeddings, and J word types, our
parameters, K, are:

Actually doing the learning

18CSC401/2511 – Spring 2022

We have many options. Gradient descent is popular.
We want to optimize, given ! tokens of training data,

! " = 1
%&
$%&

'

&
()*+*),+-.

log*(,$/+|,$)

And we want to update vectors "/345 then #/3 within $
$ 01/ = $ 234 − '(5) $

so we’ll need to take the derivative of the (log of the)
softmax function:

- $) $! =
exp(>*%

⊺ ?*&)
∑*"#
, exp(>*⊺?*&)

Where)$ is the ‘input’ vector for word +,
and ,$ is the ‘output’ vector for word +,

Actually doing the learning

19CSC401/2511 – Spring 2022

We need the derivative of the (log of the) softmax function:

!
!"'#

log & '()* '(= !
!"'#

log
exp(-'#$%

⊺ "'#)
∑',-. exp(-'⊺"'#)

= !
!"'#

log exp -'#$%
⊺ "'# − log1

',-

.
exp(-'⊺"'#)

= -'#$% − !
!"'#

log1
',-

.
exp(-'⊺"'#)

[apply the chain rule 0102-.
= 01

03
03
02-.

]
= -'#$% −1

',-

.
2 ' '(-'

More details: http://arxiv.org/pdf/1411.2738.pdf

http://arxiv.org/pdf/1411.2738.pdf

Using word representations

20CSC401/2511 – Spring 2022

" ##

D
 =

 1
00

K

Without a latent space,
lugubrious = 0,0,0, … , 0,1,0, … , 0 , &
sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos((, 7) = 0.0

In latent space,
lugubrious = 0.8,0.69,0.4, … , 0.05 :, &
sad = 0.9,0.7,0.43, … , 0.05 : so

Similarity = cos((, 7) = 0.9

EMBEDDING

"A = $ ⊺%B

H = 300

Reminder:
cos >, ? =

> ⋅ ?

> ×| ? |

Skip-grams with negative sampling

21CSC401/2511 – Spring 2022

• The default process is inefficient.
• For one – what a waste of time!

We don’t want to update C×E weights!
• For two – we want to avoid confusion!

‘Hallucinated’ (negative) contexts should be
minimized.

• For the observed (true) pair (lugubrious, sadness),
only the output neuron for sadness should be 1, and
all E − 1 others should be 0.

• Mathematical Intuition:

• U #D #E) =
FGH(I45J6)

∑789
: FGH(I7

5J6) Computationally

infeasible

Skip-grams with negative sampling

22CSC401/2511 – Spring 2022

• We want to maximize the association of
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of
‘hallucinated’ contexts:

lugubrious happy
lugubrious roof
lugubrious truth

Skip-grams with negative sampling

23CSC401/2511 – Spring 2022

• Choose a small number F of ‘negative’ words, and just
update the weights for the ‘positive’ word plus the F
‘negative’ words.

• 5 ≤ N ≤ 20 can work in practice for fewer data.
• For P = 100Q, we only update 0.006%

of the weights in the output layer.

• Mimno and Thompson (2017) choose the top
F words by modified unigram probability:

R∗ S%&' =
T S%&'

(
)

∑*T S
(
)

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017, 2873–2878. [link]

! " = log 7(8;'8)) + &
<%&

=

:+~?(A)[log7(−8+'8))]

https://doi.org/10.18653/v1/d17-1308

Smell the GloVe

24CSC401/2511 – Spring 2022

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162

• GloVe (‘Global Vectors’) is an alternative method of
obtaining word embeddings.
• Instead of predicting words at particular positions, look

at the co-occurrence matrix.

Word +* occurs
6*,0(= 60,*)

times with word +0,
within some context

window (e.g., 10 words,
a sentence, …).

https://nlp.stanford.edu/projects/glove/

Smell the GloVe

25CSC401/2511 – Spring 2022

https://nlp.stanford.edu/projects/glove/
Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation.

Proc EMNLP 2014:1532–43. doi:10.3115/v1/D14-1162

• Populating the co-occurrence matrix requires a complete
pass through the corpus, but needs only be done once.

• Let U$,3 = U #3 #$ = V$,3/V$,

https://nlp.stanford.edu/projects/glove/

Aside – smell the GloVe

26CSC401/2511 – Spring 2022

• Minimize W = ∑$,34-J Y V$,3 ZUC
V ZUD + [$ + \[3 − log V$,3

.

where, 0! and G0- are input and output bias terms associated
with $! and $-, respectively

• Weighting function Y V$,3 :

Weighting function f with alpha = ¾, xmax = 100

Aside – evaluation

27CSC401/2511 – Spring 2022

• Intrinsic evaluation: popular (though perhaps dishonest) method was
to cherry-pick a few k-nearest neighbours examples that match
expectations.

Redacted

• Extrinsic evaluation: embed resulting vectors into a variety of
tasks[1,2].

1 https://gluebenchmark.com/tasks
2 https://super.gluebenchmark.com/tasks

Linguistic regularities in vector space

28CSC401/2511 – Spring 2022

Trained on the Google news corpus with over 300 billion words.

Linguistic regularities in vector space

29CSC401/2511 – Spring 2022 (from GloVe)

Linguistic regularities in vector space

30CSC401/2511 – Spring 2022

Expression Nearest token
Paris – France + Italy Rome
Bigger – big + cold Colder
Sushi – Japan + Germany bratwurst
Cu – copper + gold Au
Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture
Semantic: queen – king ≈ woman – man

Importance of in-domain data

31CSC401/2511 – Spring 2022

Wang Y, Liu S, Afzal N, et al. (2018) A Comparison of Word Embeddings for the Biomedical
Natural Language Processing. 2018;:1–21. http://arxiv.org/abs/1802.00400

http://arxiv.org/abs/1802.00400

Biases: let’s talk about gender

32CSC401/2511 – Spring 2022

Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

However, in word2vec trained on Google News,
man:woman::programmer:homemaker.

Biases: let’s talk about gender

33CSC401/2511 – Spring 2022

Solution?

34CSC401/2511 – Spring 2022

1. Hand-pick words $W that are ’gender definitional’.
‘Neutral’ words are the complement,] = J \ $W.

Solution?

35CSC401/2511 – Spring 2022

2. Project away gender subspace from gender-neutral words,
≔ # − # ⋅ _ for # ∈], where _ is the gender subspace.

Solution?

36CSC401/2511 – Spring 2022

2. Project away gender subspace from gender-neutral words,
≔ # − # ⋅ _ for # ∈], where _ is the gender subspace.

Results

37CSC401/2511 – Spring 2022

He:Blue :: She: ?
He:Doctor :: She: ?
He:Brother :: She: ?

• Generate many analogies, see which ones preserve gender
stereotypes.

NEURAL LANGUAGE MODELS

CSC401/2511 – Spring 2022 38

CSC401/2511 – Spring 2022 39

Trigram models

• CBOW: prediction of current word (/ given (/01.
• Let’s reconsider predicting (/ given multiple (/02?
• I.e., let’s think about language modelling.

*

ℎ

"

MLP

ℎ = 8 ##9 + ;
< = #%=+ >

?'

ℎ'

trigram

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector,
• ?' is a distribution, and
• +* = ?' = |,|

(i.e., the size of the vocabulary)

CSC401/2511 – Spring 2022 40

Sampling from trigram models

• Since)/ ∼ +((/|(/0+ (/01), we just feed forward and
sample from the output vector.

ℎ'

+'2" +'2!

two riders

were

?'

ℎ'5!

+'2! +'

riders were

?'5!

approaching

CSC401/2511 – Spring 2022 41

Training trigram models

• Here’s one approach:

1. Randomly choose a batch (e.g., 10K consecutive words)
2. Propagate words through the current model
3. Obtain word likelihoods (loss)
4. Back-propagate loss
5. Gradient step to update model
6. Go to (1)

CSC401/2511 – Spring 2022 42

Training trigram models

• The typical training objective is the cross entropy (see Lecture 4)

of the corpus / given the model 0:
ℱ = I(H;c) = − XYZE [F \

\

?'

ℎ'

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector, and
• ?' is a distribution.

;FEH'

+'

log(-$(K) = log(L
&".

/
-($&) = #

&".

/
log(- $&

Minimize

Maximize

log(-($&) = $&⊺ log M&

CSC401/2511 – Spring 2022 43

Training trigram models

?'

ℎ'

ℎ' = 8 ##[A123;A124] + ;
D1 = EFGHI!"(#%=1 + >)

+'2" +'2!

Here:
• +* is a one-hot vector, and
• ?' is a distribution.

;FEH'

+'

• Compute our gradients, using ℱ = − NOP3 Q4 R
R

and

logS +(-T) = -T⊺ log /T and back-propagate.

Vℱ
VW0

= −
1
K

#
&

VY34Z&
VM&

VM&
V[0

Vℱ
VW1

= −
1
K

#
&

VY34Z&
VM&

VM&
Vℎ&

Vℎ&
V[1

CSC401/2511 – Spring 2022 44

So what?
• J Neural language models of this type:
• Can generalize better than MLE LMs to unseen n-grams,
• Can use semantic information as in word2vec.

• L Neural language models of this type:
• Can take relatively long to train. “GPUs kill the Earth.”
• Number of parameters scale poorly with increasing

context.

- Zℎ7 Y%Z 4%Z 38 Zℎ7]^_ ≈ -(Zℎ7 Y%Z 4%Z 38 Zℎ7 abc)

Let’s improve both of these issues…

CSC401/2511 – Spring 2022 45

Dealing with that bottleneck
• Traditional datasets for neural language modeling include:
• AP News (14M tokens, 17K types)
• HUB-4 (1M tokens, 25K types)
• Google News (6B tokens, 1M types)
• Wikipedia (3.2B tokens, 2M types)

• Datasets for medical/clinical LM include:
• EMRALD/ICES (3.5B tokens, 13M types)

• Much of the computational effort is in the initial
embedding, and in the softmax.
• Can we simplify and speed up the process?

CSC401/2511 – Spring 2022 46

Dealing with that bottleneck

• Replace rare words with <out-of-vocabulary> token.
• Subsample frequent words.

• Hierarchical softmax.
• Noise-contrastive estimation.
• Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b;
Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

CSC401/2511 – Spring 2022 47

Hierarchical softmax with grouping

• Group words into distinct classes, 1, e.g., by frequency.
• E.g., d- is top 5% of words by frequency, d. is the next 5%, …

• Factorize e #D #$ = e d #$ e(#D|#$, d)

- +) +* =
exp(,$!

⊺)$")
∑$+!, exp(,$⊺)$")Where

)$ is the ‘input’ vector for word +,
,$ is the ‘output’ vector for word +,

‘softmax’:

[Mikolov et al, 2011, Auli et al, 2013]

exp(;0)$")
∑6 exp(;)$")

×
exp(,$!

⊺)$")
∑$∈6 exp(,$⊺)$")

RECURRENT NEURAL NETWORKS

CSC401/2511 – Spring 2022 48

Statistical language models

49CSC401/2511 – Spring 2022

• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each
observation only depends on a short linear history of
length L.

• Probabilities are estimated by computing unigrams and
bigrams

- 4 = L
!"(

&
-($!|$!'($!'#)- 4 =L

!"#

&
-($!|$!'#)

U(#]|#-:]2-) ≈ U(#]|#]2_`- :]2-)

bigram trigram

Statistical language models

50CSC401/2511 – Spring 2022

• Using higher n-gram counts (with smoothing) improves
performance*

*From Lecture 2

• Computational burden: too many n-grams (combinations)
• Infeasible RAM requirements

• RNN intuition:
• Use the same set of weight parameters for each word

(or across all time steps)
• Condition the neural network on all previous words (or

time steps)
• Memory requirement now scales with number of words

Recurrent neural networks (RNNs)

51CSC401/2511 – Spring 2022

• An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back

Jordan network (not shown) feed output units back

h

K*

x

Whx

Whh

Why

LFEE

* Ground Truth

Backpropagate

RNNs: Unrolling the !!

52CSC401/2511 – Spring 2022

• Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.
• These can be applied to various tasks.

*8

ℎ8

"8

→
*!

ℎ!

"!

*"

ℎ"

""

You lovely person

PRP ADJ NN

ℎ' = 8 ##[=124; 9] + ;
<1 = #%=1 + >

RNNs: One time step snapshot

53CSC401/2511 – Spring 2022

• Given a list of word vectors h: (-, (., …, (a , (a`-, … , (V

were

ℎ& = & [[22e3'4 +[25gG] + Y

ℎ'

M*'

"'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

• At a single time-step:

R %%&' = ?+ %%, … , %') = cd%,+

ℎ& = & [1[e3'4; gG] + Y (equivalent notation)

jk& = 436Zl%! ([26e3 + 0)

RNNs: Training

54CSC401/2511 – Spring 2022

• Given a list of word vectors h: (-, (., …, (a , (a`-, … , (V

were

ℎ'

M*'

"'

approaching

ℎ'2! ℎ'5!

Whx

Whh

Why

Two riders .. approaching horses...

R %%&' = ?+ %%, … , %') = cd%,+

jk ∈ ℝ|8| is a probability distribution
over the vocabulary

The output ok&,- is the word (index) prediction
of the next word (xt+1)

Evaluation
- Same cross-entropy loss function

p & q = − #
-"#

|8|
k&,- log rk&,-

- Perplexity: 2J (lower is better)
prediction

Ground truth

Sampling from a RNN LM

55CSC401/2511 – Spring 2022

• If ℎ$ < |J|, we’ve already reduced the number of
parameters from the trigram NN.
• In ‘theory’, information is maintained in ℎ$ across arbitrary

lengths of time…

*8

ℎ'2!

"'2!

*!

ℎ'

"'

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

ℎ' = 8 [#((=124;#(99!] + ;
M*' = EFGHI!" (#(:=1 + >)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

56CSC401/2511 – Spring 2022

• Unfortunately, catastrophic forgetting is common.
• E.g., the relevant context in “The sushi the sister of your

friend’s programming teacher told you about was…”
has likely been overwritten by the time ℎ-e is produced.

*8

ℎ8

"8

*!

ℎ!

"!

*!;

ℎ!;

"!;

The sushi tasty

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

Informational bottleneck

RNNs and retrograde amnesia

57CSC401/2511 – Spring 2022

• One challenge with RNNs is that the gradient decays quickly
as one pushes it back in time. Can we store relevant
information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)

58CSC401/2511 – Spring 2022

• In each module, in an LSTM, there are four interacting neural
network layers.

The cell state is a special vector stream that
runs through the entire chain and stores the
long-term information.

Long short-term memory (LSTM)

59CSC401/2511 – Spring 2022

• In each module, in an LSTM, there are four interacting neural
network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×.
Values near 0 block information; values near 1 pass information.

LSTM step 1: decide what to forget

60CSC401/2511 – Spring 2022

• The forget gate layer compares ℎa2- and the current input (a
to decide which elements in cell state Ha2- to keep and which
to turn off.
• E.g., the cell state might ‘remember’ the number (sing./plural) of the

current subject, in order to predict appropriately conjugated verbs,
but decide to forget it when a new subject is mentioned at !&.

• (There’s scant evidence that such information is so explicit.)

LSTM step 2: decide what to store

61CSC401/2511 – Spring 2022

• The input gate layer has two steps.
• First, a sigmoid layer s decides which cell units to update.
• Next, a tanh layer creates new candidate values GK&.
• E.g., the) can turn on the ‘number’ units, and the tanh can push

information on the current subject.
• The) layer is important – we don’t want to push information on

units (i.e., latent dimensions) for which we have no information.

LSTM step 3: update the cell state

62CSC401/2511 – Spring 2022

• Update Ha2- to K&.
• First, forget what we want to forget: multiply K&'# by 6&.
• Then, create a ‘mask vector’ of information we want to store, 2&× GK&.
• Finally, write this information to the new cell state K&.

... →
N<2!

... →
×G'

... →

...
O'×PN'

+
...

N<

K& = 6&×K&'# + 2&× GK&

LSTM step 4: output and feedback

63CSC401/2511 – Spring 2022

• Output something, ma, based on the current (a and ℎ&'#.
• Combine the output with the cell to give your ℎa.
• Normalize cell K& on [-1,1] using tanh and combine with 3&

• In some sense, K& is long-term memory and ℎ& is the short-term
memory (hence the name).

F' = Q #) ℎ'2!, "' + >)

ℎ' = F'×tanh(N')

Variants of LSTMs

64CSC401/2511 – Spring 2022

• There are various variations on LSTMs.
• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

learn

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

Variants of LSTMs

65CSC401/2511 – Spring 2022

• Gers & Schmidhuber (2000) add ‘peepholes’ that allow
all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.
• Joint decisioning is more efficient.

Aside - Variants of LSTMs

66CSC401/2511 – Spring 2022

Reset gate (0: replace units in ℎ"#$
with those in I")

Update gate

• Which of these variants is best? Do the differences matter?
• Greff, et al. (2015) do a nice comparison of popular variants,

finding that they’re all about the same
• Jozefowicz, et al. (2015) tested more than ten thousand RNN

architectures, finding some that worked better than LSTMs on
certain tasks.

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step
further and also merge the cell and hidden states.

http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

RECENT-ISH BREAKTHROUGHS

CSC401/2511 – Spring 2022 67

Deep contextualized representations

68CSC401/2511 – Spring 2022

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

http://arxiv.org/abs/1802.05365

NLM: the bigger is better trend

69CSC401/2511 – Spring 2022

• Cons:
• Deep learning == Deep pockets?
• Environmental impact: “training BERT on GPU is roughly

equivalent to a trans-American flight”1

1 S. Emma, A. Ganesh, and A. McCallum. "Energy and policy considerations for deep learning in NLP. (2019)" [arxiv]

https://arxiv.org/pdf/1906.02243.pdf

ELMo: Embeddings from Language Models

70CSC401/2511 – Spring 2022

• Instead of a fixed embedding for each word type, ELMo
considers the entire sentence before embedding each token.
• It uses a bi-directional LSTM trained on a specific task.
• Outputs are softmax probabilities on words, as before.

*!

ℎ!

"!

*"

ℎ"

""

The play

ℎ′! ℎ′"
LSTMs

*!

ℎ#$"

"#$"

*"

ℎ#

"#

the actors

ℎ′#$" ℎ′#

exhausted

71CSC401/2511 – Spring 2022

• Task specific weighting produces the final embedding for
word token n.

• where t: is the set of all u hidden layers, h;,-
4-
&<=; is the task’s weight on the layer, and
w&<=; is a weight on the entire task

ELMo: Embeddings from Language Models
For each token, a L-layer biLM computes (2L+1) representations:

ELMo: Embeddings from Language Models

72CSC401/2511 – Spring 2022

*"

ℎ"

""

play

ℎ′"

*!

ℎ"

""

play

ℎ′"

ℎ′" ℎ′"

ℎ" ℎ"

1. Concatenate

2. Multiply by weight vectors

3. Sum

""

ℎ′" ℎ′"

ℎ" ℎ"

""

× E%&'()

× E"&'()

× E!&'()

XYZ[)*"
&'()

73CSC401/2511 – Spring 2022

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

ELMo: Embeddings from Language Models

http://arxiv.org/abs/1802.05365

74CSC401/2511 – Spring 2022

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

ELMo: Embeddings from Language Models

Q&A
Textual entailment

Semantic role labelling
Coreference resolution
Name entity resolution

Sentiment analysis

http://arxiv.org/abs/1802.05365

75CSC401/2511 – Spring 2022

Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. http://arxiv.org/abs/1810.04805

BERT: Bidirectional encoder
representations from transformers

Code and models: https://github.com/google-research/bert

• Unlike ELMo, BERT is deeply bidirectional.
• i.e., every embedding conditions every other in the next

layer.

• This is difficult, because when predicting word (a, you would
already have ‘seen’ that word in modelling its own contexts.

http://arxiv.org/abs/1810.04805
https://github.com/google-research/bert

76CSC401/2511 – Spring 2022

BERT: Bidirectional encoder
representations from transformers

*!

ℎ!

"!

*"

ℎ"

""

ℎ′! ℎ′"

ℎ! ℎ"

ℎ′! ℎ′"

ELMo

ℎ!

"!

ℎ"

""

ℎ#$" ℎ#

BERT

"#$" "#

I’ve seen
me

already

77CSC401/2511 – Spring 2022

BERT: Bidirectional encoder
representations from transformers
• This can be solved by masking the word being predicted.

• (actually, 80% we use [MASK]. 10% we replace the target word with another
actual word; 10% we keep the word as-is, to bias ‘towards the observation’.)

• We can also predict other relationships, like whether one
sentence follows another.

• (actually, you can fine-tune on many different tasks)
Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.

https://www.aclweb.org/anthology/2020.emnlp-main.403/

78CSC401/2511 – Spring 2022

BERT: Bidirectional encoder
representations from transformers

(From http://jalammar.github.io/illustrated-bert/)

http://jalammar.github.io/illustrated-bert/

79CSC401/2511 – Spring 2022

BERT: Bidirectional encoder
representations from transformers
• The age of humans is over?

Humans

BERT

80CSC401/2511 – Spring 2022

Aside – ClosedAI

• There are, of course, alternatives.

• FastText: Represent each word as a bag of character-grams
Paper: https://arxiv.org/abs/1607.04606
Code: https://fasttext.cc

• ULMFit: Model fine-tuning for classification tasks
Paper: https://arxiv.org/abs/1801.06146
Code: Here

• GPT-2/3: Spooky, closed uni-directional model
Paper: Here
Blog: Here

https://arxiv.org/abs/1607.04606
https://fasttext.cc/
https://arxiv.org/abs/1801.06146
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://blog.openai.com/better-language-models/

*Adapted from GPT3 - Raeid Saqur
81CSC401/2511 – Spring 2022

82CSC401/2511 – Spring 2022

The Open AI GPT Papers

● The GPT papers:
● GPT (2018)
● GPT2 (2019)
● GPT3 (2020)

● Each builds on the
predecessor

83CSC401/2511 – Spring 2022

Approach: Model & Architectures

84*Adapted from GPT3CSC401/2511 – Spring 2022

● Architecture evolution: GPT3 ← GPT2+mods ← GPT+mods

● Core architecture is classic ‘language modeling’:

● Learning to perform a task as estimating distribution P(output | input)

● Original GPT1 trains a standard LM objective to maximize the
likelihood:

● Given an unsupervised corpus of tokens f = {h1, … , h,}, where k is
context window, P is modelled using a neural network with parameters θ

● GPT uses a multi-layer Transformer decoder for the language
model

Approach: Model & Architectures – GPT

85
[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018): 12.

CSC401/2511 – Spring 2022 *Adapted from GPT3

● Also used in (w/ caveats) in current SOTA language modeling
and NLP architectures like BERT and BERT-variants (RoBERTa,
XLNet, Transformer XL etc.)

● GPT vs. BERT-variants:
● GPT uses ‘transformer’ blocks as decoders, and BERT as encoders.
● Underlying (block level) ideology is same
● GPT (later Transformer XL, XLNet) is an autoregressive model, BERT

is not
– At the cost of auto-regression, BERT has bi-directional context awareness

● GPT, like traditional LMs, outputs one token at a time

Aside: GPT Architecture – Transformer

86

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018): 12.

• Research in neural networks is exciting, expansive, and
explorative.
• We have many hyperparameters we can tweak

(e.g., activation functions, number and size of layers).
• We have many architectures we can use

(e.g., deep networks, LSTMs, attention mechanisms).

• Given the fevered hype, it’s important to retain our scientific
skepticism.
• What are our biases and expectations?
• When are neural networks the wrong choice?
• How are we actually evaluating these systems?

Neural networks

87CSC401/2511 – Spring 2022

