

What is natural language computing?

Getting computers to understand everything we say and write.

In this class (and in the field generally), we are interested in learning the <u>statistics of language</u>.

Increasingly, computers give insight into how humans process language, or generate language themselves.

BLAH

Today

- Basic definitions in natural language processing (NLP).
- Applications
 - Translating between languages
 - Speech recognition
 - Answering questions
 - Engaging in dialogue
- Course logistics.

What can natural language do?

The ultimate in human-computer interaction.

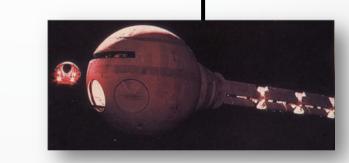
"translate Also Sprach Zarathustra"

"take a memo..."

"open the pod bay doors"

"how far until Jupiter?"

open(podBay.doors);



"Can you summarize 2001: A Space Odyssey?"

We're making progress, but why are these things *still* hard to do?

A little deeper

- Language has *hidden structures*, e.g.,
 - How are sounds and text related?
 - e.g., why is this:

not a 'ghoti' (enou**gh**, w<u>o</u>men, na<u>ti</u>on)?

- How are words combined to make sentences?
 - e.g., what makes 'colourless green ideas sleep furiously' correct in a way unlike 'furiously sleep ideas green colourless'?
- How are words and phrases used to produce meaning?
 - e.g., if someone asks 'do you know what time it is?', why is it inappropriate to answer 'yes'?
- We need to organize the way we think about language...

Categories of linguistic knowledge

- Phonology:
- Morphology:

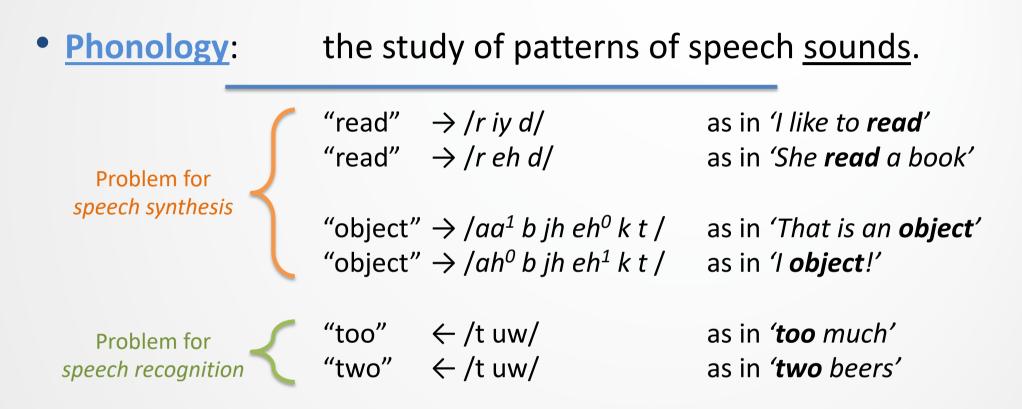
• <u>Syntax</u>:

• <u>Semantics</u>:

• **Pragmatics**:

the study of patterns of speech sounds. e.g., "read" \rightarrow /r iy d/ how words can be changed by inflection or derivation. "read", "reads", "reader", "reading", ... e.g., the ordering and structure between words and phrases (i.e., grammar). e.g., NounPhrase \rightarrow article adjective noun the study of how meaning is created by words and phrases. e.g., "book" \rightarrow the study of meaning in contexts. e.g., explanation span, refutation span

Ambiguity – Phonological



- Ambiguities can often be **resolved** in context, but not always.
 - e.g., /h aw t uw r eh¹ k ah ?? n ay² z s (b|p) iy ch/
 - \rightarrow 'how to recognize speech'
 - ightarrow 'how to wreck a nice beach'

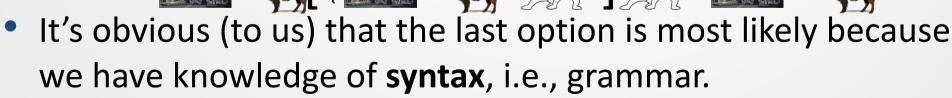
Resolution with syntax

• If you hear the sequence of speech sounds

/b ah f ae l ow b ah f ae l ow b ah f ae l ow b ah f ae l ow ... bah fae low bah fae low bah fae low bah fae low/

which word sequence is being spoken?

- \rightarrow "Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow..."
- \rightarrow "Buffalo buff aloe buff aloe buff aloe buff aloe buff aloe ..."
- \rightarrow "Buff aloe buff all owe Buffalo buffalo buff a lobe ..."
- \rightarrow "Buff aloe buff all owe Buffalo buff aloe buff a lobe ..."
- \rightarrow "Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo" verb

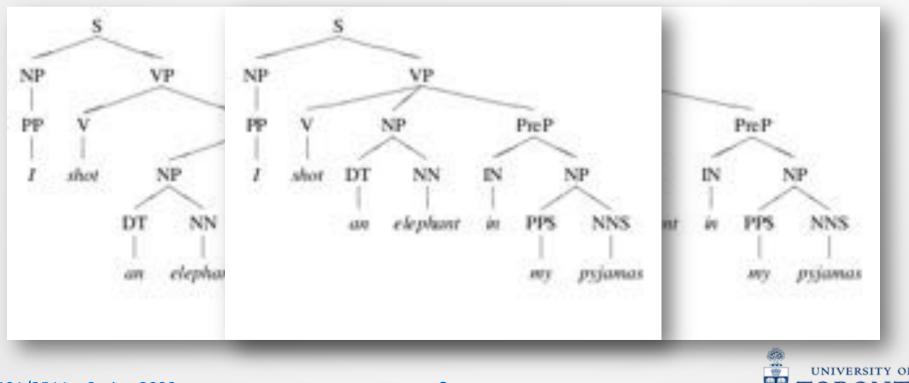


noun

Ambiguity – Syntactic

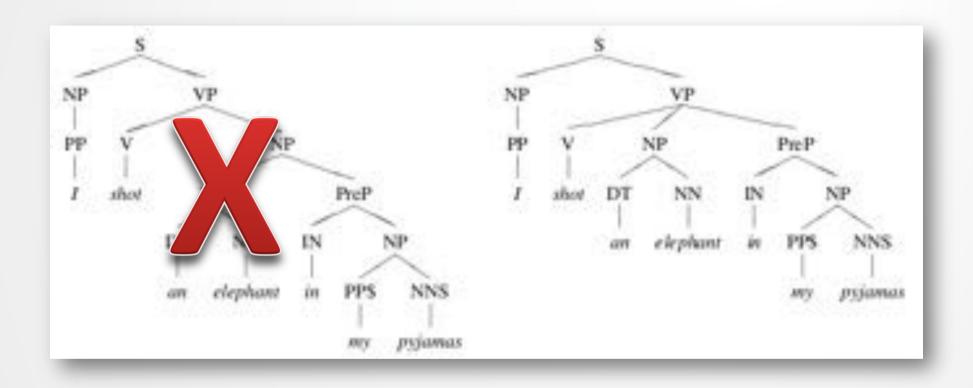
 Syntax: the <u>ordering and structure</u> between words. Words can be grouped into 'parse tree' structures given grammatical 'rules'.

e.g., "I shot an elephant in my pyjamas"



CSC401/2511 – Spring 2022

Resolution with semantics



 It's obvious (to us) that the elephants don't wear pyjamas, and we can discount one option because of our knowledge of semantics, i.e., meaning.

Ambiguity – Semantic

- <u>Semantics</u>: the study of how <u>meaning</u> is created by the use of words and phrases.
 - "Every man loves a woman"
 - $\rightarrow \forall x man(x) \exists y: (woman(y) \land loves(x, y))$
 - $\rightarrow \exists y: woman(y) \land \forall x (man(x) \rightarrow loves(x, y))$
 - "I made her duck"
 - \rightarrow I cooked waterfowl meat for her to eat.
 - \rightarrow I cooked waterfowl that belonged to her.
 - \rightarrow I carved the wooden duck that she owns.
 - \rightarrow I caused her to quickly lower her head.
 - "Give me the pot"
 - \rightarrow It's time to bake.
 - \rightarrow It's time to get baked.

Resolution with pragmatics

- It's obvious (to us) which meaning is intended given knowledge of the context of the conversation or the world in which it takes place.
 - "Every man loves a woman" $\rightarrow \forall x man(x) \exists y: (woman(y) \land loves(x, y))$ If you know that no one woman is so popular $\rightarrow \exists y: woman(y) \land \forall x (man(x) \rightarrow loves(x, y))$
 - "I made her duck"

→ I cooked waterfowl meat for her to eat.
→ I cooked waterfowl that belonged to her.
→ I carved the wooden duck that she owns.

→ I caused her to quickly lower her head.

"Give me the pot"

 \rightarrow It's time to bake.

 \rightarrow It's time to get baked.

If the question was "what type of food did you make for her?"

If the conversation

is taking place in

Canada

Ambiguity – miscellaneous

Newspaper headlines (spurious or otherwise)

Kicking Baby Considered to be Healthy

Squad Helps Dog Bite Victim

Canadian Pushes Bottle Up Germans

Milk Drinkers are Turning to Powder ... **Grandmother of Eight Makes Hole in One**

Kids Make Nutritious Snacks

Juvenile Court Tries Shooting Defendant

Local High School Dropouts Cut in Half

...

...

...

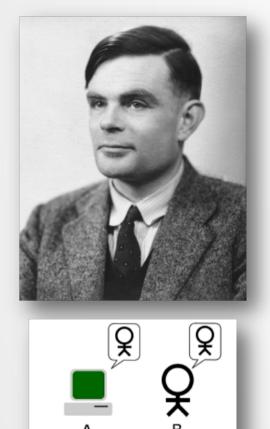
...

...

NLP as artificial intelligence

- NLP involves **resolving ambiguity** at all levels.
 - Reasoning with world knowledge.
 - In the early days knowledge was explicitly encoded in artificial symbolic systems (e.g., context-free grammars) by experts.
 - We tend to use **probabilities** (or pseudo-probabilities) to distinguish subtly different competing hypotheses.
 - E.g., is *Google* a noun or a verb?
 - Examples where Google ∈ Nouns ("Google makes Android"), does not mean that Google is never a verb ("Go Google yourself").
 - $P(Google \in Nouns) > P(Google \in Verbs) > 0$

The Turing Test



- First and most fundamental test of machine intelligence.
- A machine (A) imitates a human using nothing but a text-based instant messenger.
 - If a human interrogator (C) cannot reliably differentiate a real human (B) from the machine, that machine is said to be 'intelligent'.
 - Turing, Alan M. (1950) Computing machinery and intelligence. *Mind*, **59**, pp. 433-460.

CSC401/2511 – Spring 2019

Aside – Chatbots

- ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
- Surprisingly effective despite no linguistic knowledge.

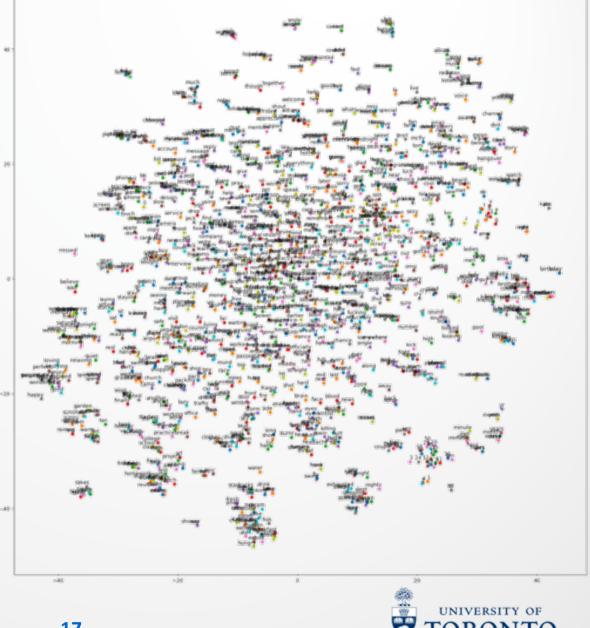
• e.g.,

User: Men are all alike. ELIZA: In what way? User: They're always bugging us about something or other. ELIZA: Can you think of a specific example? User: My boyfriend made me come here. ELIZA: Your boyfriend made you

come here. (Jurafsky and Martin, 2009)

NLP as machine learning

- Modern NLP increasingly ignores linguistic theory in order to obtain models directly from data (visualized here)
- We still use linguistic theory to interrogate (or 'probe') the resulting models.



Course outline (approximate)

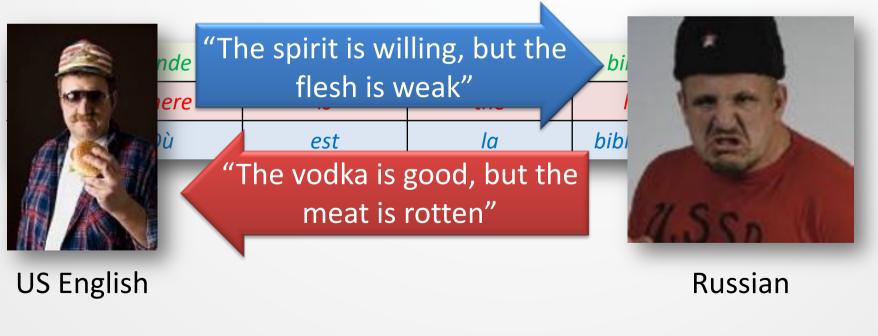
- Introduction, linguistic data, language models (3 lectures)
- Features and classification (1 lecture) *
- Entropy and information theory (2 lectures) *
- Neural language models (2 lectures) *
- Machine translation (3 lectures) **
- Hidden Markov models (3 lectures) *
- Articulatory and acoustic phonetics (2 lectures) *
- Automatic speech recognition (2 lectures) **
- Speech synthesis (1 lecture) **
- Information retrieval (1 or 2 lectures) **
- Dialogue and chatbots (1 or 2 lectures) **
- Review (1 lecture)

美国关岛国际机场及其办公室均接获一 名自称沙地阿拉伯富商拉登等发出的电 子邮件,威胁将会向机场等公众地方发 动生化袭击後,关岛经保持高度戒备。

The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport.

- One of the most prized applications in NLP.
- Requires both interpretation and generation.

- Initially, direct **word-for-word** replacement was popular.
 - Due to semantic and syntactic ambiguities and differences in source languages, results were mixed.



One problem is disparity of meanings in languages.

 nation n. a large body of people, associated with a particular
 territory, that is sufficiently
 conscious of its unity to seek or to
 possess a government of its own

nation *n*. an aggregation of persons of the same **ethnic family**, often speaking the same **language** or cognate **languages**

Pauline Marois Former Première Ministre du Québec

Stephen Harper

Former Prime Minister of Canada

CSC401/2511 – Spring 2022

• <u>Solution</u>: automatically learn statistics on parallel texts

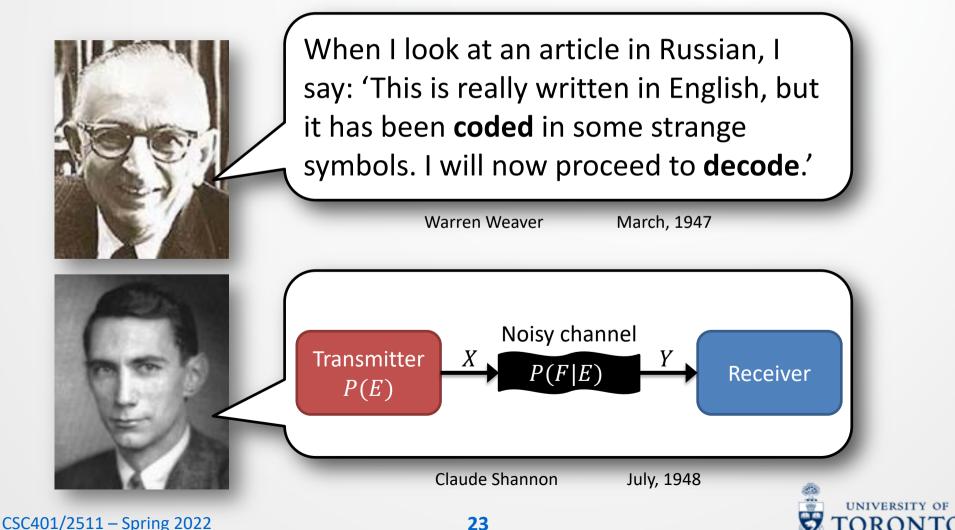
... citizen of Canada has the right to vote in an election of members of the House of Commons or of a legislative assembly and to be qualified for membership ...

... citoyen canadien a le droit de vote et est éligible aux élections législatives fédérales ou provinciales ...

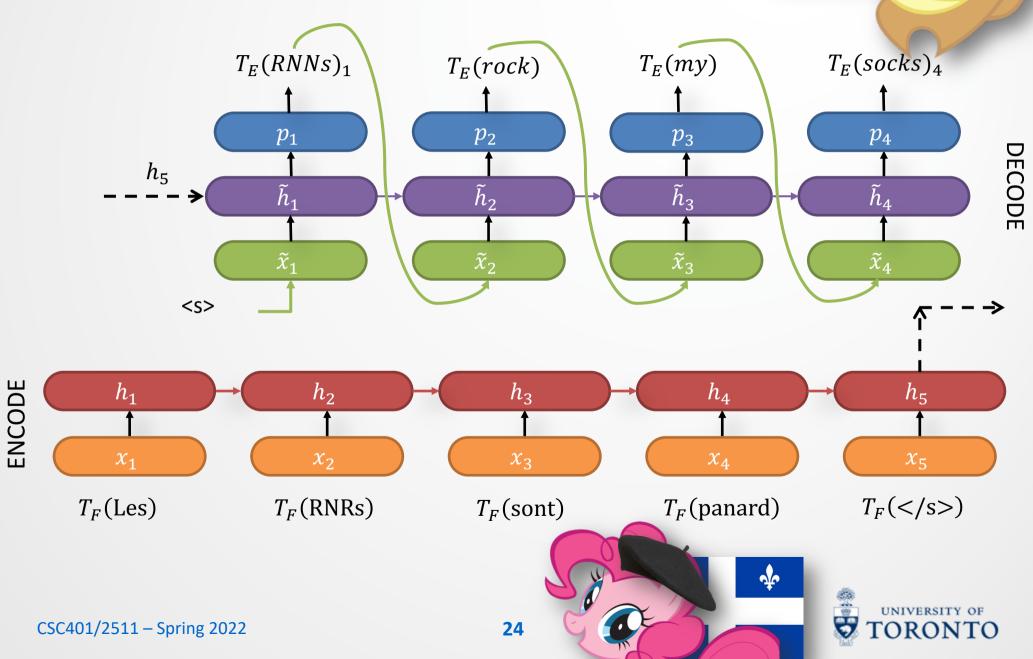
e.g., the *Canadian Hansards*: bilingual Parliamentary proceedings

Statistical machine translation

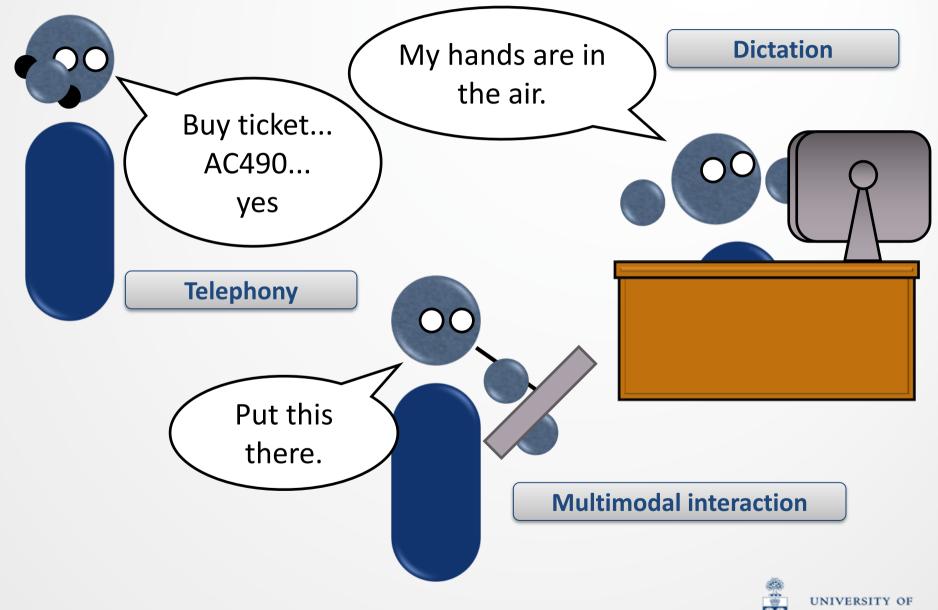
 Much of modern statistical machine translation is based on the following perspective...



Neural machine translation

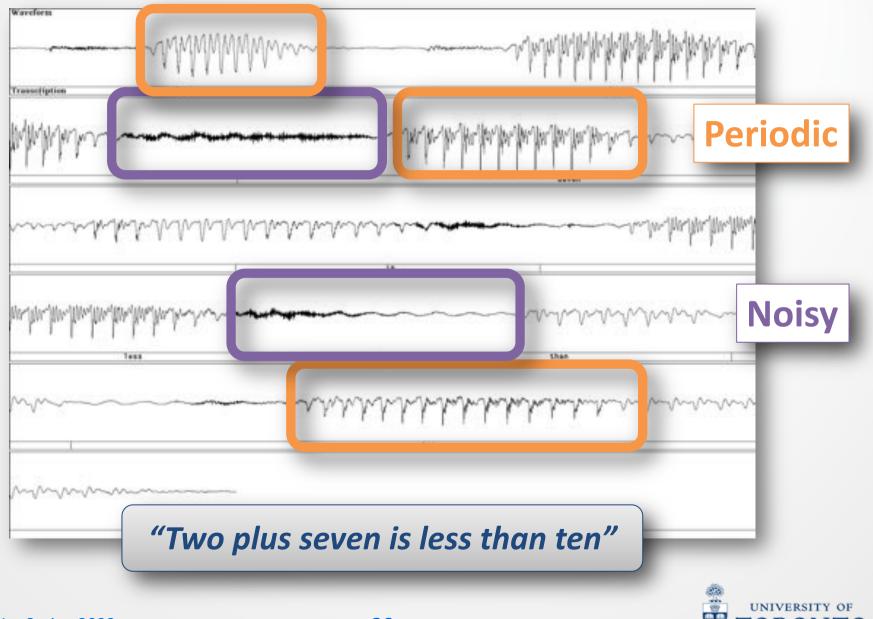


Preview: Speech recognition



ORON

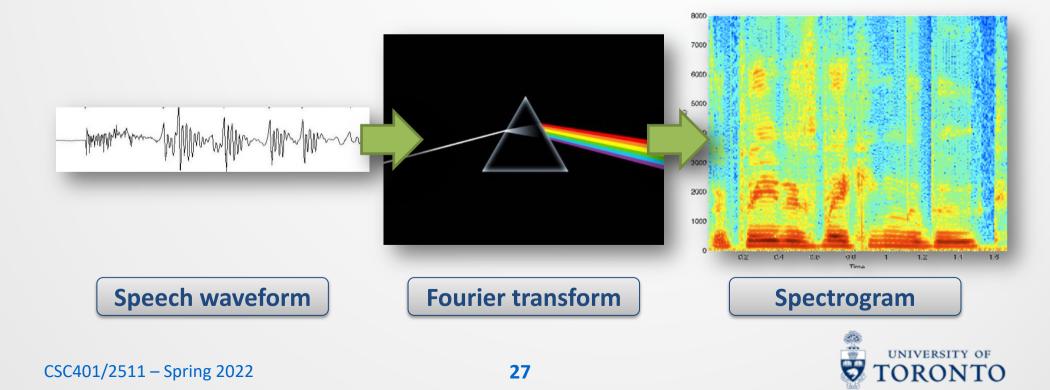
Speech waveforms



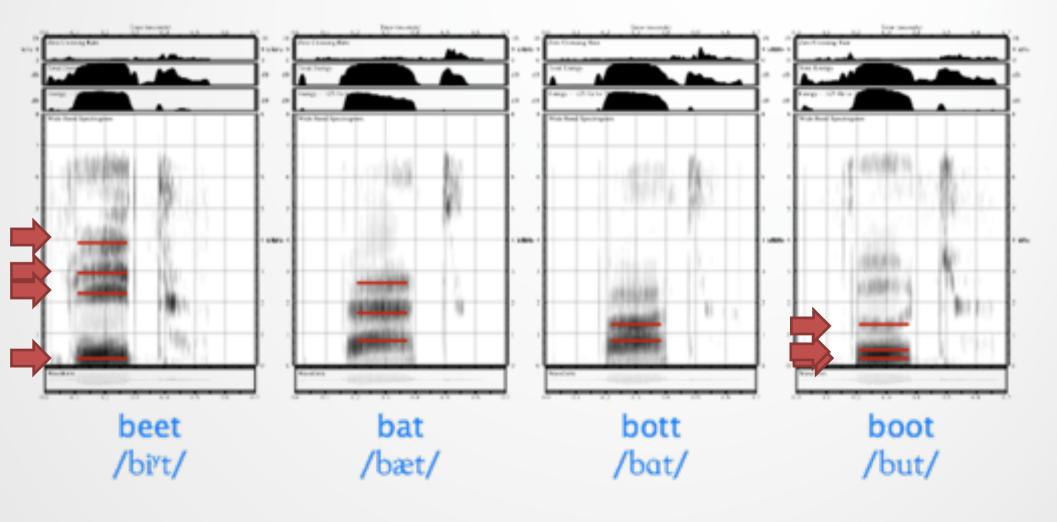
Spectrograms

• Speech sounds can be thought of as overlapping sine waves.

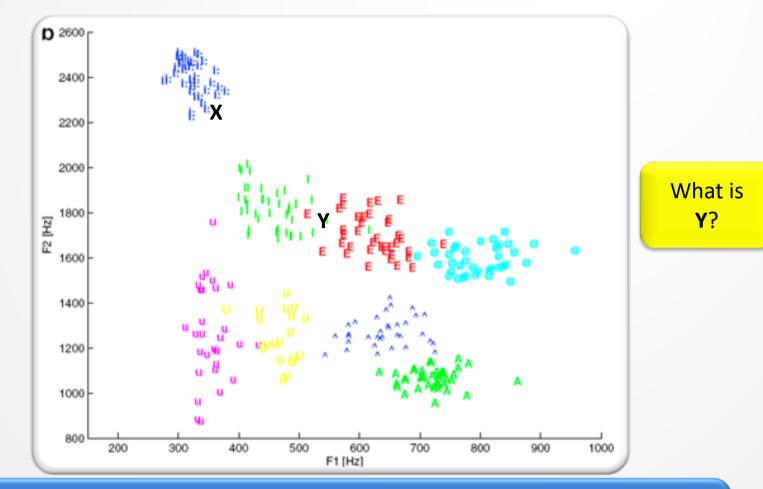
- Speech is split apart into a 3D graph called a 'spectrogram'.
- Spectrograms allow machines to extract statistical features that differentiate between different kinds of sounds.



Speech recognition



Preview: Speech recognition



 In order to classify an unknown observation (e.g., X), we need a statistical model of the distribution of sounds

Preview: Questions and answers

Which woman has won more than 1 Nobel prize?

(Marie Curie)

• Question Answering (QA) and Information Retrieval (IR) involve many of the same principles.

Preview: Information retrieval

 what woman won more than one nobel prize
 Q

 All
 News
 Videos
 Images
 Shopping
 More
 Settings
 Tools

 About 4,000,000 results (0.49 seconds)

Marie Curie won the Nobel prize in 1903 for Physics and 1911 in Chemistry; Linus Pauling in 1954 (for Chemistry) and 1962 (for Peace); John Bardeen in 1956 (for Physics) and 1972; Frederick Sanger in Chemistry in 1958 and 1980. Who has won more than one Nobel prize? Apr 1, 2007

Who has won more than one Nobel prize? - Times of India timesofindia.indiatimes.com/home/...won-more-than-one-Nobel-prize/.../1839923.cms

About this result III Feedback

People also ask	
Who has won Nobel Prize twice?	. Y
What women won the Nobel Prize?	V
How many women have won the Nobel Prize?	v
How many women have been awarded the Nobel Peace Prize?	~
	Feedback

Googe WolframAlpha^{*} computational. knowledge engine

which woman has won more than 1 nobel prize?

% Using closest WolfnamiAlpha interpretation: nobel prize

WolframAlpha computational knowledge engine.

what woman won more than one nobel prize?

C I I I II

(9)

÷ 8

Using closest Wolfram(Alpha interpretation: won more than one

More interpretations: nobel prize woman

Assuming Korean won for "won" | Use North Korean won instead

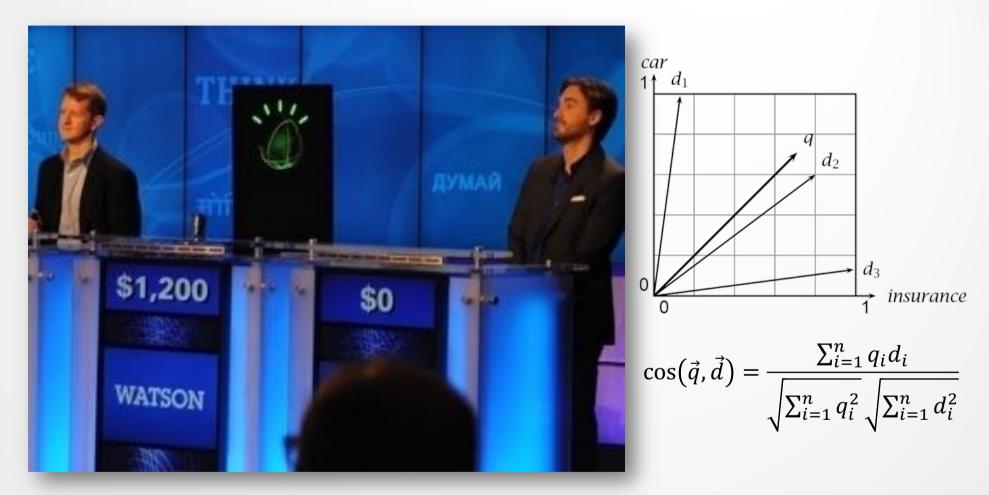
2010	Richard F. Heck	chemistry	United States	United States
2010	Christopher A. Pissarides	economics	United Kingdom	Cyprus
2010	Dale T. Mortensen	economics	United States	United States
2010	Peter A. Diamond	economics	United States	United States
2010	Mario Verser Llere	literature	Peru.	Peru

Aside – Question answering

			3:33 FW		
	"Should I bri	ng an umbrella	next Monday" tap to edit		
WolframAlpha constant	There's no rain next Monday:	There's no rain in the forecast next Monday:			
How much potassium is in 450,000 cubic kilometers of bananas?	1	New York Weekly Forecast			
		Monday	*	50 36	
		Tuesday	,	48 36	
Input interpretation:	Wednesday		50 32		
banana amount 450 000 km ³ (cubic klometers)	potassium	Thursday	*	43 32	
banana amount 450 000 km ³ (cubic klometers)		Friday	*	39 30	
S x 2000-14		Saturday	*	37 34	
Result:	Sunday	*	37 30		
$1.5 imes 10^{12} t$ (metric torus)		Monday	*	36 27	
		Tuesday		37 30	
		Wednesday		45 36	

0

Answer questioning?



 Retrieving information can be a clever combination of many very simple concepts and algorithms.

Overview: NLP

• Is natural language processing (the discipline) hard?

- Yes, because natural language
 - is highly ambiguous at all levels,
 - is complex and subtle,
 - is fuzzy and probabilistic,
 - involves real-world reasoning.
- No, because computer science
 - gives us many powerful statistical techniques,
 - allows us to break the challenges down into more manageable features.
- Is Natural Language Computing (the course) hard?
 - More on this soon...

Natural language computing

- Instructor: Frank Rudzicz, Raeid Saqur, Zining Zhu (csc401-2022-01@cs)
- Meetings: MW (lecture), F (tutorial) at 10h or 11h (check your section)
- Languages: English, Python.
- <u>Website</u>: <u>http://www.cs.toronto.edu/~frank/csc401/</u>
- <u>You</u>: Understand basic **probability**, can **program**, or can pick these up as we go.
- Syllabus: Key theory and methods in statistical natural language computing.
 Focus will be on Markov and neural models, machine translation, and speech recognition.

Natural language computing

Frank

Raeid

Zining

Evaluation policies

- <u>General</u>: Three assignments : 15%, 20%, 25% (ranked by your mark)
 Final 'assessment' : 40%
- <u>Lateness</u>: 10% deduction applied to late submissions. Additional 10% applied every 24 hours up to 72 hours total, at which point grade is zero.
- <u>Final</u>: If you fail the final exam, then you fail the course.
- <u>Ethics</u>: Plagiarism and unauthorized collaboration can result in a grade of **zero** on the homework, **failure** of the course, or **suspension** from the University. *See the course website*.

Theme – NLP in a post-truth society

- The **truth** is the most important thing in the Universe.
 - At the very least, the truth allows us to rationally optimize legal, political, and personal decisions.
- The truth can sometimes be obscured deliberately via deception, or inadvertently through bias, fallacy, or intellectual laziness.
 - Nowhere is this perhaps more obvious than on social media or in pseudo-journalism.
- Natural language processing may give us tools to combat this scourge.

CSC401/2511 – Spring 2022

Assignments

- Assignment 1: Corpus statistics, sentiment analysis
 task: analyze bias on Reddit
 - learn: statistical techniques, features, and classification.
- Assignment 2: Neural machine translation
 - task: translate between languages
 - learn: neural seq2seq and language models.
- Assignment 3: Automatic speech recognition
 - task: detect lies in speechlearn: signal processing, phonetics, andspeech recognition.

Assignment 1 – Bias in social media

- Involves:
 - Working with social media data
 - (i.e., gathering statistics on some data from Reddit),
 - Part-of-speech tagging (more on this later),
 - Classification.
- Announcements: Piazza forum, email.
- You should get an early start.

Projects – graduate students only

- Graduate students can optionally undertake a full-term project worth 60% of their grade instead of the assignments.
 - Good for those, e.g., who prefer to work in teams.
- Teams must consist of 1 or 2 humans (no more, no fewer).
- Projects must contain a significant programming and scientific component.
- Projects must be relevant to the course.

Projects – graduate students only

- Some possible ideas for projects include:
 - A deception filter for news media online.
 - A novel method of using data in language A to train a classification system in language B for A ≠ B.
- If you decide to take this option, you have to notify us by email about your team by 18 January!
- You will need to periodically submit checkpoints that build on their antecedents.
 - See course webpage for detailed requirements!

Reading

CSC401/2JII - Jping 2022

FOUNDATIONS OF STATISTICAL NATURAL LANGUAGE PROCESSING

Optional

(and FREE

online!)

CHRISTOPHER D. MANNING AND HINRICH SCHÜTZE

https://search.library.utoronto.ca/de tails?10552907

Optional

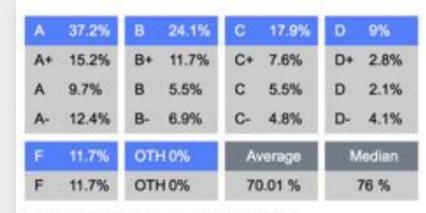
SPEECH AND Language processing

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

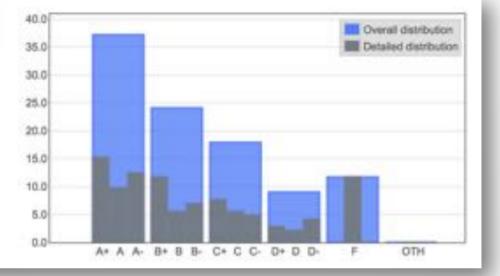
DANIEL JURAFSKY & JAMES H. MARTIN

44

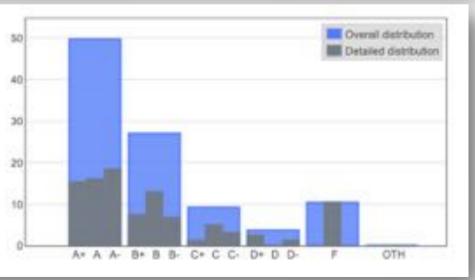
Stats from 2017-2019



Class average excluding exam no shows: 75.20% Fails excluding exam no shows: 3.79%



Class average excluding exam no shows: 77.52% Fails excluding exam no shows: 4.58%



Consider the waitlist!

2019

CSC401/2511 – Spring 2022

Assignment 1 and reading

• Assignment 1 available by Friday (on course webpage)!

- Due 11 February
- TAS: B Eyre; KP Vishnubhotla.
- Reading:

Manning & Schütze: Sections 1.3—1.4.2,

Sections 6.0-6.2.1.

