Language Understanding and Information Retrieval

CSC401/2511 – Natural Language Computing – Spring 2022 Lecture 11 University of Toronto

Agenda

- March 23 (today): Natural languages understanding
- March 28 Monday: Information retrieval

Understanding "what the human means" so I can decide how to reply **NATURAL LANGUAGE UNDERSTANDING**

Natural Language Understanding

- Understanding natural language is a very broad research direction.
- NLP researchers have considered several related tasks:
 - Detect the sentiment
 - Decide if a sentence entails the other
 - Detect the stance
 - Examine if AI models can use some common sense.
 - ... Many others

Detect the sentiment

- Is each row a positive or a negative comment?
- These examples come from the SST2 dataset in the GLUE benchmark – a binary classification problem.

Sentence	Label
that 's far too tragic to merit such superficial treatment	negative
equals the original and in some ways even betters it	positive
the plot is nothing but boilerplate clichés from start to finish	negative
gorgeous and deceptively minimalist	positive

Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." *Proceedings of EMNLP*. 2013.

Detect the entailment

- Do the premise entail the hypothesis?
- These examples come from the MNLI dataset a 3class classification problem.

Premise	Hypothesis	Label
How do you know? All this is their information again.	This information belongs to them.	entail
and it is nice talking to you all righty	I talk to you every day.	neutral
Fun for adults and children.	Fun for only children .	contradict

Williams, Adina, Nikita Nangia, and Samuel R. Bowman. "The Multi-genre NLI corpus." (2018).

Detect the stance

- In this thread, what is the stance of each tweet?
- An example from SemEval 2017 task 8:

```
u1: We understand there are two gunmen and up to a dozen hostages inside the café under siege at Sydney.. ISIS flags remain on display #7News [support]
u2: @u1 not ISIS flags [deny]
u3: @u1 sorry – how do you know it's an ISIS flag? Can you actually confirm that? [query]
u4: @u3 no she can't cos it's actually not [deny]
u5: @u1 More on situation at <location> <link> [comment]
u6: @u1 Have you actually confirmed its an ISIS flag or are you talking shit [query]
```

Derczynski L, Bontcheva K, Liakata M, Procter R, Hoi GW, Zubiaga A. SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours. arXiv preprint arXiv:1704.05972. 2017 Apr 20,

Reasoning with common sense

Here is an example from the **Winograd Schema Challenge**:

- The trophy doesn't fit into the brown suitcase because it is too small. What is too small?
- The trophy doesn't fit into the brown suitcase because it is too large. What is too large?

Aside: WSC is designed as a pronoun resolution problem.

Levesque, Hector, Ernest Davis, and Leora Morgenstern. "The Winograd Schema Challenge." *Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning*. 2012.

GLUE and SuperGLUE

- Just like the ImageNet for CV, there are some leaderboards in NLP:
- General Language Understanding Evaluation (GLUE) is a popular suite of datasets.
- And a more recent suite, SuperGLUE.
- Some datasets we mentioned just now are included, e.g., SST2 in GLUE, and WSC in SuperGLUE

Mind the corner cases!

A commercial sentiment analysis model (G) failed many **"corner-case" tests**:

- Min Functional Test (MFT)
- Invariance test (INV)
- Directional perturbation test (DIR)

Test case	Expected	Predicted	Pass?			
A Testing Negation with MFT	abels: negati	ve, positive,	neutral			
Template: I {NEGATION} {POS_VERE	B} the {TH	the {THING}.				
I can't say I recommend the food.	neg	pos	X			
I didn't love the flight.	neg	neutral	x			
	Failu	re rate = 7	6.4%			
B Testing NER with INV Same pred.	(inv) after re	emovals / ad	ditions			
@AmericanAir thank you we got on a different flight to [Chicago → Dallas].	inv	pos neutral	×			
@VirginAmerica I can't lose my luggage, moving to [Brazil → Turkey] soon, ugh.	inv	neutral neg	x			
	Failu	re rate = 2	20.8%			
C Testing Vocabulary with DIR Ser	timent mono	tonic decrea	sing (↓)			
@AmericanAir service wasn't great. You are lame.	Ļ	neg neutral	x			
@JetBlue why won't YOU help them?! Ugh. I dread you.	Ļ	neg neutral	×			
	Failu	ure rate = 3	34.6%			

Ribeiro, Marco Tulio, et al. "Beyond accuracy: Behavioral testing of NLP models with CheckList." ACL 2020

Popular methods for NLU

- NLU are usually formulated as machine learning classification problems, so ML models can in general apply.
- As of early 2022, the best DNN-based models perform better than "human baselines" on the GLUE leaderboard.
 - "Human baselines" means: the agreement between randomly selected English speakers and the experts who annotated the test sets.
 - The DNN-based models are usually fine-tuned from language models (e.g., RoBERTa).

Aside: Better NLU Systems

- How to develop better NLU systems?
- Here are some possible answers:
 - More high-quality data.
 - Better data representations.
 - Larger models.
 - Better model structures.
- In the next a few slides, we will look at the solutions reflecting the avenues.

GPT-3: More high-quality data

- CommonCrawl text data from 2016 to 2019.
 - 45TB compressed text data are noisy.
 - Filtered down to 570GB.

Filter steps:

- Automatically predict document quality, then resample the high-quality documents.
- 2. (Fuzzy) deduplication.
- 3. Remove the documents contained in evaluation datasets.

Note that GPT-3 also used huge models. More about "large models" later.

Brown, Tom, et al. "Language models are few-shot learners." *Advances in neural information processing systems* 33 (2020): 1877-1901.

ERNIE: Knowledge-enhanced LM

Figure 1: The framework of ERNIE 3.0.

ALBERT: A Light (and larger) BERT

- Larger models might be more expressive, but there are memory bottlenecks.
 - Too much parameters won't fit a GPU card.
- Two techniques to reduce # parameters:
 - Divide large vocabulary embedding matrix into two small matrices.
 - Share parameters across the layers.
- Result? "We are able to scale up to much larger ALBERT configurations but still have fewer parameters than BERT-large."

Lan, Zhenzhong, et al. "Albert: A lite bert for self-supervised learning of language representations." *arXiv preprint arXiv:1909.11942* (2019).

DeBERTa: Enhanced structures

- Remember that in BERT: $v_w = v_{content} + v_{position}$
- DeBERTa uses two separate vectors, $v_{content}(H)$ and $v_{position}(P)$ separately.
- For tokens at locations i and *j*, 4 types of attentions are computed:
 - Content-to-content $H_i H_i^T$
 - Content-to-position $H_i P_{j,i}^T$
 - Position-to-content $P_{i,j}H_j^T$
 - Position-to-position $P_{i,j}P_{j,i}^T$

He, Pengcheng, et al. "Deberta: Decoding-enhanced bert with disentangled attention." arXiv preprint arXiv:2006.03654 (2020).

- Recently, researchers debated around the claim "DNNs understand language".
- ML classifiers may reach nontrivial accuracies by relying only on **shortcuts**:
- Here is an example of natural languages inference task:

S1: You have access to the facts.
S2: The facts are accessible to you.
Label: Entailment
Correct reason: S1 entails S2.
Shortcut: They both contain the, to, and you

- Many NLU models failed to generalize on more challenging datasets.
- Here is an example from a challenge dataset, **HANS**:
 - Rely on meaning -> correct result
 - Rely on shortcuts -> incorrect result

S1: The doctor was paid by the actor.
S2: The doctor paid the actor.
Label: Contradict
Shortcut: They both contain the, doctor, paid, the, actor.

McCoy, R. Thomas, Ellie Pavlick, and Tal Linzen. "Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference." *arXiv preprint arXiv:1902.01007* (2019).

- There are evidence supporting counterarguments. Here is an example showing RoBERTa learns some "deeper" features.
- Example features:

Feature name	Feature description
Surface feature: Length	Is sentence longer than n=3 words?
Linguistic feature: Syntactic category	Does sentence have an adjective?

Warstadt, Alex, et al. "Learning which features matter: RoBERTa acquires a preference for linguistic generalizations (eventually)." *EMNLP 2020*.

- How to test if a model relies on surface (S) vs. linguistic (L) feature?
- Train on an **ambiguous** dataset , which consists of only two types of samples:
 - S=0, L=0 (Label: 0)
 - S=1, L=1 (Label: 1)

Model relying on S or L can make correct predictions.

- Use a disambiguating test set, which consists of only two types of samples:
 - S=0, L=1 Model relying on S will predict 0. L: 1.
 - S=1, L=0 Model relying on S will predict 1. L: 0.

Warstadt, Alex, et al. "Learning which features matter: RoBERTa acquires a preference for linguistic generalizations (eventually)." *EMNLP 2020*.

- Let model perform binary classification (0 vs 1). Compute the (Matthew's) correlation between model's predictions and the L features.
- If the model prefers L: correlation goes towards 1.
- If the model prefers S: correlation goes towards -1.

Warstadt, Alex, et al. "Learning which features matter: RoBERTa acquires a preference for linguistic generalizations (eventually)." *EMNLP 2020*.

• RoBERTa trained with more training data prefers more "linguistic" features.

The colors reflect different constituents in the training datasets.

This is 1 of the 20 configurations. Please refer to the original paper for details: Warstadt, Alex, et al. "Learning which features matter: RoBERTa acquires a preference for linguistic generalizations (eventually)." *EMNLP 2020*.

DNN models can compute some statistics – this is sufficient to solve those NLU machine learning problems, but they still do not understand the content. The tasks that DNN models are trained on – cloze, next-tokenprediction, etc. -- provide supervision signals that teach the DNN models to capture some semantics.

For details of this debate, please refer to:

Wolf, T. "Learning Meaning in Natural Language Processing – The Semantics Mega-Thread" *Blog post:* <u>https://medium.com/huggingface/learning-meaning-in-natural-language-processing-the-semantics-mega-thread-gc0332dfe28e</u>

Probing the DNNs

How much shortcut do the DNNs capture?

- We need to probe the DNNs to see what, and how much, do the DNNs understand.
- Here, "probe" means "carefully examine".
- Probing is a fast-developing field, with many ongoing research projects.
- The most popular probing method is **diagnostic classification**.

Probing as diagnostic classification

Steps for setting up a diagnostic classification:

- Collect a specified diagnostic dataset.
- Train a small, auxiliary model (e.g., LogReg) on the neural model (e.g., BERT) representations.
- High LogReg accuracy → good representations^{*}.

- This is an application to show "which layer does BERT do what".
- Tenney etal., (2019) considered a collection of probing tasks, including:
 - Part-of-speech (POS)
 - Dependencies (Deps.)
 - Semantic role labeling (SRL)
 - Coreference resolution (Coref.)
 - Semantic proto-roles (SPR)

Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 4593–4601. <u>https://doi.org/10.18653/v1/P19-1452</u>

Set up a probing classifier *P* as:

- Input: Weighted sum of representations across *l* layers (i.e., 1, 2, ..., *l*).
- Output: labels of the probing task τ .

The probing classifier produces two numbers:

- $Score(P^{(l)})$: F1 score of probing classification.
- $s^{(l)}$: The weight assigned to layer l.

Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 4593–4601. <u>https://doi.org/10.18653/v1/P19-1452</u>

Measure two summary statistics:

• Center-of-gravity

$$\overline{E}[l] = \sum_{l=0}^{L} l \cdot s_{\tau}^{(l)}$$

The probe "attends to" here the most.

• Expected layer

$$\bar{E}_{\Delta}[l] = \frac{\sum_{l=1}^{L} l \cdot \Delta_{\tau}^{(l)}}{\sum_{l=1}^{L} \Delta_{\tau}^{(l)}}$$
This layer is *expected* to improve *Score* the most.
Where $\Delta_{\tau}^{(l)} = Score\left(P_{\tau}^{(l)}\right) - Score\left(P_{\tau}^{(l-1)}\right).$

(1)

Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 4593–4601. <u>https://doi.org/10.18653/v1/P19-1452</u>

The "lower" layers of BERT are more "syntactic"; The "higher" layers ... more "semantic".

Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 4593–4601. <u>https://doi.org/10.18653/v1/P19-1452</u>

Comparing probing configurations

The probing configurations do not occur standalone.

- By probing, we mostly want to **compare**.
- Following is a hypothetical example $(R_B > R_A)$:

Config A

Task: Predict tense Encoder: BERT (layer 2) Probe: LogReg **Config B** Task: Predict tense Encoder: BERT (layer 4) Probe: LogReg

Performance R_A : Accuracy=80%

Performance R_B : Accuracy=81%

- If B *really* outperforms A, how likely can people reproduce this finding?
 - Can measure with **statistical power**.

Statistical power

Empirically, power can be estimated via simulation:

- Repeat *N* times:
 - Sample e.g., 90% of data.
 - On these data, set up configurations A and B.
 - Do a statistical test (e.g., to test if $R_B > R_A$)
- Among the N simulations, N_{rej} gave $R_B > R_A$
 - i.e., rejected the null hypothesis.
- Then the power is $\frac{N_{rej}}{N}$.
- Usually, we require power to be at least 0.80.

Aside: Test set sizes matter!

- Newsletters like to boast e.g., "AI outperformed humans on GLUE", but we should be careful, but...
- Some leaderboard datasets are too small.
- The results from several hundreds of data sample might not have sufficient **reliability**.

Paper 1: On 100 sentences, our model outperforms BERT by 1% accuracy.Paper 2: On 100,000 sentences, our model outperforms BERT by 1% accuracy.

Which one of the two papers are more reliable?

Aside: sizes of probing datasets

 An example: BERT outperform BERT_corr200, but only when test size >= 256 do the results have sufficient statistical power.

Zhu, Z., Wang, J., Li, B., & Rudzicz, F. (2022). On the data requirements of probing. *Findings of the Association of Computational Linguistics*.

NLU summary

- The language understanding problem (NLU)
- Several tasks to evaluate the NLU abilities.
- Methods for building NLU systems.
- The "form vs meaning" debate.
- Recent approaches: probing.

Retrieve useful information from knowledge base

INFORMATION RETRIEVAL

Information retrieval systems

Retrieving information is also a very, very big problem. Here is a simplification:

Given a query, search for the most relevant document among a knowledge base.

(Marie Curie)

Information retrieval systems

Given a query, search for the most relevant document among a knowledge base.

- Addressing the task requires handling some problems:
 - How to represent the query?
 - How to store a knowledge base?
 - How to search efficiently and accurately?
- The problems are closely related. We will look at some popular approaches.

IR scenario 1: SQL

Structured Query Language (SQL) query

- How to represent the query? SQL queries.
- How to store a knowledge base? Tabular entries with predefined schemas.
- How to search efficiently and accurately? Compile and execute the SQL queries.

IR scenario 2: Doc2Vec

Find the documents that match the given keywords.

- How to represent the query? Query is just another text-based document.
- How to store a knowledge base? A collection of documents – actually, vectorize them, so it's easy to compute a similarity score.
- How to search efficiently and accurately? Compute the similarity score between the query and each document. Return the document with the highest similarity score.

Similarity score

- If the query and the available documents can be represented by vectors, we can determine similarity according to their cosine distance.
 - Vectors that are near each other (within a certain angular radius) are considered relevant.

Vectorization: tf.idf

- *tf.idf* is a traditional method to vectorize the documents.
- It starts by weighting *words* in the *documents*.
 - Term frequency, *tf*_{ij}:

number of occurrences of word w_i in document d_j .

• Document frequency, df_i:

number of documents in which w_i appears.

• Collection frequency, *cf*_i:

total occurrences of w_i in the collection.

Term frequency

- Higher values of tf_{ij} (for contentful words) suggest that word
 w_i is a good indicator of the content of document d_j.
 - When considering the relevance of a document d_j to a keyword w_i, tf_{ij} should be maximized.
- We often **dampen** tf_{ij} to temper these comparisons.
 - $tf_{dampen} = 1 + \log(tf)$, if tf > 0.

Document frequency

- The document frequency, df_i, is the number of documents in which w_i appears.
 - Meaningful words may occur repeatedly in a related document, but functional (or less meaningful) words may be distributed evenly over all documents.

Word	Collection frequency	Document frequency
kernel	10,440	3997
try	10,422	8760

 E.g., kernel occurs about as often as try in total, but it occurs in fewer documents – it is a more specific concept.

Inverse document frequency

- Very specific words, w_i , would give **smaller** values of df_i .
- To maximize specificity, the **inverse document frequency** is

$$idf_i = \log\left(\frac{D}{df_i}\right)$$

where *D* is the total number of documents and we scale with log, as before.

 This measure gives full weight to words that occur in 1 document, and zero weight to words that occur in all documents.

tf.idf

 We combine the term frequency and the inverse document frequency to give us a joint measure of relatedness between words and documents:

$$tf.idf(w_i, d_j) = \begin{cases} (1 + \log(tf_{ij})) \log \frac{D}{df_i} & \text{if } tf_{ij} \ge 1\\ 0 & \text{if } tf_{ij} = 0 \end{cases}$$

The jth document is therefore represented by a vector:
 [tf.idf(w₁, d_j),
 tf.idf(w₂, d_j),
 ...,

 $tf.idf(w_{|W|}, d_j)]$

Latent semantic indexing

- **Co-occurrence**: *n.* when two or more terms occur in the same documents more often than by chance.
 - Note: this is not the same as collocations
- Consider the following:

		Term 1	Term 2	Term 3	Term 4
?	Query	natural	language		
	Document 1	natural	language	NLP	embedding
	Document 2			NLP	embedding

- Document 2 appears to be related to the query although it contains none of the query terms.
 - The query and document 2 are semantically related.

Singular value decomposition (SVD)

- An SVD projection is computed by decomposing the term-bydocument matrix $A_{t \times d}$ into the product of three matrices: $T_{t \times n}$, $S_{n \times n}$, and $D_{d \times n}$ where t is the number of words (terms), d is the number of documents, and $n = \min(t, d)$.
- Specifically,

$$A_{t \times d} = T_{t \times n} S_{n \times n} (D_{d \times n})^{\mathsf{T}}$$

Singular value decomposition (SVD)

			d.	da	da	d.	d_	d.				_					
			<i>u</i> ₁	<i>u</i> 2	uz	<i>u</i> ₄	<i>u</i> 5	<i>u</i> ₆			n	at.	-0.44	-0.30	0.57	0.58	0.25
	natural		1	0	1	0	0	0			la	ng.	-0.13	-0.33	-0.59	0	0.73
A =	languag	ge	0	1	0	0	0	0		T =	p	oc.	-0.48	-0.51	-0.37	0	-0.61
	process	ing	1	1	0	0	0	0		4		ar	-0 70	0.35	0.15	-0.58	0.16
	car		1	0	0	1	1	0				al	-0.70	0.35	0.15	-0.58	0.10
	truck		0	0	0	1	0	1			tr	uck	-0.26	0.65	-0.41	0.58	-0.09
		_						_									
	2 16	0		0		0		0				<i>d</i> ₁	<i>d</i> ₂	d_3	d_4	d_5	d ₆
	2.10		0	0		0		0	н			-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
C	0	1.5	9	0		0		0	ł	ъŢ		-0.29	-0.53	-0.19	0.63	0.22	0.41
5 =	0	0		1.28	3	0		0	J.	D' :	=	0.28	-0.75	0.45	-0.20	0 1 2	-0 33
	0	0		0		1		0	÷			0.20	0.75	0.45	0.20	0.12	0.55
	0	0		0		0		0.39	I			0	0	0.58	0	-0.58	0.58
				_		_		_				-0.53	0.29	0.63	0.19	0.41	-0.22

 $A_{t \times d} = T_{t \times n} S_{n \times n} (D_{d \times n})^{\mathsf{T}}$

• What do these matrices mean?

		d ₁	<i>d</i> ₂	d_3	d_4	d_5	<i>d</i> ₆
	natural	1	0	1	0	0	0
Λ —	language	0	1	0	0	0	0
л —	processing	1	1	0	0	0	0
	car	1	0	0	1	1	0
	truck	0	0	0	1	0	1

- A is the matrix of term frequencies, tf_{ij} .
 - E.g., *natural* occurs once in d_1 and once in d_3 .

- Matrices T and D represent terms and documents, respectively in T this *new* space.
 - E.g., the first row of *T* corresponds to the first row of *A*, and so on.
- T and D are orthonormal, so all columns are orthogonal to each other and $T^{T}T = D^{T}D = I$.

	nat	-0.44	-0.30	0.57	0.58	0.25
	lang.	-0.13	-0.33	-0.59	0	0.73
=	proc.	-0.48	-0.51	-0.37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0.41	0.58	-0.09

	<i>d</i> ₁	<i>d</i> ₂	d ₃	d_4	d_5	d ₆
	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
·	-0.29	-0.53	-0.19	0.63	0.22	0.41
=	0.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0	0.58	0	-0.58	0.58
	-0.53	0.29	0.63	0.19	0.41	-0.22

 D^{T}

- The matrix *S* contains the **singular values** of *A* in descending order.
 - The *ith* singular value indicates the amount of variation on the *ith* axis.

	2.16	0	0	0	0
	0	1.59	0	0	0
S =	0	0	1.28	0	0
	0	0	0	1	0
	0	0	0	0	0.39

By restricting *T*, *S*, and *D* to their first *k* < *n* columns, their product gives us Â, a 'best least squares' approximation of *A*.

	cosm.	-0.44	-0.30	0.57	0.58	0.25
	astro.	-0.13	-0.33	-0 <mark>5</mark> 9	0	0.73
' =	moon	-0.48	-0.51	- 0 .37	0	-0.61
	car	-0.70	0.35	0. <mark>1</mark> 5	-0.58	0.16
	truck	-0.26	0.65	-0 41	0.58	-0.09

<i>S</i> =	2.10	0	0	0	0		<i>d</i> ₁	d ₂	d ₃	d_4	d_5	d ₆
	2.16	0	0	0	0	$D^{\intercal} =$	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
	0	1.59	0	0	0		0.20	0.52	0.10	0.02	0.22	0.41
	0	0	1.28	0	0		-0.29	-0.53	-0.19	0.63	0.22	0.41
	0	0	0	1	0		0.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0	0	1	0		0	0	0.58	0	-0.58	0.58
	0	0	0	0	0.39		-0.52	0.20	0.62	0 10	0.41	-0.22
							-0.53	0.29	0.63	0.19	0.41	-0.22

T

SVD in practice

Rohde *et al.* (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. *Communications of the ACM* **8**:627-633.

Neural embeddings for documents

- We can use neural embeddings for words and documents
 - Use term-document matrix, but swap out SVD for NNs.
 - Small amounts of labeled data can be used to fine-tune.

Figure 21: Schematic view of an interaction matrix generated by comparing windows of text from the query and the document. A deep neural network—such as a CNN—operates over the interaction matrix to find patterns of matches that suggest relevance of the document to the query.

Mitra B, Craswell N. (2017) Neural Models for Information Retrieval. <u>http://arxiv.org/abs/1705.01509</u> Zhang Y, Rahman MM, Braylan A, *et al.* (2016) <u>Neural Information Retrieval: A Literature Review</u>.

Structured vs. Unstructured

- Plain texts are **unstructured**.
- Many modern IR systems use structured data.
 - E.g., docs vectorized to the same dimensions.
 - E.g., relational data.
- Structured data are easier to save and use.

Storing Structured Relational Data

- Saving each complex object as a database entry is one option.
- We can also store (or embed) the {R, S, T} triplets.
 R is the relation (e.g., "has-director") between: the source S (e.g., "Toy Story") and the target T (e.g., "John Lasseter")

Sun, Rui, et al. "Multi-modal knowledge graphs for recommender systems." *Proceedings of the 29th ACM International Conference on Information & Knowledge Management*. 2020.

Multimodal vs. Plain text

- Most modern IR systems are **multimodal**.
- The objects contain more than texts.
 - Images, sounds, even videos are stored too.
 - Choosing the right schemas is very important!

Handling complex queries

- Here is a question with 2 conjunctive queries: "Where did <u>Canadian citizens</u> with <u>Turing Award</u> graduate?"
- Idea: project each query into a **box** in the embedding space!

Ren, Hongyu, Weihua Hu, and Jure Leskovec. "Query2box: Reasoning over knowledge graphs in vector space using box embeddings." *ICLR 2020*

Aside: box embedding details

• Objective to learn the **box embeddings**:

$$-\log \sigma(\gamma - d(\boldsymbol{\nu}; \boldsymbol{q})) - \sum_{i=1}^{\kappa} \frac{1}{k} \log \sigma (d(\boldsymbol{\nu}'; \boldsymbol{q}) - \gamma)$$

- This is a negative sampling loss, where:
 - γ is a fixed scalar margin.
 - v is an answer to the query q.
 - v' is a non-answer to the query q.
 - k is the number of negative entities.

Ren, Hongyu, Weihua Hu, and Jure Leskovec. "Query2box: Reasoning over knowledge graphs in vector space using box embeddings." *ICLR 2020*

Evaluating the retrieval

- Some commonly used metrics include:
 - Precision
 - Recall
 - F-score
 - Precision @ k

Precision and Recall

- **Precision**: $\frac{N_{\text{relevant & retrieved}}}{N_{\text{retrieved}}}$
 - Among all retrieved documents, how many are relevant?
 - Precision in machine learning: $\frac{TP}{D}$
- **Recall**: $\frac{N_{\text{relevant & retrieved}}}{N_{\text{relevant}}}$
 - Among all relevant documents, how many are retrieved?
 - Recall in machine learning: $\frac{TP}{T}$

F-score

• **F-score** is the weighted harmonic mean of precision and recall:

$$F = \frac{1}{\alpha \frac{1}{p} + (1 - \alpha) \frac{1}{r}}$$

- Where p is precision, r is recall, and $\alpha \in [0,1]$.
- Notes:
 - When $\alpha = \frac{1}{2}$, we have $F_1 = \frac{2pr}{p+r}$
 - If either of precision or recall is 0 (i.e., true positive count TP = 0), then F is arbitrarily set to 0.

Precision at k (P@k)

- Modern IR systems usually do not just give one result.
 - Even if the 1st result is not relevant, the 2nd, etc. results could be relevant too.
- People sometimes measure the **precision at k (P@k)**:
 - Among the top k results, how many of them are relevant?
- **P@k** has some potential problems:
 - The 1st, 2nd, ..., kth locations have no differences.
 - If there are less than k relevant results, then even the best system can't get P@k=1.

Information Retrieval summary

- What information retrieval is.
- Doc2vec, latent semantic indexing.
- Neural IR systems.
- Structured data and complex queries.
- Evaluation of IR systems.