
University of Toronto, Department of Computer Science
CSC 2501/485F—Computational Linguistics, Fall 2015

Assignment 5

Due date: 13h10, Wednesday 9 December 2015, on CDF.
This assignment is worth 15% of your final grade.

• Please type your answers in no less than 12pt font; diagrams and structures may be
drawn with software or neatly by hand.

• Any clarifications to the problems will be posted on the course website and the CDF
forums. You will be responsible for taking into account in your solutions any informa-
tion that is posted there, or discussed in class, so you should check the page regularly
between now and the due date.

• This assignment must be done individually; the work that you submit must be your
own. You may, and in fact should, discuss your work with others in general terms. But
you should avoid looking at one another’s work or talking about it in detail. If you
need assistance, contact the instructor or TA.

Copyright c© 2015 Frank Rudzicz. All rights reserved.

1

Introduction

This assignment has been modified from its original version. It has been formatted (reduced) to fit this your schedules.

In this assignment we take a superficial look at word2vec1 , specifically the Python im-
plementation in Gensim2 . There are 3 quick sections:

1. Experiment with training parameters and make some predictions.
2. Design a very simple sentiment analysis engine.
3. Implement a smoothed softmax function.

The Gensim module has been downloaded locally on the CDF machines. To access it, be
sure to run the following command either before you run Python, or in your startup script:

setenv PYTHONPATH /u/frank/csc485/A5/modules/

Naturally, if you already define PYTHONPATH, simply add the indicated directory to it.

1. Experiment with training (15 pts.)

In this experiment, we will simply use a small set of text data used for sentiment analysis
and learn vector representations of the words therein using different parameterizations of the
learning algorithm. Specifically, using /u/frank/csc485/A5/data utils.py, load
the data thus:

from data_utils import StanfordSentiment
from gensim.models import word2vec
import logging

logging.basicConfig(format=’%(asctime)s : \
%(levelname)s : %(message)s’, \
level=logging.INFO)

SS = StanfordSentiment()
sentences = SS.sentences()

Once the sentences are loaded, iterate over all 72 permutations of the following variables:

feature values description
sg [1,0] 1: skip-gram; 0: cbow

size [2,50,200] the dimensionality of the feature vectors
window [1,2,5] the maximum distance between the current and predicted words

min count [1,5] the minumum number of times a word must occur for it to be
part of the model

iter [1,5] the number of iterations over the corpus during training

1 https://code.google.com/p/word2vec/
2 http://radimrehurek.com/gensim/index.html.

API at http://radimrehurek.com/gensim/models/word2vec.html

2

in the following command:

model = word2vec.Word2Vec(sentences, sg=sg, size=size,\
window=window, min_count=min_count,\
iter=iter)

You can save models, if you want, with model.save(fname), given filename fname,
and you can similarly load saved models with model=word2vec.Word2Vec.load(fname).
These files can get large, though, so be warned. If you’re worried about the time it takes to
train these models, don’t forget that the screen command exists.

1.1 Qualitative analysis (10 pts.)
Word2Vec, and its ilk, are often evaluated in terms of how intuitively related cherry-picked
words are to lists of nearby words are. For each of the 72 models trained, find the (up to) 10
words most similar to the following sentiment-related words:

• laugh, love, enjoy
• yawn, hate, uncomfortable

You can obtain lists of these most-similar words by using the following command, e.g.:
existentialAngst = model.most similar(’laugh’, topn=10)
You can report these in a single Excel spreadsheet or comma-separated file. Each row

will represent a model (and hence there will be 72 rows, plus whatever headers you’d greatly
enjoy to prepend). The first 5 columns will indicate the particular values chosen for the 5
features listed above. Thereafter, report up to 10 words that are most similar to those 6 above;
each of the 6 sets of related words can be enveloped with curly brackets (e.g., ‘{’ or ‘}’).

In a report of between 100 and 200 words, describe any trends you observe in these data.
Naturally, you will encounter some very strange matches, which is largely due to the small
amount of data, but there are other trends that relate to the parameters you provide. Focus in
particualr on the ‘skip-gram vs. cbow’ differences (or lack of difference) and explain them
if you can. Remember you can cite external sources.

1.2 Pseudo-quantitative analysis (5 pts.)
Although Word2Vec is trained in an unsupervised manner, it can still be evaluated semi-
objectively. Usually this depends on the application (e.g., whether or not one word model or
another results in better speech recognition accuracy, better part-of-speech tagging, and so
on).

We spoke in Lecture 10 about the simplicity of drawing analogies within word vectors
(e.g., dog is to dogs as octopus is to octopodes). We can use some hand-curated date to
determine a rough estimate of the ‘accuracy’ of the system thus:

model.accuracy(’/u/frank/csc485/A5/data/questions-words.txt’)
This will provide you with accuracies in roughly the following format, across multiple

categories:

2015-10-20 10:24:22,453 : INFO : family: 2.8% (2/72)
2015-10-20 10:24:22,934 : INFO : gram1-adjective-to-adverb: 0.4% (1/240)
2015-10-20 10:24:23,057 : INFO : gram2-opposite: 0.0% (0/56)

3

2015-10-20 10:24:23,543 : INFO : gram3-comparative: 1.2% (3/240)
2015-10-20 10:24:23,639 : INFO : gram4-superlative: 4.8% (2/42)
2015-10-20 10:24:23,958 : INFO : gram5-present-participle: 0.0% (0/156)
2015-10-20 10:24:23,999 : INFO : gram6-nationality-adjective: 0.0% (0/11)
2015-10-20 10:24:24,322 : INFO : gram7-past-tense: 0.0% (0/156)
2015-10-20 10:24:24,447 : INFO : gram8-plural: 0.0% (0/56)
2015-10-20 10:24:24,673 : INFO : gram9-plural-verbs: 0.0% (0/110)
2015-10-20 10:24:24,673 : INFO : total: 0.7% (8/1139)

For the 72 models from part 1.1, produce another spreadsheet that reports these 11 per-
centages (including total). Report in fewer than 200 words on any trends you observe and
make thoughtful suggestions on how to improve these accuracies (beyond the obvious, that
we need more data).

Bonus: If you want to be fancy, you can choose a few of those parametric dimensions
and graph the average total accuracies. For instance, you could generate a bar graph showing
the total accuracy given sg=1 and sg=0, averaged over all other features, in each case. If
you want to be really fancy, you can actually attempt to implement improvements (including
new data, new code, or different parameters). Document and submit anything of which you
are proud.

2. Simple sentiment analysis engine (10 pts.)

We’re now going to train a (ridiculously) simple sentiment analysis engine using word
vectors from part 1. Use (and identify) the model from part 1.2 that gives you the highest
overall total accuracy in that section. This distribution of word vectors will be fixed through-
out these experiments. We will now use a mapping between words and their ‘sentiment’,
which you get from this file:

/u/frank/csc485/A5/data/stanfordSentimentTreebank/sentiment labels.txt.
For this secton, we want to produce a sentiment classifier that will make guesses as to

the sentimental value of words it has never seen before given words that (ought to) be close
to them. Here, we’ll simply use the WEKA toolkit3 to do our machine learning. Consult the
Appendix as to how you should invoke WEKA.

First, you will need to write your word vectors to an arff file (see the Appendix for its
format). All you have to do is walk through the rows in:

/u/frank/csc485/A5/data/stanfordSentimentTreebank/dictionary.txt,
select only rows with one word, get the associated word vector from your selected model

(e.g., using model[’computer’] for the word computer), and then append the dis-
cretized sentimental value of that word from the sentiment labels.txt file. How do
you discretize the continuous sentimental value from sentiment labels.txt? Like
this:

range [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8, 1.0]
class 0 1 2 3 4

Remember, each row in the arff is a word, so if your word vectors are H-dimensional, you’ll
have H+1 elements on each row, including the word’s sentment. WEKA automatically runs

3 http://www.cs.waikato.ac.nz/ml/weka/arff.html

4

cross-fold validation with the -x command (use 10 folds, please). That means that it will try
to guess the sentimental value of a word given models trained on other words. Simply report
the accuracies you obtain, or provide a screengrab of the output of WEKA.

Bonus: Experiment with different classifiers. Implement cross-fold validation yourself
(leave-one-out may be preferred in the Real World, but may be overkill for this assignment).
If you want to be super fancy, you can make inferences on whole sentences using the syntac-
tic trees also provided among the data on CDF. Report your results in a scientitic manner.

3. Smoothed soft-max (5 pts.)

We spoke (very) briefly in class about smoothing conditional probability functions. In
bigrams, we represent the probability of a word wt following a word wt−1 with this repre-
sentation:

P(wt |wt−1) =
P(wt−1,wt)

P(wt−1)
≈ Count(wt−1,wt)

Count(wt−1)
,

where Count(·) is the number of times the argument appears in the training corpus. However,
that’s not cool because, like, what if you’re reading some test data or something and, like,
you see a bigram whose first word you’ve never seen before and you’re all like “oh man, I’m
going to determine the probability of this bigram” but then you’re like, “oh no, that will give
me 0/0 probability and I can’t handle that in my life right now.”. Well, the normal trick is to
pretend you’ve seen things more often than you have, so we have:

Psmoothed(wt |wt−1)≈
Count(wt−1,wt)+δ

Count(wt−1)+δ ||V ||
,

where δ is an empirical parameter, usually between 0.0001 and 0.1, and ||V || is the size of
your vocabulary V . When δ = 1, this is called ‘Laplace smoothing’, by the way.

In Lecture 10 we defined the ‘softmax’ function where a context (outside) word wo is
related to the current (inside) word wi thus:

P(wo |wi) =
exp(V>wo

vwi)

∑
||V ||
w=1 exp(V>w vwi)

,

where vw and Vw are the ‘input’ and ‘output’ vectors of the model (i.e., each word is repre-
sented by two vectors – once as the current word and once as the context word).

Implement a Python function that merely takes a matrix θ (after slide 26 in Lecture 10)
of 2× ||V || rows, each of dimension H and implements the softmax function. But there’s
more! Your function should also take a parameter δ so that you can smooth these probabil-
ities. You are responsible to determine how to incorporate δ into the softmax function, as
long as the result is a valid conditional probability function in which every pair {wo,wi} is
0≤ P(wo |wi) ≤ 1 and ∑w∈V P(w |wi) = 1, given any wi.

Bonus You can evaluate your functions using actual vectors from Word2Vec. As this is
for your own amusement, you can also take the time to figure out how.

5

What to submit electronically Please submit your code, your spreadsheets, and your re-
ports for all three parts. Submit the files using the submit command on CDF:

% submit -c <course> -a A5 <filename-1>...<filename-n>

where <course> is csc485h for undergraduates and csc2501h for graduate students,
and <filename-1> to <filename-n> are the n files you are submitting. Make sure
every file you turn in contains a comment at the top that gives your name, your login ID on
CDF, and your student ID number.

6

Appendix: Using WEKA
WEKA is available on CDF in /u/frank/csc485/A5/WEKA.

1. Classifier command line
The general syntax for running WEKA from the command line is:

java -cp *weka.jar path* *weka classifier* *classifier options*

The path to the jar file on CDF is: /u/frank/csc485/A5/WEKA/weka.jar.
You only need to use the weka.classifiers.functions.SMO classifier (for SVMs).

The key options are:

-t *arff file* (Choose the training file)
-x *X* (Use cross-validation, X is the number of folds)
-o (Do not output the classifier. Use this option for your outputs!)

2. Information gain attribute selector
The options for running WEKA’s information gain attribute selector are different than the
classifiers and a bit more complex; ideally, attribute selection is done through the WEKA
GUI (and you may do so, see below). Since there is no variation in the parameters, however,
we can simply provide you with a sh script that will do the job. To run it on one of your arff
files and send the output to a file, use this command:

sh /u/frank/csc485/A5/WEKA/infogain.sh *arff file* > *output*

3. WEKA GUI
WEKA includes a GUI for quickly testing various options associated with classification.
You may use the GUI for early testing and additional exploration as part of the bonus. If you
are on a CDF lab computer or logged in using NX, the GUI is available using the following
command:

java -jar /u/frank/csc485/A5/WEKA/weka.jar

Select the explorer, and open your arff file using the open file button. Then go to the Classify
tab to carry out a classification experiment, or Select Attributes to do feature selection. The
options which can be selected otherwise correspond to those available at the command line.
See
http://www.cs.waikato.ac.nz/ml/weka/index documentation.html for
more information.

Table 2: Example weather.arff for WEKA

@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no

8

